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Abstract: Flash floods are one of the most devastating natural hazards; they occur within a 
catchment (region) where the response time of the drainage basin is short. Identification of probable 
flash flood locations and development of accurate flash flood susceptibility maps are important for 
proper flash flood management of a region. With this objective, we proposed and compared several 
novel hybrid computational approaches of machine learning methods for flash flood susceptibility 
mapping, namely AdaBoostM1 based Credal Decision Tree (ABM-CDT); Bagging based Credal 
Decision Tree (Bag-CDT); Dagging based Credal Decision Tree (Dag-CDT); MultiBoostAB based 
Credal Decision Tree (MBAB-CDT), and single Credal Decision Tree (CDT). These models were 
applied at a catchment of Markazi state in Iran. About 320 past flash flood events and nine flash 
flood influencing factors, namely distance from rivers, aspect, elevation, slope, rainfall, distance 
from faults, soil, land use, and lithology were considered and analyzed for the development of flash 
flood susceptibility maps. Correlation based feature selection method was used to validate and 
select the important factors for modeling of flash floods. Based on this feature selection analysis, 
only eight factors (distance from rivers, aspect, elevation, slope, rainfall, soil, land use, and 
lithology) were selected for the modeling, where distance to rivers is the most important factor for 
modeling of flash flood in this area. Performance of the models was validated and compared by 
using several robust metrics such as statistical measures and Area Under the Receiver Operating 
Characteristic (AUC) curve. The results of this study suggested that ABM-CDT (AUC = 0.957) has 
the best predictive capability in terms of accuracy, followed by Dag-CDT (AUC = 0.947), MBAB-
CDT (AUC = 0.933), Bag-CDT (AUC = 0.932), and CDT (0.900), respectively. The proposed methods 
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presented in this study would help in the development of accurate flash flood susceptible maps of 
watershed areas not only in Iran but also other parts of the world. 

Keywords: machine learning; flash flood; GIS; Iran; decision trees; ensemble techniques 
 

1. Introduction 

Flash floods are those events where the rise in water is rapid within a few hours of the heavy 
rainfall. Flash flood is one of the most common, severely devastating natural hazards, which causes 
significant damages to the infrastructure and socioeconomy, and most importantly, it brings loss of 
lives [1–5]. Globally, more than 5000 people die each year due to flash flood events, which is about 
four times greater than any other category of flood event [6]. The most destructive nature of flood 
events is generally related to the extreme amount of torrential rainfall within a short duration 
resulting in high surface runoff [4,7]. Flash floods occur within catchments, where the response time 
of the drainage basin is short. According to the American Meteorological Society, flash flood events 
generally do not give advance warning and therefore, they cause significant risk and destruction due 
to their complex and dynamic environmental settings and nature [8,9]. 

Flash flood occurrence is affected by various watershed characteristics (type of basin and 
drainage), anthropogenic activities (land use, deforestation, and civil engineering construction) and 
meteorological conditions such as amount, intensity, spatial distribution, and time of rainfall. 
Recently, climate change is altering meteorological conditions which may lead to flash flood 
condition at one place and drought condition at another place. Therefore, the past may no longer be 
a reliable guide to the future. Thus, in the planning of flood management, especially of flash flood in 
urban areas, climate change effect is to be properly considered to avoid future damages to property 
and loss of life [10,11]. 

Geomorphological changes due to natural and anthropogenic causes can modify the flood 
pattern of different areas [12]. Urbanization is one of the important factors in the occurrence of flash 
floods in cities. Construction of roads and buildings reduces permeable areas and increases sealed 
surfaces (impermeable areas), thus causing less infiltration and more runoff with the same amount 
of rainfall causing pluvial flash floods [10]. Therefore, it is essential to identify and map accurately 
flash flood susceptible areas within a basin considering appropriate factors to develop suitable 
models for proper planning, management, and mitigation of flash flood events in an area [13]. 

There are many natural and anthropogenic factors that affect flood occurrence. Among these 
factors, topography is one of the important elements (land surface slope, river longitudinal profile, 
river cross section) that affects natural floods [14]. Flood parameters are very sensitive to topography 
changes. Low areas adjacent to rivers and streams have the highest risk of flooding. However, flash 
floods can also occur on hill slopes. Digital Elevation Model (DEM) as an indicator of the earth’s 
surface contains information about the elevation of the earth. Flood depth and velocity are the most 
important parameters used in vulnerability assessment, estimation of casualties, and financial losses 
based on the land record [14]. Therefore, careful consideration of the topography of the area is 
desirable to avoid overestimation or underestimation of financial losses, casualties, and thus overall 
vulnerability assessment of an area [15,16]. 

Nowadays, multidisciplinary approaches including remote sensing, Geographic Information 
System (GIS), and machine learning methods are used for effective prediction and management of 
floods [5,6,12,17–19]. To recognize and delineate flash flood susceptible areas, DEM and other remote 
sensing satellite images have become popular and useful tools [20,21]. Bui and Hoang [22] reviewed 
the flash flood studies into three major classes, namely rainfall-runoff models, traditional methods, 
and pattern classification. In the case of rainfall-runoff models, the methodologies generally focus on 
establishing the relationship between the rainfall and runoff to determine the spatiotemporal 
distribution of the floods at a local scale and to carry out such studies in that area [23]. The traditional 
methods include analysis of long-term time series data and various statistical models [22]. The 
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problem of predicting flash flood probability by implementing the above methods is the lack of 
reliable data availability of the long-term time series discharge records. Another method based on 
the pattern classification is relatively new, which employs monitoring of data at the gauging stations 
and also preparation of data of flooded and nonflooded group to assess the flash flood probability of 
a region and to demarcate the area where flash floods can occur [24,25]. 

Independent simplified decision-making techniques such as Analytical Hierarchy Process 
(AHP) [5,26–29], Fuzzy Logic (FL) [30,31], and Frequency Ratio (FR) [32,33] are some of the pattern 
classification-based methods which have been used to generate the flash flood maps around the 
world. Though these methods are simple, they do not provide a great level of accuracy in flash flood 
prediction in comparison to modern and advanced machine learning methods such as Support Vector 
Machine (SVM) [34,35], Artificial Neural Network (ANN) [36–38], Logistic Regression (LR) [39], GARP 
and QUEST [40], and Random Forest (RF) [41]. In recent years, some hybrid and ensemble machine 
learning methods such as Hybrid Bayesian Framework [24], Logistic Model Tree with Bagging 
Ensembles [42], Ensemble Weight-of-Evidence and Support Vector Machines [43], and Neuro-Fuzzy 
system integrated with Meta-Heuristic Algorithms [44] have been developed which provide better 
accuracy in comparison to single machine learning methods. 

The main objective of the present study is to use GIS Based Hybrid Computational Approaches 
to develop ensemble models for accurate flash flood susceptibility assessment. In view of this, four 
hybrid ensemble models for the flash flood prediction were developed with Credal Decision Tree 
(CDT) as base classifier. These developed ensemble models are: AdaBoostM1 based CDT (ABM-
CDT); Bagging based CDT (Bag-CDT); Dagging based CDT (Dag-CDT); and MultiBoostAB based 
CDT (MBAB-CDT). A small watershed of Tafresh county in the Markazi province of Iran, which 
experiences many flash floods every year, was selected as a study area for collecting and generating 
the datasets for the modeling process. To validate and compare performance of the models, various 
methods such as statistical measures and Area Under the Receiver Operating Characteristic (AUC) 
curve were used. 

2. Materials and Methods 

Description of the Research Area 

Watershed of Tafresh county is one of the flash flood-prone areas of Markazi province. This 
county is located in the Markazi province of Iran covering an area of 1605 km2, between 34°31’ N and 
35°5’ N, 49°30’ E to 50°9’ E (Figure 1). Topography of the Tafrash watershed area is hilly with 
elevation ranging from 1296 to 3101 m. This area experiences cold winters and relatively moderate 
summers. The average temperature is 19.2 °C in summer and 6.4 °C in winter. Average annual rainfall 
in this region is 254.3 mm. Major water supply sources in the Tafresh watershed include springs, the 
perennial GharehChay River, the Ab Kamar seasonal river, and semi-deep wells. The GharehChay 
river with discharge 3000 ls−1 is one of the most important rivers in the area, which provides water 
for irrigation in Tafresh area, but due to droughts in recent years, discharge has reduced below 2000 
ls−1. However, several severe flash floods occur in the Tafrash watershed during winter every year, 
due to sudden heavy rainfall within a short period. 



Water 2020, 12, 683 4 of 29 

 

 
Figure 1. Location of study area. 

3. Data Collection and Preparation 

3.1. Flash Flood Inventory  

Accurate mapping of the past flash flood events has a great impact on the accuracy of developed 
flash flood susceptibility maps. In order to predict the future flash flood events in a region, it is 
necessary to have records of the past flash flood events of the area [45]. These events depend on many 
factors including topography (terrain gradient), meteorology (antecedent rainfall), soil type, 
vegetative cover, and anthropogenic activities. These factors are considered as important parameters 
for the preparation of flash flood inventory and for the prediction of future flash flood events. In this 
research, in total, 320 past flash flood locations (represented on the maps by points) were obtained 
from the regional water organization of Markazi province (Figures 1 and 2). These flash flood points 
were divided randomly into 70% data points for training and 30% for validation purposes. In 
addition, 320 nonflooding points randomly selected from the high-altitude areas with low probability 
of flooding which were also used to combine with flash flood data for generating the training and 
testing datasets. 

  

Figure 2. Flash flooding in Tafresh city. 
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3.2. Flash Flood Conditioning Factors 

In this study, nine flash flood affecting parameters, namely distance from river, aspect, elevation, 
slope, rainfall, distance from faults, soil types, land use, and lithology were considered in the 
modeling. Thematic maps were generated using ArcGIS 10.1, ENVI 5.1, and SAGA-GIS 2 software 
(Figure 3). All these maps were converted to raster image (format) of 12.5 m × 12.5 m pixel size, which is 
up to the resolution of DEM for model studies (Table 1). A detailed description of these factors is given 
below: 

Table 1. Data collection and preparation. 

Row 
Primary Input 

Data 

Original 
Format 
Sources 

Spatial 
Resolution 

Source of Data Derived Map 

1 
ALOS-PALSER 

DEM 
Raster 12.5 m https://search.asf.alaska.edu/ 

Slope, Aspect, 
Curvature, Elevation, 
Distance from river 

2 Landsat 8 OLI Raster 30 m 
Department of Natural Resources 

of Markazi Province 
Land use map 

3 
Meteorological 

data 
Point - 

Markazi County Meteorological 
Bureau 

Rainfall map 

4 Geological map Vector 1:100000 
Geological survey and Mineral 

Exploration of Iran 
Lithology and 

Distance from fault 

5 Soil map Vector 1:100000 
Department of Natural Resources 

of Markazi Province 
Soil map 

 



Water 2020, 12, 683 6 of 29 

 

 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 



Water 2020, 12, 683 7 of 29 

 

 
Figure 3. Maps of flash flood conditioning factors: (a) distance to rivers, (b) aspect, (c) elevation, (d) 
slope, (e) rainfall, (f) distance from faults, (g) land use, (h) soil, and (i) lithology. 

Distance from rivers: 
In general, the area which is close to the rivers is more prone to flooding in both cases of normal 

flood and flash flood within the river basin as water flows from higher elevation and accumulates at 
lower elevations. The areas close to other terrestrial water bodies such as ponds, dams, and lakes are 
also likely to be flooded in the event of heavy rains as the terrain in the vicinity of these water bodies 
would be almost flat [46]. However, pluvial flash floods may also occur at a distance away from the 
water bodies depending on the meteorological and topographical conditions. In the present study, 
six classes of buffer have been developed at buffer distance of 100 m from the river (Figure 3). 

Aspect: 
An aspect map of a region represents the direction of the surface slope. The direction which a 

slope faces with respect to the sun (aspect) has a profound influence on microclimate. The aspect map 
also shows no slope area (flat) where no surface slope is present; this is generally at the base of the 
hills or near lakes. Regions with low slope or regional flat surface are more vulnerable to the flash 
flood where water accumulates and rises [6,47]. Therefore, by using this parameter, the flat regions 
can easily be identified. Besides, flat area flooding also depends on the monsoon wind direction 
which hits the surface slope (Aspect). In this study, the aspect map was generated from the DEM with 
nine classes (Figure 3).  

Elevation: 
Water has a tendency of flowing from high altitude to lower elevation. The continuous flow of 

the rainwater therefore easily creates a flash flood situation in the low elevation areas [48,49]. 

(i) 
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However, pluvial flash floods also occur at higher elevation. In this study, an elevation map was 
generated from the DEM with five classes (Figure 3). 

Slope: 
Many factors affect catchment hydrologic characteristics, which ultimately influence the 

production of surface runoff. One of the important factors controlling runoff is surface slope [50]. On 
the steeper slopes, infiltration will be less and runoff will be more. This excessive runoff will cause 
flash flooding of the down slope flat areas. Thus, flat areas near and adjacent to high gradient slope 
generally have high probability of occurrence of flash floods [51]. In the present study, a slope map 
was created from DEM with five classes (Figure 3).  

Rainfall: 
Rainfall is the primary source of water for runoff generation over the land surface causing 

flooding of the low-lying areas. Runoff occurs whenever rain intensity exceeds the infiltration 
capacity of the ground (soil and jointed weathered rock). Intense short duration rainfall may cause 
flash floods. Rainfall is the most important factor for flooding of an area [50]. Flooding may also occur 
due to ice melting. In order to determine the annual rainfall map, the data of four rainfall-gauge 
stations for a period of 30 years were used. The rainfall map was divided into two classes (Figure 3). 

Distance from faults: 
Some of the major faults exposed on the surface with wide permeable fault zones may increase 

infiltration and thus reduce the runoff and can saturate surrounding groundmass causing local 
flooding. However, fault may also cause failure of levees and earthen dams due to structure failure 
and may result in flash flooding. In the present study, the distance from fault map was prepared into 
six classes (Figure 3).  

Soil: 
Soil is one of the important factors affecting infiltration and runoff and thus has a great impact 

on flooding. Soils rich in clay are mostly impermeable and cause more runoff and thus cause flooding 
of the area. In the present study, the soil map was developed from data obtained from the Soil Survey 
Department of Iran (Figure 3).  

Land use: 
Land use types affect the degree and frequency of floods in an area [52,53]. Infiltration and runoff 

depend on the land use pattern as well as other factors. Alterations in the land use configuration can 
change the flooding pattern of a region. Land-cover change due to anthropogenic activities such as 
urbanization, deforestation, and cultivation results in increased flash flood frequency and severity. 
In the present study, the land use map was obtained from the Department of Natural Resources of 
Markazi Province. Google Earth images and field survey were used to update the map (Figure 3).  

Lithology: 
Variation of lithology can strongly amplify or reduce the degree of flash flood vulnerability [54,55]. 

Infiltration and runoff depend on the permeability of lithounits as well as other geo-environmental 
factors. In this study, the lithology map was prepared from the Geological Survey of Iran data with 
sixteen groups (Table 2 and Figure 3). 

Table 2. Lithology units in the Tafresh watershed and their relative permeability. 

Group No Geo-Units Description Permeability 
1 Ea.bvt Andesitic to basaltic volcanic tuff Low 
2 OMc Basal conglomerate and sandstone  Moderate 
3 Ed.avs Dacitic to andesitic volcanosediment Moderate 
4 TRJs Dark grey shale and sandstone (SHEMSHAK FM.) Moderate 
5 EKgy Gypsum High 
6 K2I1 Hyporite bearing limestone (Senonian) Moderate 
7 OMq Limestone, marl, gypsiferous marl. Sandymarl and sandstone (QOM FM) Low 
8 Qft2 Low level piedment fan and valley terrace deposit High 
9 Plc Polymictic conglomerate and sandstone Moderate 
10 Mur Red marl, gypsiferous marl, sandstone and conglomerate (upper red Fm.) High 
11 TRn Sandstone, quartze arenite, shale and fossiliferous limestone (NAIBAND for) Moderate 
12 K2shm Sale calcareous shale and sandstone with intercalations of limestone  Moderate 
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13 Ktzl 
Thick bedded to massive, white to pinkish orbitolina bearing limestone 

(TIZKUh FM) 
Moderate 

14 Judi Upper Jurassic diorite Low 
15 EK Well bedded green tuff and tuffaceousshle (KARAJ FM) Moderate 

4. Methods Used 

4.1. Frequency Ratio 

Frequency Ratio (FR) determines the quantitative relationship between a flash flood event and 
its various variables [32,56]. In order to determine the FR, the ratio of flash flood events in each class 
of influencing factors is calculated relative to the total flash flood events. The ratio of the area of each 
class to the total area is also determined. Finally, by dividing the percentage of flash flood events in 
each class by the percentage of the area of each class relative to the entire research area, the FR of the 
classes of each factor is calculated. FR for each class of factors affecting the flash flood are calculated 
using the following equation [32,33]: 

FR = �
𝑨𝑨
𝑩𝑩

𝑪𝑪
𝑫𝑫

�� =   𝑬𝑬
 𝑭𝑭

 (1) 

where A: number of flash flood pixels per class, B: total flash flood pixels of the entire area, C: number 
of pixels per subclass of effective flash flood factors, D: total number of pixels in a region. E: 
percentage of flash flood occurrence in each class of effective factors, F: relative percentage of area of 
each class of total area. 

4.2. Correlation Based Feature Selection 

Irrelevant and redundant factors must be removed to improve data quality for modeling [57]. 
According to Pham et al. [58], working with a large number of factors reduces the speed of model 
execution, low modeling accuracy, and overfitting due to the large number of irrelevant factors as 
model inputs. There are many factors influencing the flood phenomenon, but the factors with higher 
correlation coefficients are more relevant in modeling and vice versa [58]. In this study, correlation 
based feature selection was selected to evaluate the importance of the factors used for better modeling 
of landslide susceptibility. This method is based on the assumption that features/factors are relevant 
if their values vary systematically with category membership [57,59]. In other words, a feature is 
useful if it is correlated with or predictive of the class; otherwise it is irrelevant [57,59]. In correlation 
based feature selection, the score of the evaluation is defined as Average Merit (AM) which is 
expressed as the following equation [57]: 

i
i

i

ACAM
AI

=  (2) 

where iAM  is the score of factor ith, iAC  is the average correlation between the subset ith with the 

dependent variable, and iAI  is the average intercorrelation within the subset ith. 

4.3. AdaBoostM1 

AdaBoostM1 is a popular adaptive boosting algorithm proposed by Freund and Schapire [60]. 
AdaBoostM1 enhanced the predictive ability of the classifier. This method is employed to solve the 
classification problem, which contains a complicated dataset generated from previous classifiers. 
Firstly, the weight values are allocated to occurrences in learning dataset. After that, the weights are 
substituted in iterations of training process according to the performance of the previous base 
classifier. The training process will be terminated when the optimal weights have been given 
specifically to achieve the best performance of the base classifier [61]. 
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4.4. Bagging 

Bagging is known as one of the earliest ensemble methods which was proposed by Breiman [62] 
to improve the algorithm accuracy of machine learning methods [63]. In this method, bootstrap 
sample technique is used to produce numerous samples for creating a training classifier. Each 
generated training set is then employed to establish a decision tree. After that, these subsets are 
combined with the output in the final model [61]. This method not only enhances the capacity of 
generalization but also decreases the error of classification [64,65]. The optimum result of 
classification can be drawn using the following equation: 

( )( )
1

L'( ) arg max 1
t

i
y Y i

x C x y
∈ =

= =∑  (3) 

where L’ (x) expresses a combination of classifier and Ci(x) denotes an indicator function. 

4.5. Dagging 

Dagging was initially introduced by Ting and Witten [66]. This method is recognized as one of 
the famous ensemble techniques. Aim of Dagging method is to improve accuracy in prediction of the 
classifier by combining varied samples of the training set [67]. A number of disjointed samples are 
employed rather than bootstrap samples to achieve the base classifier [66,68]. This method is a 
powerful technique for a single classifier, which has a poor time of complexity; thus, the outputs of 
algorithms with weak training are linked via the popular voting rule [67]. 

4.6. MultiBoostAB 

MultiBoostAB is a combination ensemble learning algorithm, which is established on the basis 
of AdaBoostM1 and Wagging methods in order to hinder overfitting problem [69]. Wagging is a 
variable of Bagging, which exploits training cases using various weights that can reduce remarkably 
the bias of AdaBoostM1 technique [70]. Combinations of Wagging and AdaBoostM1 produce a 
framework that can transform a weak training classifier to a robust one. As MultiBoostAB is able to 
perform parallel processing, it is considered as a potential and computational method that has more 
advantages in comparison to Wagging and AdaBoostM1 methods [69]. MultiBoostAB method 
involves three main steps: (1) selection of a subset randomly from the original learning data and then 
to use it to produce fundamental classifier-based models; (2) the weights of occurrence are adjusted 
based on the predictive competence of the models; and (3) finally, new subsets from the occurrence 
weighting are chosen for training newer models [71]. 

4.7. Credal Decision Tree 

Abellan and Moral originally proposed Credal Decision Tree (CDT) using an original split 
criterion that was built based on uncertainty measures as well as inaccurate probabilities [70]. CDT 
is used to tackle classification problems by employing credal sets [64,72,73]. In order to reduce 
generating a complicated decision tree in the building process of CDT, an exclusive criterion was 
introduced in case of the summation of uncertainties raising due to splitting, the construction process 
will stop [64,74]. In order to quantitatively evaluate the entire uncertainty of credal sets, an updated 
method was recommended based on the theory of Dempster and Shafer [75,76]. The function applied 
in measuring the total uncertainty is expressed in the following equation [77]: 

( ) ( ) ( )EU NG RGχ χ χ= +  (4) 

where EU expresses a value of entire uncertainty (i.e., total uncertainty), NG denotes a general 
nonspecificity function, and RG is a general randomness function for a credal set that represents a 
credal set. The successes and conclusions on the measurement of the summation of uncertainty were 
derived in previous literature of Abellan and Moral [78]. Besides, the detailed procedure for computing 
and properties of this measurement on EU were clearly described in previous studies [72,78]. To analyze 
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probability intervals of individual variables, the inaccurate probability model was adopted [79,80]. 
Supposing that the Z is known as a variable that has values which are expressed by zj; then p(zj) is 
considered as the probability distribution, which reflects that each value of zj is determined as per 
the following formula [73,81]: 

( ) ,zj zj
j

m m r
p z

M r M r
+ 

∈  + + 
, j = 1,…, k;  (5) 

where M and mzj express the sample size and the event frequency (Z = zj), respectively; and r is called 
the hyperparameter, which has values of 1 or 2, as stated by Walley [80]. 

4.8. Validation of the Models 

Validation is important to determine the accuracy of the flash flood susceptibility models. To 
verify the prediction capability of models, it is desirable to assess as well as compare both learning 
and validating datasets [17,25,42]. In the present study, various validation criteria were adopted, 
namely Area Under the Receiver Operating Characteristic (ROC) curve and statistical measures.  

4.8.1. Receiver Operating Characteristic (ROC) Curve 

ROC curve is considered as a good tool for analyzing landslide and flood susceptibility models 
[17,42,82,83]. The x-axis of the ROC curve graph shows the specificity whereas the y-axis presents the 
sensitivity [84–88]. The area located under the ROC curve which is called the AUC is commonly 
employed to evaluate the prediction capacity of models [89–93]. Normally, the value of AUC has a 
range of 0.5–1.0 [94–96]. Higher value of AUC indicates better prediction capacity of the models [97–
100]. The value of AUC is calculated by the following equation: 

( )
( )

EC IC
AUC

a b
+

=
+

∑ ∑
 (6) 

where EC indicates the number of the accurately classified flash flood events, IC denotes the number 
of the inaccurately classified flash flood events, a is single flash flood event, and b is denotes the total 
number of flash flood events. 

4.8.2. Statistical Measures 

In the present study, seven popular statistical measures, namely Positive Predictive Value (PPV), 
Negative Predictive Value (NPV), Root Mean Square Error (RSME), Accuracy (ACC), Sensitivity 
(SST), Specificity (SPF), and Kappa index (k) were employed for assessing performance of the flash 
flood prediction models. The description of these indexes is summarized in Table 3. 
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Table 3. List of statistical measures employed in this research [101–105]. 

Statistical Measures Formula 

PPV (%) 
APPV

A B
=

+  

NPV (%) 
CNPV

C D
=

+  

ACC (%) 
A CACC

A C B D
+

=
+ + +  

SST (%) 
SST = 

A
A D+  

SPF (%) 
SPF = 

C
C B+  

k est1
a estP Pk

P
−

=
−  

Pa = (A + C) 
Pest = (A + D) × (A + D) + (B + C) × (D + C) 

where, A (true positive) and C (true negative) denotes the number of pixels of flash flood event 
classified correctly, whereas B (false positive) and D (false negative) are the numbers of pixels of 
nonflash flood event classified incorrectly. Pa and Pest are the measured and expected agreements, 
respectively. 

RMSE is defined as the squared difference error between the model simulated and measured 
values. This method is popularly employed to assess flash flood susceptibility maps [17,42]. The 
smaller values of RMSE means the prediction capacity of the model is better. Determination of RMSE 
is calculated as follows [59,106–108]: 

( )2
mod

1

1 .
L

el act
i

RMSE X X
N =

= −∑  (7) 

where Xmodel and Xact denote the model simulated and actual (i.e., measured) value, respectively; L 
stands for the summation of samples. 

5. Methodology 

Methodology of the study is presented below in several main steps: (1) Data collection and 
preparation; (2) Generating training and testing datasets; (3) Building the flash flood models; (4) 
Validation of the models; and (5) Generation of flash flood susceptibility maps (Figure 4). A more 
detailed description of these steps is given below: 
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Figure 4. Methodological flowchart of the flash flood susceptibility mapping used in the study. 

5.1. Data Collection and Preparation 

Flash flood inventory map and the conditioning factor maps were generated in the raster format 
with 12.5 m pixel size. Thereafter, the inventory map was overlaid with the conditioning factor maps 
to calculate the FR values of each class of the conditioning factor using FR method. These FR values 
were then used as the weights of the class of the factors. In addition, correlation-based feature 
selection was used to validate and select the important factors and also to asses relative importance 
of these factors for modeling of flash floods. 

5.2. Generating Training and Testing Datasets 

Flash flood inventory was randomly divided into two parts with the ratio of 70/30. Out of these 
parts, 70% of inventory was used to sample with the conditioning factors assigned the weights for 
generating the training dataset, whereas the 30% remaining was used to sample with the conditioning 
factors assigned the weights for generating testing dataset. Selection of ratio for division of training and 
testing inventory might affect performance of the models. In this study, the ratio of 70/30 was used as 
it is a common ratio used in modeling [109–111]. This step was carried out in ArcGIS application.  

5.3. Building the Flash Flood Models 

Different hybrid models, namely ABM-CDT, Bag-CDT, Dag-CDT, MBAB-CDT, and a single 
classifier CDT were developed in this step using training dataset. Out of these methods, ABM-CDT 
is a combination of AdaBoostM1 ensemble and CDT classifier, Bag-CDT is a combination of Bagging 
ensemble and CDT, Dag-CDT is a combination of Dagging and CDT, and MBAB-CDT is a 
combination of MultiBoostAB and CDT. In these hybrid models, ensemble techniques were used to 
optimize the training dataset which was then used as input data in CDT classifier for flash flood 
susceptibility assessment. To construct these models, internal parameters should be selected and 
optimized to get the best performance of the models. More specifically, in CDT, initial parameters 
such as batch size, initial count, maximum of depth, minimum total weight of instances in a leaf, 
minimum proportion of variance, number of folds and seed were selected as 100, 0.0, −1, 2.0, 0.001, 3, 
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1, respectively. In ABM-CDT, initial parameters such as batch size, number of iterations, seed and 
weight of threshold were selected as 100, 10, 1, and 100, respectively. In Bag-CDT, initial parameters 
such as batch size, number of execution slots, number of iterations, and seed were selected as 100, 1, 
15, and 1, respectively. In Dag-CDT, initial parameters such as batch size, number of folds, and seed 
were selected 100, 10, and 1, respectively. In MBAB-CDT, initial parameters such as batch size, 
number of iterations, number of subcommittees, seed, and weight of threshold were selected 100, 20, 3, 1, 
and 100, respectively. The values of these initial parameters of the models were determined by the trial-
error process. This step was carried out using the packages and codes included in the Weka software.  

5.4. Validation of the Models 

Validation of the models was carried out on both training and testing datasets using various 
criteria such as PPV, NPV, SST, SPF, ACC, Kappa, RMSE, and AUC. While validation using training 
dataset shows the goodness-of-fit of the models, validation using testing datasets shows predictive 
capability of the models. This step was carried out using the packages and codes included in the 
Weka software. 

5.5. Generation of Flash Flood Susceptibility Maps 

In this step, flash flood susceptibility maps of Tafresh watershed were prepared based on ABM-
CDT, Bag-CDT, Dag-CDT, MBAB-CDT hybrid machine learning models and CDT model in ArcGIS 
software. To construct the flash flood susceptibility maps, flash flood susceptibility indexes generated 
from the construction of the models were used to assign all pixels of the study area. Thereafter, these 
indexes were classified into five classes of flash flood susceptibility, namely very low, low, moderate, 
high, and very high to construct final maps using geometric interval classification method available 
in GIS software.  

6. Results and Discussion 

6.1. Impact Weight of each Class of Variables Affecting Flash Flood Susceptibility by FR Method 

The impact weight of each class of variables was determined based on the comparative analyses 
of relationships between the location of past floods with the topographical and geo-environmental 
variables affecting flash flood occurrences (Figure 5). Analysis indicated that the highest weight in 
the variable of altitude classes belongs to the elevation class of 1296–1823 m. In the slope percentage 
of the surface slope, the weight of 0–9.3 degrees was the highest weight. In the slope direction 
variable, the northwest slope direction has a higher weight than the other aspects. In variable distance 
from the fault class of 400–500 m, weight has more influence than other classes. Examination of the 
variable distance from river showed that most of the flood-related weight was located at 0–100 m 
class. In the rainfall variable, the rainfall class 250–300 mm has higher weight than the other class. 
This means this class of rainfall belongs to threshold value for the occurrence of flash flood. Higher 
rainfall above this value can also cause flash flood depending on the duration in combination with 
other factors. Land use classes of the orchard and residential, which are in proximity to the main river 
and at gentle slopes, had the highest weighting factor compared to other land uses. Soil analysis 
indicates that the weight of the inceptisols soil is higher than that of the rocky outcrops. The lithology 
in this area indicates that Qom formation (OMq) has higher weight than other classes. 
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Figure 5. Frequency analysis of flash flood occurrence on the factor maps. 

6.2. Importance of Factors Using Correlation-Based Feature Selection  

Relative importance analysis of factors affecting flash floods was carried out using correlation-
based feature selection method as shown in Table 4. It can be seen that distance from rivers is the 
most important factor for flash floods as the value of AM (0.608) is the highest compared with other 
factors. Following factors are slope (AM = 0.484), elevation (AM = 0.337), lithology (AM = 0.125), soil 
(AM = 0.099), rainfall (AM = 0.049), land use (AM = 0.024), aspect (AM = 0.022), and distance from 
faults (AM = 0.007), respectively. The feature selection results are reasonable as the areas close to the 
river are more likely to be affected by floods. This is true for normal river floods and also for flash 
floods in case of torrential rains within short period in this area [112,113]. Slope is also important as 
it influences surface runoff, volume, and velocity of flow. In the study area (Tafresh), there is more 
accumulation than outflow due to gentle topography (slope factor) resulting in the rapid rise of the 
flood water level within short time during torrential rain. Therefore, slope factor is the second most 
influential factor in the flood modeling (Table 4), which is consistent with many studies [114,115]. At 
higher elevation, slope factor is important resulting in higher velocity and runoff thus draining the 
water rapidly towards lower levels [116–118]. Other factors, namely lithology, soil, rainfall, land use, 
and aspect are also important factors for modeling of flash floods though their AM value varies as 
mentioned in Table 4. Here, we would like to mention that though AM of rainfall factor is only 0.049, 
it is the main and also triggering factor on which flash flood depends, especially in this area. 
However, the feature selection results show that distance to faults is the least important factor to flash 
flood occurrence and modeling (AM = 0.007), and thus this factor has a very small contribution to the 
performance of the models, and it should be removed from the datasets for further analysis of the 
models. Therefore, out of nine factors, only eight factors (distance from river, aspect, elevation, slope, 
rainfall, soil types, land use, and lithology) were reasonably selected for modeling of flash floods in 
this study. 

Table 4. Importance of factors using correlation based feature selection. 

Ranked Class Average Merit (AM) 
1 Distance from rivers 0.608 
2 Slope 0.484 
3 Elevation 0.337 
4 Lithology 0.125 
5 Soil 0.099 
6 Rainfall 0.049 
7 Land use 0.024 
8 Aspect 0.022 
9 Distance from faults 0.007 
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6.3. Validation of Different Models 

Performance of the machine learning models was validated using various criteria on both 
training and testing datasets (Figures 6–9). Validation of all the models was done by the ROC method 
(Figure 6). Results indicated very high AUC value during both training (ABM-CDT = 0.995; Bag-CDT 
= 0.972; Dag-CDT = 0.947; MBAB-CDT = 0.986; and CDT= 0.933) and testing phase (ABM-CDT = 0.96; 
Bag-CDT = 0.93; Dag-CDT = 0.47; MBAB-CDT = 0.933; and CDT = 0.90). Among all five models, ABM-
CDT shows the maximum level of AUC compared with other models. All the models indicate a very 
low value of RMSE, both on the training dataset (ABM-CDT = 0.168; Bag-CDT = 0.245; Dag-CDT = 
0.316; MBAB-CDT = 0.206; and CDT = 0.279) and testing dataset (ABM-CDT = 0.291; Bag-CDT = 0.307; 
Dag-CDT = 0.329; MBAB-CDT = 0.31; and CDT = 0.323) period, which clearly indicate high reliability 
of the proposed models (Figure 7). However, the ABM-CDT model indicates the best performance in 
comparison to other models, and it has the lowest RMSE value. 

 
(a) 
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Figure 6. Analysis of Receiver Operating Characteristic (ROC) of the models: (a) training dataset and 
(b) validating dataset. 

 
Figure 7. Analysis of RMSE of models. 
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Figure 8 indicates performance of the models using other validation criteria. It can be observed 
that all models have good performance with high values of PPV, NPV, SST, SPF, and ACC. Out of 
these, the ABM-CDT model has high values of PPV (95.81% for training and 94.37% for testing), NPV 
(96.41% for training and 85.92% for testing), SST (96.39% for training and 87.01% for testing), SPF 
(95.83% for training and 93.85% for testing), and ACC (96.11% for training and 90.14% for testing), 
the Bag-CDT model has values of PPV (88.62% for training and 94.37% for testing), NPV (97.01% for 
training and 85.92% for testing), SST (96.73% for training and 87.01% for testing), SPF (89.5% for 
training and 93.85% for testing), and ACC (92.81% for training and 90.14% for testing), the Dag-CDT 
model has values of PPV (89.82% for training and 91.55% for testing), NPV (88.02% for training and 
81.69% for testing), SST (88.24% for training and 83.33% for testing), SPF (89.63% for training and 
90.63% for testing), and ACC (88.92% for training and 86.62% for testing), the MBAB-CDT model has 
values of PPV (92.22% for training and 94.37% for testing), NPV (96.41% for training and 84.51% for 
testing), SST (96.25% for training and 85.9% for testing), SPF (92.53% for training and 93.75% for 
testing), and ACC (94.31% for training and 89.44% for testing) and the CDT model has values of PPV 
(90.42% for training and 94.37% for testing), NPV (91.02% for training and 81.69% for testing), SST 
(90.96% for training and 83.75% for testing), SPF (90.48% for training and 93.55% for testing), and 
ACC (90.72% for training and 88.03% for testing). Kappa statistics also show a satisfactory accuracy 
in both the case of training (ABM-CDT = 0.922; Bag-CDT = 0.856; Dag-CDT = 0.788; MBAB-CDT = 
0.898; and CDT = 0.814) and testing (ABM-CDT = 0.803; Bag-CDT = 0.803; Dag-CDT = 0.732; MBAB-
CDT = 0.789; and CDT = 0.761) (Figure 9).  
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Figure 8. Analysis of accuracy of the models using: (a) training dataset and (b) validating dataset. 

 
Figure 9. Kappa values for the models. 

Considering analysis of the above results, it can be stated that all these developed and applied 
models performed well for flash flood susceptibility mapping in this study. In particular, the 

(a) 

(b) 
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prediction capability of the CDT model has been enhanced by more than 5% with AdaBoost, about 
3% with Bagging and MultiBoostAB, and 5% with Dagging. In general, CDT algorithm is one of the 
good data mining models built on the decision tree and uses IDM and general uncertainty measures 
[69]. However, it has a low accuracy as the built tree decides to categorize a new sample of data, 
especially with incomplete or missing values of the data. Therefore, the use of ensemble frameworks 
like AdaBoostM1, Bagging, Dagging, and MultiboostAB is a great help in improving performance of 
the CDT as these techniques have the capability to condense the bias as well as the variance and avoid 
the problem of overfitting [119]. Comparison results of different ensemble frameworks used in this 
study (ABM-CDT, Bag-CDT, Dag-CDT, and MBAB-CDT) showed that ABM-CDT outperforms other 
ensemble frameworks (Bag-CDT, Dag-CDT, and MBAB-CDT). Thus, it can be stated that 
AdaBoostM1 is more effective than other ensemble techniques (Dagging, Bagging, and 
MultiBoostAB) in improving performance of the CDT for flash flood susceptibility assessment of this 
study. This result is reasonable as AdaBoostM1 can be considered to make a classification of the 
binary classes and enhance the prediction accuracy [120,121]. It is a very well-known fact that among 
all these ensembles, AdaBoostM1 is an interpretable and highly robust algorithm that prevents noise 
in order to make significant improvement in classifying error in comparison to the base decision tree 
classifier [122]. Our results are comparable to the previous ensemble model-based studies, which 
report that the ensemble models lead to a boost in the performance of a standalone model [123–125]. 

6.4. Development of Flash Flood Susceptibility Maps  

Flash flood susceptibility maps of the research area were produced using ABM-CDT, Bag-CDT, 
Dag-CDT, MBAB-CDT, and CDT models (Figure 10). Figure 11 shows the comparison of results of all 
the models of flash flood susceptibility classes and their percentage of class pixels and flash flood 
pixels. All the models indicated that more than 50% of past flash floods were observed on very high 
susceptibility class of the maps (ABM-CDT = 51.3%; Bag-CDT = 53.8%; CDT = 61.8%; Dag-CDT = 
69.7%; and MBAB-CDT = 86.1%). Evaluation of the frequency ratio data of the historical flash flood 
locations and the generated flash flood maps for the very high susceptible pixel class was done. The 
maximum FR was observed for ABM-CDT (3.46) followed by Bag-CDT (3.44); Dag-CDT (3.4); CDT 
(2.88), and MBAB-CDT (2.66), which clearly indicated higher degree of reliability of ABM-CDT and 
Bag-CDT algorithms.  
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Figure 10. Flash flood susceptibility maps of the models: (a) ABM-CDT, (b) Bag-CDT, (c) Dag-CDT, 
(d) MBAB-CDT, and (e) CDT. 

(a) (b) 

(c) (d) 

(e) 



Water 2020, 12, 683 22 of 29 

 

 

Figure 11. Analysis of performance of flash flood susceptibility maps using different models. 

Analysis of the results of flash flood susceptibility maps shows that the Tafresh city area, which 
is located in the Tafresh watershed, belongs to very high susceptibility class. This is due to rapid 
development and expansion of the city area by encroaching topographically vulnerable areas to flash 
floods. Moreover, construction of buildings and roads in urban areas resulted in the increase of 
surface areas of impermeable structures and thus less infiltration and more runoff, causing flash 
floods in the event of intense rainfall during short periods [40,126,127]. The results of flood 
susceptibility zoning in Tafresh watershed showed that the southeastern parts have high to very high 
susceptibility to flash floods. The most important causes of flood susceptibility in these areas are 
related with anthropogenic activities causing drastic changes in catchment morphology, such as 
leveling of the land, altering the natural drainage, and increasing the impervious surfaces in the city. 
This has exacerbated the risk of floods and flooding of the infrastructure facilities thus increasing the 
potential threat to life and financial losses. 

7. Concluding Remarks 

In flash flood management studies, it is required to use accurate flash flood susceptibility maps 
by governing bodies and the policy makers for better flash flood mitigation and systematic 
development of the area. Since recent decades, a large number of methodologies have been developed 
to improve the accuracy of such maps. In this study, we proposed five new hybrid machine learning 
computational approaches to predict the possibility of flash flood occurrences in a studied catchment 
of Iran, where devastating flash flood events are frequent. The proposed methods are four hybrid 
models: ABM-CDT, Bag-CDT, Dag-CDT, MBAB-CDT, and single classifier: CDT. To construct the 
flash flood map, in total nine flash flood conditioning factors were taken into consideration to train 
and test the proposed models. Correlation based feature selection method was used to validate and 
select the important factors and also to asses relative importance of these factors for modeling of flash 
floods. Analysis shows that the lowest AM value (0.007) is of distance to fault and the highest AM 
value (0.608) is of distance to rivers. Distance to faults was then removed from the datasets for the flash 
flood modeling. Therefore, in the present study, we have considered only eight factors (distance from 
river, aspect, elevation, slope, rainfall, soil types, land use, and lithology) in the modeling. 
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The results show that performance of all the studied models in terms of accuracy was good as 
these models show very low RMSE values and a high percentage of AUC. Results indicate very high 
AUC value during both training phase (ABM-CDT = 0.995; Bag-CDT = 0.972; Dag-CDT = 0.958; 
MBAB-CDT = 0.983; and CDT = 0.933) and testing phase (ABM-CDT = 0.96; Bag-CDT = 0.93; Dag-
CDT = 0.95; MBAB-CDT = 0.933; and CDT = 0.90). Among all five models, ABM-CDT shows the 
maximum level of accuracy compared with other models. Evaluation of the FR data of the historical 
flash flood locations and generated flash flood maps was done for the very high susceptible pixel 
class. The maximum frequency ratio was observed for ABM-CDT (3.46), followed by Bag-CDT (3.44); 
Dag-CDT (3.5); CDT (2.88), and MBAB-CDT (2.65) which clearly indicated higher degree of reliability 
of ABM-CDT and Bag-CDT algorithms. The models, as an outcome of the study, would also help in 
the development of accurate flash flood susceptible maps in other watersheds of Iran. However, in 
the model studies, physical link between cause and effect is to be maintained considering local geo-
environmental and hydrological factors for better flash flood prediction and management. 

In this study, we performed a systematic analysis using multisource geospatial data; a significant 
number of limitations still exist in this study about data configuration. We have used 12.5 m spatial 
resolution ALOS-PALSER DEM which is freely available; a higher resolution DEM can provide a 
more reliable flood map which may be more useful for the practical use of flood mitigation. In 
addition, feature selection method such as Information Gain should be applied to evaluate the 
importance of input factors used for better investigation and application of the machine learning 
models. Furthermore, despite employing robust methodologies, our study area is local in nature. 
Therefore, this study is required to be extended to other places for the evaluation of its practical 
application in different terrains and environments.  

In this study we did not consider dynamic changes which may be induced by human activities in 
the form of land use changes, topography alteration, infrastructure development, as well as climate 
change. These changes may affect the natural hydrological cycle and thus the pattern of floods, in 
particular of flash flood in urban areas impacting the life and property of communities affected. Another 
limitation of the model study is the lack of dynamic consideration of changing parameters related with 
physical changes, flow levels, direction, erosion, sedimentation, blocking of the drainage system, etc. on 
flood simulation and its causative effect on land development and flood management. 

However, there is a great scope for further research related with the assessment, prediction, and 
mapping of flash floods by applying other combinations of hybrid artificial intelligence models in 
different areas using high resolution geo-spatial data for better production of flash flood 
susceptibility maps. 
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