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Abstract: Flash floods are one of the most devastating natural hazards; they occur within a catchment
(region) where the response time of the drainage basin is short. Identification of probable flash
flood locations and development of accurate flash flood susceptibility maps are important for proper
flash flood management of a region. With this objective, we proposed and compared several
novel hybrid computational approaches of machine learning methods for flash flood susceptibility
mapping, namely AdaBoostM1 based Credal Decision Tree (ABM-CDT); Bagging based Credal
Decision Tree (Bag-CDT); Dagging based Credal Decision Tree (Dag-CDT); MultiBoostAB based
Credal Decision Tree (MBAB-CDT), and single Credal Decision Tree (CDT). These models were
applied at a catchment of Markazi state in Iran. About 320 past flash flood events and nine flash
flood influencing factors, namely distance from rivers, aspect, elevation, slope, rainfall, distance from
faults, soil, land use, and lithology were considered and analyzed for the development of flash flood
susceptibility maps. Correlation based feature selection method was used to validate and select the
important factors for modeling of flash floods. Based on this feature selection analysis, only eight
factors (distance from rivers, aspect, elevation, slope, rainfall, soil, land use, and lithology) were
selected for the modeling, where distance to rivers is the most important factor for modeling of flash
flood in this area. Performance of the models was validated and compared by using several robust
metrics such as statistical measures and Area Under the Receiver Operating Characteristic (AUC)
curve. The results of this study suggested that ABM-CDT (AUC = 0.957) has the best predictive
capability in terms of accuracy, followed by Dag-CDT (AUC = 0.947), MBAB-CDT (AUC = 0.933),
Bag-CDT (AUC = 0.932), and CDT (0.900), respectively. The proposed methods presented in this
study would help in the development of accurate flash flood susceptible maps of watershed areas not
only in Iran but also other parts of the world.
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1. Introduction

Flash floods are those events where the rise in water is rapid within a few hours of the heavy
rainfall. Flash flood is one of the most common, severely devastating natural hazards, which causes
significant damages to the infrastructure and socioeconomy, and most importantly, it brings loss of
lives [1–5]. Globally, more than 5000 people die each year due to flash flood events, which is about four
times greater than any other category of flood event [6]. The most destructive nature of flood events is
generally related to the extreme amount of torrential rainfall within a short duration resulting in high
surface runoff [4,7]. Flash floods occur within catchments, where the response time of the drainage
basin is short. According to the American Meteorological Society, flash flood events generally do not
give advance warning and therefore, they cause significant risk and destruction due to their complex
and dynamic environmental settings and nature [8,9].

Flash flood occurrence is affected by various watershed characteristics (type of basin and drainage),
anthropogenic activities (land use, deforestation, and civil engineering construction) and meteorological
conditions such as amount, intensity, spatial distribution, and time of rainfall. Recently, climate change
is altering meteorological conditions which may lead to flash flood condition at one place and drought
condition at another place. Therefore, the past may no longer be a reliable guide to the future. Thus, in
the planning of flood management, especially of flash flood in urban areas, climate change effect is to
be properly considered to avoid future damages to property and loss of life [10,11].

Geomorphological changes due to natural and anthropogenic causes can modify the flood pattern
of different areas [12]. Urbanization is one of the important factors in the occurrence of flash floods
in cities. Construction of roads and buildings reduces permeable areas and increases sealed surfaces
(impermeable areas), thus causing less infiltration and more runoff with the same amount of rainfall
causing pluvial flash floods [10]. Therefore, it is essential to identify and map accurately flash flood
susceptible areas within a basin considering appropriate factors to develop suitable models for proper
planning, management, and mitigation of flash flood events in an area [13].

There are many natural and anthropogenic factors that affect flood occurrence. Among these
factors, topography is one of the important elements (land surface slope, river longitudinal profile,
river cross section) that affects natural floods [14]. Flood parameters are very sensitive to topography
changes. Low areas adjacent to rivers and streams have the highest risk of flooding. However, flash
floods can also occur on hill slopes. Digital Elevation Model (DEM) as an indicator of the earth’s surface
contains information about the elevation of the earth. Flood depth and velocity are the most important
parameters used in vulnerability assessment, estimation of casualties, and financial losses based on
the land record [14]. Therefore, careful consideration of the topography of the area is desirable to
avoid overestimation or underestimation of financial losses, casualties, and thus overall vulnerability
assessment of an area [15,16].

Nowadays, multidisciplinary approaches including remote sensing, Geographic Information
System (GIS), and machine learning methods are used for effective prediction and management of
floods [5,6,12,17–19]. To recognize and delineate flash flood susceptible areas, DEM and other remote
sensing satellite images have become popular and useful tools [20,21]. Bui and Hoang [22] reviewed
the flash flood studies into three major classes, namely rainfall-runoff models, traditional methods,
and pattern classification. In the case of rainfall-runoff models, the methodologies generally focus
on establishing the relationship between the rainfall and runoff to determine the spatiotemporal
distribution of the floods at a local scale and to carry out such studies in that area [23]. The traditional
methods include analysis of long-term time series data and various statistical models [22]. The problem
of predicting flash flood probability by implementing the above methods is the lack of reliable data
availability of the long-term time series discharge records. Another method based on the pattern
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classification is relatively new, which employs monitoring of data at the gauging stations and also
preparation of data of flooded and nonflooded group to assess the flash flood probability of a region
and to demarcate the area where flash floods can occur [24,25].

Independent simplified decision-making techniques such as Analytical Hierarchy Process
(AHP) [5,26–29], Fuzzy Logic (FL) [30,31], and Frequency Ratio (FR) [32,33] are some of the pattern
classification-based methods which have been used to generate the flash flood maps around the
world. Though these methods are simple, they do not provide a great level of accuracy in flash
flood prediction in comparison to modern and advanced machine learning methods such as Support
Vector Machine (SVM) [34,35], Artificial Neural Network (ANN) [36–38], Logistic Regression (LR) [39],
GARP and QUEST [40], and Random Forest (RF) [41]. In recent years, some hybrid and ensemble
machine learning methods such as Hybrid Bayesian Framework [24], Logistic Model Tree with Bagging
Ensembles [42], Ensemble Weight-of-Evidence and Support Vector Machines [43], and Neuro-Fuzzy
system integrated with Meta-Heuristic Algorithms [44] have been developed which provide better
accuracy in comparison to single machine learning methods.

The main objective of the present study is to use GIS Based Hybrid Computational Approaches to
develop ensemble models for accurate flash flood susceptibility assessment. In view of this, four hybrid
ensemble models for the flash flood prediction were developed with Credal Decision Tree (CDT) as
base classifier. These developed ensemble models are: AdaBoostM1 based CDT (ABM-CDT); Bagging
based CDT (Bag-CDT); Dagging based CDT (Dag-CDT); and MultiBoostAB based CDT (MBAB-CDT).
A small watershed of Tafresh county in the Markazi province of Iran, which experiences many flash
floods every year, was selected as a study area for collecting and generating the datasets for the
modeling process. To validate and compare performance of the models, various methods such as
statistical measures and Area Under the Receiver Operating Characteristic (AUC) curve were used.

2. Materials and Methods

Description of the Research Area

Watershed of Tafresh county is one of the flash flood-prone areas of Markazi province. This
county is located in the Markazi province of Iran covering an area of 1605 km2, between 34◦31′ N and
35◦5′ N, 49◦30′ E to 50◦9′ E (Figure 1). Topography of the Tafrash watershed area is hilly with elevation
ranging from 1296 to 3101 m. This area experiences cold winters and relatively moderate summers.
The average temperature is 19.2 ◦C in summer and 6.4 ◦C in winter. Average annual rainfall in this
region is 254.3 mm. Major water supply sources in the Tafresh watershed include springs, the perennial
GharehChay River, the Ab Kamar seasonal river, and semi-deep wells. The GharehChay river with
discharge 3000 ls−1 is one of the most important rivers in the area, which provides water for irrigation
in Tafresh area, but due to droughts in recent years, discharge has reduced below 2000 ls−1. However,
several severe flash floods occur in the Tafrash watershed during winter every year, due to sudden
heavy rainfall within a short period.
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Figure 1. Location of study area.

3. Data Collection and Preparation

3.1. Flash Flood Inventory

Accurate mapping of the past flash flood events has a great impact on the accuracy of developed
flash flood susceptibility maps. In order to predict the future flash flood events in a region, it is
necessary to have records of the past flash flood events of the area [45]. These events depend on many
factors including topography (terrain gradient), meteorology (antecedent rainfall), soil type, vegetative
cover, and anthropogenic activities. These factors are considered as important parameters for the
preparation of flash flood inventory and for the prediction of future flash flood events. In this research,
in total, 320 past flash flood locations (represented on the maps by points) were obtained from the
regional water organization of Markazi province (Figures 1 and 2). These flash flood points were
divided randomly into 70% data points for training and 30% for validation purposes. In addition,
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320 nonflooding points randomly selected from the high-altitude areas with low probability of flooding
which were also used to combine with flash flood data for generating the training and testing datasets.
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Figure 2. Flash flooding in Tafresh city.

3.2. Flash Flood Conditioning Factors

In this study, nine flash flood affecting parameters, namely distance from river, aspect, elevation,
slope, rainfall, distance from faults, soil types, land use, and lithology were considered in the modeling.
Thematic maps were generated using ArcGIS 10.1, ENVI 5.1, and SAGA-GIS 2 software (Figure 3).
All these maps were converted to raster image (format) of 12.5 m × 12.5 m pixel size, which is up to the
resolution of DEM for model studies (Table 1). A detailed description of these factors is given below:

Table 1. Data collection and preparation.

Row Primary Input
Data

Original Format
Sources Spatial Resolution Source of Data Derived Map

1 ALOS-PALSER
DEM Raster 12.5 m https:

//search.asf.alaska.edu/

Slope, Aspect,
Curvature, Elevation,
Distance from river

2 Landsat 8 OLI Raster 30 m
Department of Natural

Resources of
Markazi Province

Land use map

3 Meteorological
data Point - Markazi County

Meteorological Bureau Rainfall map

4 Geological map Vector 1:100000
Geological survey and
Mineral Exploration

of Iran

Lithology and Distance
from fault

5 Soil map Vector 1:100000
Department of Natural

Resources of
Markazi Province

Soil map

https://search.asf.alaska.edu/
https://search.asf.alaska.edu/
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Figure 3. Maps of flash flood conditioning factors: (a) distance to rivers, (b) aspect, (c) elevation,
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Distance from rivers:
In general, the area which is close to the rivers is more prone to flooding in both cases of normal

flood and flash flood within the river basin as water flows from higher elevation and accumulates at
lower elevations. The areas close to other terrestrial water bodies such as ponds, dams, and lakes are
also likely to be flooded in the event of heavy rains as the terrain in the vicinity of these water bodies
would be almost flat [46]. However, pluvial flash floods may also occur at a distance away from the
water bodies depending on the meteorological and topographical conditions. In the present study, six
classes of buffer have been developed at buffer distance of 100 m from the river (Figure 3).

Aspect:
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An aspect map of a region represents the direction of the surface slope. The direction which a
slope faces with respect to the sun (aspect) has a profound influence on microclimate. The aspect map
also shows no slope area (flat) where no surface slope is present; this is generally at the base of the
hills or near lakes. Regions with low slope or regional flat surface are more vulnerable to the flash
flood where water accumulates and rises [6,47]. Therefore, by using this parameter, the flat regions can
easily be identified. Besides, flat area flooding also depends on the monsoon wind direction which
hits the surface slope (Aspect). In this study, the aspect map was generated from the DEM with nine
classes (Figure 3).

Elevation:
Water has a tendency of flowing from high altitude to lower elevation. The continuous flow of the

rainwater therefore easily creates a flash flood situation in the low elevation areas [48,49]. However,
pluvial flash floods also occur at higher elevation. In this study, an elevation map was generated from
the DEM with five classes (Figure 3).

Slope:
Many factors affect catchment hydrologic characteristics, which ultimately influence the production

of surface runoff. One of the important factors controlling runoff is surface slope [50]. On the steeper
slopes, infiltration will be less and runoff will be more. This excessive runoff will cause flash flooding
of the down slope flat areas. Thus, flat areas near and adjacent to high gradient slope generally have
high probability of occurrence of flash floods [51]. In the present study, a slope map was created from
DEM with five classes (Figure 3).

Rainfall:
Rainfall is the primary source of water for runoff generation over the land surface causing flooding

of the low-lying areas. Runoff occurs whenever rain intensity exceeds the infiltration capacity of
the ground (soil and jointed weathered rock). Intense short duration rainfall may cause flash floods.
Rainfall is the most important factor for flooding of an area [50]. Flooding may also occur due to ice
melting. In order to determine the annual rainfall map, the data of four rainfall-gauge stations for a
period of 30 years were used. The rainfall map was divided into two classes (Figure 3).

Distance from faults:
Some of the major faults exposed on the surface with wide permeable fault zones may increase

infiltration and thus reduce the runoff and can saturate surrounding groundmass causing local flooding.
However, fault may also cause failure of levees and earthen dams due to structure failure and may
result in flash flooding. In the present study, the distance from fault map was prepared into six
classes (Figure 3).

Soil:
Soil is one of the important factors affecting infiltration and runoff and thus has a great impact on

flooding. Soils rich in clay are mostly impermeable and cause more runoff and thus cause flooding of
the area. In the present study, the soil map was developed from data obtained from the Soil Survey
Department of Iran (Figure 3).

Land use:
Land use types affect the degree and frequency of floods in an area [52,53]. Infiltration and runoff

depend on the land use pattern as well as other factors. Alterations in the land use configuration can
change the flooding pattern of a region. Land-cover change due to anthropogenic activities such as
urbanization, deforestation, and cultivation results in increased flash flood frequency and severity.
In the present study, the land use map was obtained from the Department of Natural Resources of
Markazi Province. Google Earth images and field survey were used to update the map (Figure 3).

Lithology:
Variation of lithology can strongly amplify or reduce the degree of flash flood vulnerability [54,55].

Infiltration and runoff depend on the permeability of lithounits as well as other geo-environmental
factors. In this study, the lithology map was prepared from the Geological Survey of Iran data with
sixteen groups (Table 2 and Figure 3).
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Table 2. Lithology units in the Tafresh watershed and their relative permeability.

Group No Geo-Units Description Permeability

1 Ea.bvt Andesitic to basaltic volcanic tuff Low
2 OMc Basal conglomerate and sandstone Moderate
3 Ed.avs Dacitic to andesitic volcanosediment Moderate
4 TRJs Dark grey shale and sandstone (SHEMSHAK FM.) Moderate
5 EKgy Gypsum High
6 K2I1 Hyporite bearing limestone (Senonian) Moderate
7 OMq Limestone, marl, gypsiferous marl. Sandymarl and sandstone (QOM FM) Low
8 Qft2 Low level piedment fan and valley terrace deposit High
9 Plc Polymictic conglomerate and sandstone Moderate
10 Mur Red marl, gypsiferous marl, sandstone and conglomerate (upper red Fm.) High
11 TRn Sandstone, quartze arenite, shale and fossiliferous limestone (NAIBAND for) Moderate
12 K2shm Sale calcareous shale and sandstone with intercalations of limestone Moderate
13 Ktzl Thick bedded to massive, white to pinkish orbitolina bearing limestone (TIZKUh FM) Moderate
14 Judi Upper Jurassic diorite Low
15 EK Well bedded green tuff and tuffaceousshle (KARAJ FM) Moderate

4. Methods Used

4.1. Frequency Ratio

Frequency Ratio (FR) determines the quantitative relationship between a flash flood event and its
various variables [32,56]. In order to determine the FR, the ratio of flash flood events in each class of
influencing factors is calculated relative to the total flash flood events. The ratio of the area of each
class to the total area is also determined. Finally, by dividing the percentage of flash flood events in
each class by the percentage of the area of each class relative to the entire research area, the FR of the
classes of each factor is calculated. FR for each class of factors affecting the flash flood are calculated
using the following equation [32,33]:

FR =
( A

B

/ C
D

)
=

E
F

(1)

where A: number of flash flood pixels per class, B: total flash flood pixels of the entire area, C: number
of pixels per subclass of effective flash flood factors, D: total number of pixels in a region. E: percentage
of flash flood occurrence in each class of effective factors, F: relative percentage of area of each class of
total area.

4.2. Correlation Based Feature Selection

Irrelevant and redundant factors must be removed to improve data quality for modeling [57].
According to Pham et al. [58], working with a large number of factors reduces the speed of model
execution, low modeling accuracy, and overfitting due to the large number of irrelevant factors as
model inputs. There are many factors influencing the flood phenomenon, but the factors with higher
correlation coefficients are more relevant in modeling and vice versa [58]. In this study, correlation
based feature selection was selected to evaluate the importance of the factors used for better modeling
of landslide susceptibility. This method is based on the assumption that features/factors are relevant if
their values vary systematically with category membership [57,59]. In other words, a feature is useful
if it is correlated with or predictive of the class; otherwise it is irrelevant [57,59]. In correlation based
feature selection, the score of the evaluation is defined as Average Merit (AM) which is expressed as
the following equation [57]:

AMi =
ACi
AIi

(2)

where AMi is the score of factor ith, ACi is the average correlation between the subset ith with the
dependent variable, and AIi is the average intercorrelation within the subset ith.
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4.3. AdaBoostM1

AdaBoostM1 is a popular adaptive boosting algorithm proposed by Freund and Schapire [60].
AdaBoostM1 enhanced the predictive ability of the classifier. This method is employed to solve
the classification problem, which contains a complicated dataset generated from previous classifiers.
Firstly, the weight values are allocated to occurrences in learning dataset. After that, the weights are
substituted in iterations of training process according to the performance of the previous base classifier.
The training process will be terminated when the optimal weights have been given specifically to
achieve the best performance of the base classifier [61].

4.4. Bagging

Bagging is known as one of the earliest ensemble methods which was proposed by Breiman [62]
to improve the algorithm accuracy of machine learning methods [63]. In this method, bootstrap sample
technique is used to produce numerous samples for creating a training classifier. Each generated
training set is then employed to establish a decision tree. After that, these subsets are combined with
the output in the final model [61]. This method not only enhances the capacity of generalization but
also decreases the error of classification [64,65]. The optimum result of classification can be drawn
using the following equation:

L′(x) = argmax
y∈Y

t∑
i=1

1(Ci(x) = y) (3)

where L’ (x) expresses a combination of classifier and Ci(x) denotes an indicator function.

4.5. Dagging

Dagging was initially introduced by Ting and Witten [66]. This method is recognized as one of
the famous ensemble techniques. Aim of Dagging method is to improve accuracy in prediction of
the classifier by combining varied samples of the training set [67]. A number of disjointed samples
are employed rather than bootstrap samples to achieve the base classifier [66,68]. This method is a
powerful technique for a single classifier, which has a poor time of complexity; thus, the outputs of
algorithms with weak training are linked via the popular voting rule [67].

4.6. MultiBoostAB

MultiBoostAB is a combination ensemble learning algorithm, which is established on the basis of
AdaBoostM1 and Wagging methods in order to hinder overfitting problem [69]. Wagging is a variable
of Bagging, which exploits training cases using various weights that can reduce remarkably the bias of
AdaBoostM1 technique [70]. Combinations of Wagging and AdaBoostM1 produce a framework that
can transform a weak training classifier to a robust one. As MultiBoostAB is able to perform parallel
processing, it is considered as a potential and computational method that has more advantages in
comparison to Wagging and AdaBoostM1 methods [69]. MultiBoostAB method involves three main
steps: (1) selection of a subset randomly from the original learning data and then to use it to produce
fundamental classifier-based models; (2) the weights of occurrence are adjusted based on the predictive
competence of the models; and (3) finally, new subsets from the occurrence weighting are chosen for
training newer models [71].

4.7. Credal Decision Tree

Abellan and Moral originally proposed Credal Decision Tree (CDT) using an original split criterion
that was built based on uncertainty measures as well as inaccurate probabilities [70]. CDT is used
to tackle classification problems by employing credal sets [64,72,73]. In order to reduce generating a
complicated decision tree in the building process of CDT, an exclusive criterion was introduced in case
of the summation of uncertainties raising due to splitting, the construction process will stop [64,74].
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In order to quantitatively evaluate the entire uncertainty of credal sets, an updated method was
recommended based on the theory of Dempster and Shafer [75,76]. The function applied in measuring
the total uncertainty is expressed in the following equation [77]:

EU(χ) = NG(χ) + RG(χ) (4)

where EU expresses a value of entire uncertainty (i.e., total uncertainty), NG denotes a general
nonspecificity function, and RG is a general randomness function for a credal set that represents a
credal set. The successes and conclusions on the measurement of the summation of uncertainty were
derived in previous literature of Abellan and Moral [78]. Besides, the detailed procedure for computing
and properties of this measurement on EU were clearly described in previous studies [72,78]. To analyze
probability intervals of individual variables, the inaccurate probability model was adopted [79,80].
Supposing that the Z is known as a variable that has values which are expressed by zj; then p(zj) is
considered as the probability distribution, which reflects that each value of zj is determined as per the
following formula [73,81]:

p
(
z j
)
∈

[ mzj

M + r
,

mzj + r
M + r

]
, j = 1, . . . , k; (5)

where M and mzj express the sample size and the event frequency (Z = zj), respectively; and r is called
the hyperparameter, which has values of 1 or 2, as stated by Walley [80].

4.8. Validation of the Models

Validation is important to determine the accuracy of the flash flood susceptibility models. To verify
the prediction capability of models, it is desirable to assess as well as compare both learning and
validating datasets [17,25,42]. In the present study, various validation criteria were adopted, namely
Area Under the Receiver Operating Characteristic (ROC) curve and statistical measures.

4.8.1. Receiver Operating Characteristic (ROC) Curve

ROC curve is considered as a good tool for analyzing landslide and flood susceptibility
models [17,42,82,83]. The x-axis of the ROC curve graph shows the specificity whereas the y-axis
presents the sensitivity [84–88]. The area located under the ROC curve which is called the AUC is
commonly employed to evaluate the prediction capacity of models [89–93]. Normally, the value of
AUC has a range of 0.5–1.0 [94–96]. Higher value of AUC indicates better prediction capacity of the
models [97–100]. The value of AUC is calculated by the following equation:

AUC =
(
∑

EC +
∑

IC)
(a + b)

(6)

where EC indicates the number of the accurately classified flash flood events, IC denotes the number
of the inaccurately classified flash flood events, a is single flash flood event, and b is denotes the total
number of flash flood events.

4.8.2. Statistical Measures

In the present study, seven popular statistical measures, namely Positive Predictive Value (PPV),
Negative Predictive Value (NPV), Root Mean Square Error (RSME), Accuracy (ACC), Sensitivity (SST),
Specificity (SPF), and Kappa index (k) were employed for assessing performance of the flash flood
prediction models. The description of these indexes is summarized in Table 3.
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Table 3. List of statistical measures employed in this research [101–105].

Statistical Measures Formula

PPV (%) PPV = A
A+B

NPV (%) NPV = C
C+D

ACC (%) ACC = A+C
A+C+B+D

SST (%) SST = A
A+D

SPF (%) SPF = C
C+B

k
k = Pa−Pest

1−Pest
Pa = (A + C)

Pest = (A + D) × (A + D) + (B + C) × (D + C)

Where, A (true positive) and C (true negative) denotes the number of pixels of flash flood event
classified correctly, whereas B (false positive) and D (false negative) are the numbers of pixels of nonflash
flood event classified incorrectly. Pa and Pest are the measured and expected agreements, respectively.

RMSE is defined as the squared difference error between the model simulated and measured
values. This method is popularly employed to assess flash flood susceptibility maps [17,42]. The smaller
values of RMSE means the prediction capacity of the model is better. Determination of RMSE is
calculated as follows [59,106–108]:

RMSE =

√
1
N

.
L∑

i=1

(Xmodel −Xact)
2 (7)

where Xmodel and Xact denote the model simulated and actual (i.e., measured) value, respectively;
L stands for the summation of samples.

5. Methodology

Methodology of the study is presented below in several main steps: (1) Data collection and
preparation; (2) Generating training and testing datasets; (3) Building the flash flood models;
(4) Validation of the models; and (5) Generation of flash flood susceptibility maps (Figure 4). A more
detailed description of these steps is given below:
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5.1. Data Collection and Preparation

Flash flood inventory map and the conditioning factor maps were generated in the raster format
with 12.5 m pixel size. Thereafter, the inventory map was overlaid with the conditioning factor maps
to calculate the FR values of each class of the conditioning factor using FR method. These FR values
were then used as the weights of the class of the factors. In addition, correlation-based feature selection
was used to validate and select the important factors and also to asses relative importance of these
factors for modeling of flash floods.

5.2. Generating Training and Testing Datasets

Flash flood inventory was randomly divided into two parts with the ratio of 70/30. Out of these
parts, 70% of inventory was used to sample with the conditioning factors assigned the weights for
generating the training dataset, whereas the 30% remaining was used to sample with the conditioning
factors assigned the weights for generating testing dataset. Selection of ratio for division of training
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and testing inventory might affect performance of the models. In this study, the ratio of 70/30 was used
as it is a common ratio used in modeling [109–111]. This step was carried out in ArcGIS application.

5.3. Building the Flash Flood Models

Different hybrid models, namely ABM-CDT, Bag-CDT, Dag-CDT, MBAB-CDT, and a single
classifier CDT were developed in this step using training dataset. Out of these methods, ABM-CDT is
a combination of AdaBoostM1 ensemble and CDT classifier, Bag-CDT is a combination of Bagging
ensemble and CDT, Dag-CDT is a combination of Dagging and CDT, and MBAB-CDT is a combination
of MultiBoostAB and CDT. In these hybrid models, ensemble techniques were used to optimize the
training dataset which was then used as input data in CDT classifier for flash flood susceptibility
assessment. To construct these models, internal parameters should be selected and optimized to get
the best performance of the models. More specifically, in CDT, initial parameters such as batch size,
initial count, maximum of depth, minimum total weight of instances in a leaf, minimum proportion
of variance, number of folds and seed were selected as 100, 0.0, −1, 2.0, 0.001, 3, 1, respectively.
In ABM-CDT, initial parameters such as batch size, number of iterations, seed and weight of threshold
were selected as 100, 10, 1, and 100, respectively. In Bag-CDT, initial parameters such as batch size,
number of execution slots, number of iterations, and seed were selected as 100, 1, 15, and 1, respectively.
In Dag-CDT, initial parameters such as batch size, number of folds, and seed were selected 100, 10,
and 1, respectively. In MBAB-CDT, initial parameters such as batch size, number of iterations, number
of subcommittees, seed, and weight of threshold were selected 100, 20, 3, 1, and 100, respectively.
The values of these initial parameters of the models were determined by the trial-error process. This
step was carried out using the packages and codes included in the Weka software.

5.4. Validation of the Models

Validation of the models was carried out on both training and testing datasets using various
criteria such as PPV, NPV, SST, SPF, ACC, Kappa, RMSE, and AUC. While validation using training
dataset shows the goodness-of-fit of the models, validation using testing datasets shows predictive
capability of the models. This step was carried out using the packages and codes included in the
Weka software.

5.5. Generation of Flash Flood Susceptibility Maps

In this step, flash flood susceptibility maps of Tafresh watershed were prepared based on ABM-CDT,
Bag-CDT, Dag-CDT, MBAB-CDT hybrid machine learning models and CDT model in ArcGIS software.
To construct the flash flood susceptibility maps, flash flood susceptibility indexes generated from the
construction of the models were used to assign all pixels of the study area. Thereafter, these indexes
were classified into five classes of flash flood susceptibility, namely very low, low, moderate, high,
and very high to construct final maps using geometric interval classification method available in
GIS software.

6. Results and Discussion

6.1. Impact Weight of each Class of Variables Affecting Flash Flood Susceptibility by FR Method

The impact weight of each class of variables was determined based on the comparative analyses
of relationships between the location of past floods with the topographical and geo-environmental
variables affecting flash flood occurrences (Figure 5). Analysis indicated that the highest weight in the
variable of altitude classes belongs to the elevation class of 1296–1823 m. In the slope percentage of
the surface slope, the weight of 0–9.3 degrees was the highest weight. In the slope direction variable,
the northwest slope direction has a higher weight than the other aspects. In variable distance from the
fault class of 400–500 m, weight has more influence than other classes. Examination of the variable
distance from river showed that most of the flood-related weight was located at 0–100 m class. In the
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rainfall variable, the rainfall class 250–300 mm has higher weight than the other class. This means this
class of rainfall belongs to threshold value for the occurrence of flash flood. Higher rainfall above this
value can also cause flash flood depending on the duration in combination with other factors. Land
use classes of the orchard and residential, which are in proximity to the main river and at gentle slopes,
had the highest weighting factor compared to other land uses. Soil analysis indicates that the weight
of the inceptisols soil is higher than that of the rocky outcrops. The lithology in this area indicates that
Qom formation (OMq) has higher weight than other classes.
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Figure 5. Frequency analysis of flash flood occurrence on the factor maps.

6.2. Importance of Factors Using Correlation-Based Feature Selection

Relative importance analysis of factors affecting flash floods was carried out using correlation-based
feature selection method as shown in Table 4. It can be seen that distance from rivers is the most
important factor for flash floods as the value of AM (0.608) is the highest compared with other
factors. Following factors are slope (AM = 0.484), elevation (AM = 0.337), lithology (AM = 0.125),
soil (AM = 0.099), rainfall (AM = 0.049), land use (AM = 0.024), aspect (AM = 0.022), and distance from
faults (AM = 0.007), respectively. The feature selection results are reasonable as the areas close to the
river are more likely to be affected by floods. This is true for normal river floods and also for flash
floods in case of torrential rains within short period in this area [112,113]. Slope is also important as
it influences surface runoff, volume, and velocity of flow. In the study area (Tafresh), there is more
accumulation than outflow due to gentle topography (slope factor) resulting in the rapid rise of the
flood water level within short time during torrential rain. Therefore, slope factor is the second most
influential factor in the flood modeling (Table 4), which is consistent with many studies [114,115].
At higher elevation, slope factor is important resulting in higher velocity and runoff thus draining
the water rapidly towards lower levels [116–118]. Other factors, namely lithology, soil, rainfall, land
use, and aspect are also important factors for modeling of flash floods though their AM value varies
as mentioned in Table 4. Here, we would like to mention that though AM of rainfall factor is only
0.049, it is the main and also triggering factor on which flash flood depends, especially in this area.
However, the feature selection results show that distance to faults is the least important factor to flash
flood occurrence and modeling (AM = 0.007), and thus this factor has a very small contribution to
the performance of the models, and it should be removed from the datasets for further analysis of the
models. Therefore, out of nine factors, only eight factors (distance from river, aspect, elevation, slope,
rainfall, soil types, land use, and lithology) were reasonably selected for modeling of flash floods in
this study.
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Table 4. Importance of factors using correlation based feature selection.

Ranked Class Average Merit (AM)

1 Distance from rivers 0.608
2 Slope 0.484
3 Elevation 0.337
4 Lithology 0.125
5 Soil 0.099
6 Rainfall 0.049
7 Land use 0.024
8 Aspect 0.022
9 Distance from faults 0.007

6.3. Validation of Different Models

Performance of the machine learning models was validated using various criteria on both training
and testing datasets (Figures 6–9). Validation of all the models was done by the ROC method (Figure 6).
Results indicated very high AUC value during both training (ABM-CDT = 0.995; Bag-CDT = 0.972;
Dag-CDT = 0.947; MBAB-CDT = 0.986; and CDT= 0.933) and testing phase (ABM-CDT = 0.96; Bag-CDT
= 0.93; Dag-CDT = 0.47; MBAB-CDT = 0.933; and CDT = 0.90). Among all five models, ABM-CDT
shows the maximum level of AUC compared with other models. All the models indicate a very low
value of RMSE, both on the training dataset (ABM-CDT = 0.168; Bag-CDT = 0.245; Dag-CDT = 0.316;
MBAB-CDT = 0.206; and CDT = 0.279) and testing dataset (ABM-CDT = 0.291; Bag-CDT = 0.307;
Dag-CDT = 0.329; MBAB-CDT = 0.31; and CDT = 0.323) period, which clearly indicate high reliability
of the proposed models (Figure 7). However, the ABM-CDT model indicates the best performance in
comparison to other models, and it has the lowest RMSE value.
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Figure 6. Analysis of Receiver Operating Characteristic (ROC) of the models: (a) training dataset and
(b) validating dataset.

Figure 8 indicates performance of the models using other validation criteria. It can be observed
that all models have good performance with high values of PPV, NPV, SST, SPF, and ACC. Out of
these, the ABM-CDT model has high values of PPV (95.81% for training and 94.37% for testing), NPV
(96.41% for training and 85.92% for testing), SST (96.39% for training and 87.01% for testing), SPF
(95.83% for training and 93.85% for testing), and ACC (96.11% for training and 90.14% for testing),
the Bag-CDT model has values of PPV (88.62% for training and 94.37% for testing), NPV (97.01%
for training and 85.92% for testing), SST (96.73% for training and 87.01% for testing), SPF (89.5% for
training and 93.85% for testing), and ACC (92.81% for training and 90.14% for testing), the Dag-CDT
model has values of PPV (89.82% for training and 91.55% for testing), NPV (88.02% for training and
81.69% for testing), SST (88.24% for training and 83.33% for testing), SPF (89.63% for training and
90.63% for testing), and ACC (88.92% for training and 86.62% for testing), the MBAB-CDT model
has values of PPV (92.22% for training and 94.37% for testing), NPV (96.41% for training and 84.51%
for testing), SST (96.25% for training and 85.9% for testing), SPF (92.53% for training and 93.75% for
testing), and ACC (94.31% for training and 89.44% for testing) and the CDT model has values of PPV
(90.42% for training and 94.37% for testing), NPV (91.02% for training and 81.69% for testing), SST
(90.96% for training and 83.75% for testing), SPF (90.48% for training and 93.55% for testing), and ACC
(90.72% for training and 88.03% for testing). Kappa statistics also show a satisfactory accuracy in both
the case of training (ABM-CDT = 0.922; Bag-CDT = 0.856; Dag-CDT = 0.788; MBAB-CDT = 0.898; and
CDT = 0.814) and testing (ABM-CDT = 0.803; Bag-CDT = 0.803; Dag-CDT = 0.732; MBAB-CDT = 0.789;
and CDT = 0.761) (Figure 9).
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Considering analysis of the above results, it can be stated that all these developed and applied
models performed well for flash flood susceptibility mapping in this study. In particular, the prediction
capability of the CDT model has been enhanced by more than 5% with AdaBoost, about 3% with
Bagging and MultiBoostAB, and 5% with Dagging. In general, CDT algorithm is one of the good
data mining models built on the decision tree and uses IDM and general uncertainty measures [69].
However, it has a low accuracy as the built tree decides to categorize a new sample of data, especially
with incomplete or missing values of the data. Therefore, the use of ensemble frameworks like
AdaBoostM1, Bagging, Dagging, and MultiboostAB is a great help in improving performance of the
CDT as these techniques have the capability to condense the bias as well as the variance and avoid
the problem of overfitting [119]. Comparison results of different ensemble frameworks used in this
study (ABM-CDT, Bag-CDT, Dag-CDT, and MBAB-CDT) showed that ABM-CDT outperforms other
ensemble frameworks (Bag-CDT, Dag-CDT, and MBAB-CDT). Thus, it can be stated that AdaBoostM1
is more effective than other ensemble techniques (Dagging, Bagging, and MultiBoostAB) in improving
performance of the CDT for flash flood susceptibility assessment of this study. This result is reasonable
as AdaBoostM1 can be considered to make a classification of the binary classes and enhance the
prediction accuracy [120,121]. It is a very well-known fact that among all these ensembles, AdaBoostM1
is an interpretable and highly robust algorithm that prevents noise in order to make significant
improvement in classifying error in comparison to the base decision tree classifier [122]. Our results
are comparable to the previous ensemble model-based studies, which report that the ensemble models
lead to a boost in the performance of a standalone model [123–125].

6.4. Development of Flash Flood Susceptibility Maps

Flash flood susceptibility maps of the research area were produced using ABM-CDT, Bag-CDT,
Dag-CDT, MBAB-CDT, and CDT models (Figure 10). Figure 11 shows the comparison of results of
all the models of flash flood susceptibility classes and their percentage of class pixels and flash flood
pixels. All the models indicated that more than 50% of past flash floods were observed on very high
susceptibility class of the maps (ABM-CDT = 51.3%; Bag-CDT = 53.8%; CDT = 61.8%; Dag-CDT
= 69.7%; and MBAB-CDT = 86.1%). Evaluation of the frequency ratio data of the historical flash
flood locations and the generated flash flood maps for the very high susceptible pixel class was done.
The maximum FR was observed for ABM-CDT (3.46) followed by Bag-CDT (3.44); Dag-CDT (3.4); CDT
(2.88), and MBAB-CDT (2.66), which clearly indicated higher degree of reliability of ABM-CDT and
Bag-CDT algorithms.

Analysis of the results of flash flood susceptibility maps shows that the Tafresh city area, which
is located in the Tafresh watershed, belongs to very high susceptibility class. This is due to rapid
development and expansion of the city area by encroaching topographically vulnerable areas to flash
floods. Moreover, construction of buildings and roads in urban areas resulted in the increase of surface
areas of impermeable structures and thus less infiltration and more runoff, causing flash floods in the
event of intense rainfall during short periods [40,126,127]. The results of flood susceptibility zoning in
Tafresh watershed showed that the southeastern parts have high to very high susceptibility to flash
floods. The most important causes of flood susceptibility in these areas are related with anthropogenic
activities causing drastic changes in catchment morphology, such as leveling of the land, altering the
natural drainage, and increasing the impervious surfaces in the city. This has exacerbated the risk
of floods and flooding of the infrastructure facilities thus increasing the potential threat to life and
financial losses.
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7. Concluding Remarks

In flash flood management studies, it is required to use accurate flash flood susceptibility maps by
governing bodies and the policy makers for better flash flood mitigation and systematic development
of the area. Since recent decades, a large number of methodologies have been developed to improve the
accuracy of such maps. In this study, we proposed five new hybrid machine learning computational
approaches to predict the possibility of flash flood occurrences in a studied catchment of Iran, where
devastating flash flood events are frequent. The proposed methods are four hybrid models: ABM-CDT,
Bag-CDT, Dag-CDT, MBAB-CDT, and single classifier: CDT. To construct the flash flood map, in total
nine flash flood conditioning factors were taken into consideration to train and test the proposed
models. Correlation based feature selection method was used to validate and select the important
factors and also to asses relative importance of these factors for modeling of flash floods. Analysis
shows that the lowest AM value (0.007) is of distance to fault and the highest AM value (0.608) is of
distance to rivers. Distance to faults was then removed from the datasets for the flash flood modeling.
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Therefore, in the present study, we have considered only eight factors (distance from river, aspect,
elevation, slope, rainfall, soil types, land use, and lithology) in the modeling.

The results show that performance of all the studied models in terms of accuracy was good as
these models show very low RMSE values and a high percentage of AUC. Results indicate very high
AUC value during both training phase (ABM-CDT = 0.995; Bag-CDT = 0.972; Dag-CDT = 0.958;
MBAB-CDT = 0.983; and CDT = 0.933) and testing phase (ABM-CDT = 0.96; Bag-CDT = 0.93;
Dag-CDT = 0.95; MBAB-CDT = 0.933; and CDT = 0.90). Among all five models, ABM-CDT shows the
maximum level of accuracy compared with other models. Evaluation of the FR data of the historical
flash flood locations and generated flash flood maps was done for the very high susceptible pixel
class. The maximum frequency ratio was observed for ABM-CDT (3.46), followed by Bag-CDT (3.44);
Dag-CDT (3.5); CDT (2.88), and MBAB-CDT (2.65) which clearly indicated higher degree of reliability
of ABM-CDT and Bag-CDT algorithms. The models, as an outcome of the study, would also help
in the development of accurate flash flood susceptible maps in other watersheds of Iran. However,
in the model studies, physical link between cause and effect is to be maintained considering local
geo-environmental and hydrological factors for better flash flood prediction and management.

In this study, we performed a systematic analysis using multisource geospatial data; a significant
number of limitations still exist in this study about data configuration. We have used 12.5 m spatial
resolution ALOS-PALSER DEM which is freely available; a higher resolution DEM can provide a more
reliable flood map which may be more useful for the practical use of flood mitigation. In addition,
feature selection method such as Information Gain should be applied to evaluate the importance of
input factors used for better investigation and application of the machine learning models. Furthermore,
despite employing robust methodologies, our study area is local in nature. Therefore, this study is
required to be extended to other places for the evaluation of its practical application in different terrains
and environments.

In this study we did not consider dynamic changes which may be induced by human activities in
the form of land use changes, topography alteration, infrastructure development, as well as climate
change. These changes may affect the natural hydrological cycle and thus the pattern of floods,
in particular of flash flood in urban areas impacting the life and property of communities affected.
Another limitation of the model study is the lack of dynamic consideration of changing parameters
related with physical changes, flow levels, direction, erosion, sedimentation, blocking of the drainage
system, etc. on flood simulation and its causative effect on land development and flood management.

However, there is a great scope for further research related with the assessment, prediction,
and mapping of flash floods by applying other combinations of hybrid artificial intelligence
models in different areas using high resolution geo-spatial data for better production of flash flood
susceptibility maps.
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