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Abstract: The occurrence frequency of drought has intensified with the unprecedented effect of global
warming. Knowledge about the spatiotemporal distributions of droughts and their trends is crucial
for risk management and developing mitigation strategies. In this study, we developed seven artificial
neural network (ANN) predictive models incorporating hydro-meteorological, climate, sea surface
temperatures, and topographic attributes to forecast the standardized precipitation evapotranspiration
index (SPEI) for seven stations in the Upper Blue Nile basin (UBN) of Ethiopia from 1986 to 2015.
The main aim was to analyze the sensitivity of drought-trigger input parameters and to measure
their predictive ability by comparing the predicted values with the observed values. Statistical
comparisons of the different models showed that accurate results in predicting SPEI values could be
achieved by including large-scale climate indices. Furthermore, it was found that the coefficient of
determination and the root-mean-square error of the best architecture ranged from 0.820 to 0.949 and
0.263 to 0.428, respectively. In terms of statistical achievement, we concluded that ANNs offer an
alternative framework for forecasting the SPEI drought index.
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1. Introduction

Drought is a weather-related phenomenon that occurs in more or less all climatic regions. Drought
is a complicated and little-understood phenomenon due to its multiple causes [1]. It usually originates
from a reduction in the amount of precipitation received over an extended period [2,3], while a few
instances have resulted from anomalies of temperature and evapotranspiration [4].

The major contributing factors that trigger the manifestations of droughts are the timing and
spatial features of rainfall, including the duration and amount of rain during growing seasons, high
winds, and low relative humidity [5,6]. In particular, reduced soil moisture triggers considerable
scarcity of food and water [7,8]. Once a region has been in drought conditions for two or more months,
the plants and trees will dry out. As a result, there is a high risk of fires taking hold. The recent bush
fires in Australia have been fueled by an extreme temperature change in the Indian Ocean, record high
temperatures, and prolonged dry spells.

Developing a reliable drought-forecasting method is a crucial step that could enable us to make
time-series forecasts of several important hydro-meteorological variables, such as rainfall, evaporation,
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and streamflow, that trigger drought [9–11]. In drought-prone regions such as East Africa, forecasting
provides us accurate and timely information about drought risks and lays the foundation for long-term
water resource management and decision-making [12].

The achievement of drought preparedness and mitigation rest on the use of credible information
to assess drought anomalies in terms of their spatial extent, duration, incidence, and strength [13].
This information, which is usually expressed in the form of drought indices, simplifies complex
climate phenomena and their influence by integrating several meteorological, vegetation, and soil
moisture parameters.

Vicente-Serrano et al. [14] were the first to employ a modified drought index, the standardized
precipitation evapotranspiration index (SPEI), which incorporates the effect of air temperature
fluctuations on drought. The index is intended to analyze the water supply and demand relationships
at different time scales. The most widely used drought index, i.e., the standardized precipitation index
(SPI), fails to measure drought in desert regions where evaporation is a significant moisture source [15].
Thus, this SPEI is sensitive to fluctuations in evapotranspiration and adapts the simple calculation used
in the SPI [16]. Although drought monitoring involves the assessment of drought through its primary
indicators, severity, duration, and extent, the use of the monitored data for early warning systems is
not generally available in developing countries [17]. Nowadays, due to the impact of climate change,
the patterns of rainfall have shifted and caused extreme incidences of flooding and drought [18]. Thus,
the precise prediction of drought incidence and its key parameters is a significant challenge that must
be studied in order to improve the early warning capability for drought management [19].

There have been remarkable advances in the past few decades in terms of forecasting droughts in
advance by using data-driven (statistical) models or physical models (general circulation models) [20].
Many data-driven drought-prediction models, from the traditional auto-regressive (AR) models to
artificial neural networks (ANNs), have been proposed for forecasting key parameters of drought.
Data-driven modeling is established based on empirical relationships among drought indices and their
possible predictors [21].

One data-driven modeling technique that has attracted overwhelming attention in time-series
forecasting is the ANN [22]. ANNs have been utilized in a wide range of hydrological forecasting all
over the world with a significant degree of reliability. Mislan et al. [23] applied ANNs to forecast rainfall
in Indonesia. Morid et al. [24] compared the forecasts of two drought indices, the effective drought
index (EDI) and the SPI, in Iran. Wu et al. [10] predicted monsoon rainfall in China. Liou et al. [25]
predicted soil moisture.

Moreover, ANNs’ data-driven predictions have also been implemented in regions with a high
probability of drought occurrence. For instance, Masinde et al. [10] forecasted EDI in Kenya.
Belayneh et al. [26] forecasted SPI in Ethiopia. With the help of hydro-meteorological parameters and
climate signals as predictors, Deo et al. [27] and Le et al. [28] applied ANNs to forecast SPEI in eastern
Australia and Vietnam. This approach was successful due to the simplicity of its implementation,
and it has performed well in various drought studies. On top of these, the use of climate indices
that represent large-scale atmospheric and oceanic drivers of precipitation plays a role in improving
forecasting performance. Nevertheless, reliable predictions require large datasets that can be used to
train the models. These enormous datasets are often incomplete and inaccessible in developing nations.

On the other hand, physical models focus on the physical processes of atmosphere, ocean, and
land surface interactions. Hence, these models utilize physical equations to describe the connections
between variables and coupled atmosphere-ocean processes and are considered amongst the most
progressive tools used for drought forecast [29]. However, due to the limitation of coarse resolution
and their complex structural makeup and parameterizations, physical model outcomes for variables
that are fundamental indicators of droughts have been found to exhibit significant uncertainties [30].

Subsequent studies on the role of anthropogenic climate change by Lyon [31] and Hoell et al. [32]
predicted that the warming of the western Pacific may trigger drying in East Africa, especially
during the March, April, and May long rains. The physical processes related to rainfall variability
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in the region still require significant investigation [31]. Hence, the use of data-driven models is
seen as a complementary approach to resolve these uncertainties. The main purpose of this study
was to examine the utility of the ANN approach for forecasting SPEI in response to fluctuations of
hydro-meteorological variables in the UBN basin. The purpose of predicting SPEI was to obtain
information on the meteorological drought of the UBN river basin for both short-term and long-term
circumstances, based upon which decisions can be made to minimize drought impacts. The potential
predictors used in the ANN approach included El Niño-Southern Oscillation (ENSO) and the Indian
Ocean dipole (IOD), which cover approximately 25% of the inter-annual variations of the region’s
rainfall [29], Sea Surface Temperatures (Nino 3.0 SST, Nino 3.4 SST, Nino 4.0 SST), and synoptic-scale
climate drivers, such as the southern oscillation index (SOI) and Pacific decadal oscillation (PDO),
which are widely used for drought forecasting in different parts of the world [33].

SPEI was first computed, and ANN drought forecasting models were then developed via
the time-series SPEI values and predictor parameters. This study was unique as a data-driven
prediction of the SPEI index using different combinations of hydro-meteorological data and climate
indices for the study area is uncommon.

2. Study Area and Data Used

2.1. Study Area

The UBN basin in Ethiopia covers an estimated catchment area of 176,000 km2 [34]. As depicted
in Figure 1, it lies approximately between 7◦40′ to 12◦5′ N and 34◦25′ to 39◦49′ E. The elevation
varies from 483 m at the exit of the Sudanese border to 4261 m above mean sea level (ASL) at Ras
Dashen mountain in the north-eastern part of Ethiopia [35]. The 30 m resolution digital elevation
model of the NASA Shuttle Radar Topographic Mission (SRTM) (Figure 1) depicts that the highest
elevations, exceeding ASL by 4000 m, are centered on the eastern part of the basin and steadily decline
in the direction of the western exit of the basin, where the altitude is almost 483 m ASL. The majority of
the UBN basin flow occurs between June and September, with the outflow from Lake Tana accounting
for about 7% [36].
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Teleconnections strongly influence the basin’s climate, with the ENSO as a primary driver of
interannual precipitation variability in the basin [37], followed by the Indian Ocean and the Gulf
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of Guinea [38,39]. El Nino conditions correspond to periods of low precipitation and La Nina
conditions correspond to periods of high precipitation [40]. Notably, the January–February sea surface
temperatures in the Pacific Ocean have significant correlations with the summer rainfall of the basin [41],
whereas a positive Indian Ocean Dipole (IOD) index extends the precipitation season over the basin [42].
Seasonal precipitation forecasts and Blue Nile flow predictions use these teleconnections to analyze
the impacts of the oscillating modes of the climate indices [43].

The basin is composed of highlands in the northeastern part and valleys in the southern and
western portions [44]. Due to its topography and irregular rainfall distribution, the basin has a mixed
land use/cover pattern. Figure 2 shows the land cover types of the basin, extracted from the European
Space Agency (2016) global land cover map. The most dominant cover types are cropland, grassland,
and trees. Croplands cover 44% of the total area of the basin. Many inhabitants of the basin are
engaged in subsistence agriculture, making them vulnerable to prolonged dry conditions [45] and
climate extremes, including crop failures due to droughts [46].
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2.2. Data Sources

For this study, we considered seven meteorological stations, namely Alemketema, Asossa, Bahir
Dar, Bedele, Chagni, Debremarkos, and Gondar, which represent the different climates in the basin.
Rainfall and temperature datasets from these metrological stations were collected from the National
Metrological Agency of Ethiopia. The rain gauge data were consisted to be mostly of poor quality
due to local conditions and instrumentation. Therefore, there was a need to check the consistency and
homogeneity of the records made. Double mass curve analysis is an essential tool designed for this
purpose. The method is based on the hypothesis that each item of the recorded data is consistent. It
produces a double mass curve validating whether the data come from the same population, and thus
are consistent. For the selected stations, the double mass curve analysis illustrated that a break in
slope was not detected during the study period, and thus the data were reliable and usable enough for
evaluation. The seven stations used for this study are presented in Table 1.
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Table 1. Meteorological stations and their descriptive statistics.

Station Name Geographical
Locations Elevation ASL Annual Mean

Rainfall (mm)
Mean Annual

Temperature (◦C)

Alemketema 10.03◦ N, 39.03◦ E 2280 m 1049.16 19.74
Asossa 10.02◦ N, 34.52◦ E 1590 m 1198.57 24.61

Bahir Dar 11.59◦ N, 37.38◦ E 1770 m 1387.37 20.43
Bedele 8.45◦ N, 36.33◦ E 2030 m 1809.18 17.92
Chagni 10.97◦ N, 36.5◦ E 1620 m 1699.58 20.34

Debremarkos 10.33◦ N, 37.74◦ E 2515 m 1334.15 16.27
Gondar 12.61◦ N, 37.45◦ E 1967 m 1145.87 19.89

There are three main seasons in the basin: the dry season from October to February, the small rain
season from March to May, and the main rain season from June to September [47,48]. As shown in
Figure 3, the most important season is the main rainy season (locally referred to as Kiremt), which
accounts for about three quarters of total annual rainfall. During this season, rain falls over most
of the country, except for the south and southeast areas [49]. In the dry and small rain seasons,
fewer rainfall events are recorded in the central and eastern parts of the basin. The mean monthly
climatological rainfall and climatic water balance pattern revealed distinct seasonality, with wetter
summer and cooler winters across all stations.
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Besides the monthly rainfall and temperature datasets, we included six climate indices for
the development of the ANN model. The Nino sea surface temperature and PDO time-series values
were obtained from the US National Center for Atmospheric Research (https://climatedataguide.ucar.
edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni). The SOI values were acquired from
the National Oceanic and Atmospheric Administration (https://www.ncdc.noaa.gov). The IOD index
was obtained from the Japan Agency for Marine-Earth Science and Technology (https://www.jamstec.
go.jp/frsgc/research/d1/iod/). These data sources are maintained regularly, and no post-processing was
carried out.

https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni
https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni
https://www.ncdc.noaa.gov
https://www.jamstec.go.jp/frsgc/research/d1/iod/
https://www.jamstec.go.jp/frsgc/research/d1/iod/
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3. Methodology

3.1. SPEI

The SPEI index, predicted by a “climatic water balance” approach, is multi-scalar, and facilitates
drought analysis and monitoring over different time scales. Vicente-Serrano et al. [14] established
the method, which takes as input the variation between precipitation and potential evapotranspiration
(PET), which is derived from precipitation and temperature datasets.

In our study, subject to data availability, the Thornthwaite [50] method was used to calculate PET.
The calculation of PET involves the monthly mean temperature, expressed as

PET = 16K
(10T

H

)m
(1)

H =
12∑

i=1

(Ti
5

)1.514
(2)

where T is the monthly mean temperature (◦C), H is a heat index, which is calculated as the sum of

12 monthly index values h =
(Ti

5

)1.514
that are computed from the mean monthly temperatures, m

is a coefficient depending on H
(
m = 6.75× 10−5H3 + 7.71× 10−7H2 + 1.79× 10−2H + 0.492

)
, and K is

a correction coefficient derived as a function of the latitude and month.

K =
( N

12

)( S
30

)
(3)

where S is the sum of days of the month and N is the maximum number of sun hours, calculated as

N =
(24
π

)
ws (4)

where ws represents the hourly angle of the sun rising, estimated from the latitude and solar
declination [28].

Consequently, the water balance (the surplus or deficit of water) was calculated as

Di = Pi − PETi (5)

Di values were then aggregated at different time scales. Following the Vicente-Serrano et al. [14]
approach, the log-logistic distribution F(x) was applied to transform the original D series into
standardized units at different time scales. Finally, the F(x) distribution was utilized to calculate
the SPEI following the inverse normal function discussed in Reference [51]. The complete derivation
and theory of the index can be found in [52].

In this paper, the SPEI package for R developed by [14] was used to calculate the SPEI drought
index. It is a useful research and operational tool for drought analysis. Based on the SPEI values,
the levels of drought were categorized as shown in Table 2.

The negative SPEI values indicated drought conditions and were mainly accompanied by
a reduction in rainfall, whereas positive values corresponded to wetter or above-normal conditions.
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Table 2. Drought characterization based on standardized precipitation evapotransporation index
(SPEI) values.

SPEI Values Drought Category

SPEI ≥ 2 Extremely wet
1.5 ≤ SPEI < 1 Severely wet
1 ≤ SPEI < 1.5 Moderately wet
−1 ≤ SPEI < 1 Near normal
−1.5 ≤ SPEI < −1 Moderately dry
−2 ≤ SPEI < −1.5 Severely dry

SPEI < −2 Extremely dry

3.2. Artificial Neural Networks (ANNs)

As flexible data-driven models, ANNs have been applied for many functions, such as predictions,
curve fitting, and regression in the fields of engineering, earth sciences, medicine, hydrology, etc. [53,54].
ANN models learn data and perform tasks such as classification or prediction. The characteristics of
the data are used to determine the network model in the building process, unlike other models that
use prior assumptions. ANN structures are organized in layers arranged as input, hidden, and output
layers. Within every layer, there are interrelated units known as neurons or nodes.

The ANN models depicted in Figure 4 show a simplified neural network comprising inputs
which are multiplied by a modifiable weight. These weights are the crucial parameters of the ANN
models used to solve a problem. The sum of the weighted inputs and the bias terms are passed into an
activation function that is implemented to prevent the output from becoming too large. Commonly
implemented choices of activation functions include the logarithmic sigmoid ψ(x), tangent sigmoid
φ(x), linear χ(x), and the rectified linear unit (ReLU) functions.
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In general, the data presented to the input layer initiate the propagation of information.
Subsequently, the network adjusts its weights and uses a learning algorithm to find a combination
of weights that yields the smallest error. This process is referred to as “training”. Upon successful
accomplishment of the training phase, a new independent testing set is used to validate the trained
model. To prevent overfitting, and to generalize better, we used a dropout regularization technique.
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3.3. ANN Model Development

In this paper, a multilayer perceptron (MLP) feed-forward network was used to forecast
the time-series SPEI at a 12 months time scale. The multilayer perceptron minimized the error
between the ANN model outputs and observed values by updating the weights between each node.
Amid the pool of the weight-updating process, the resilient back-propagation (RProp algorithm from
the “nuerlanet” package in R [55]) was chosen because it can combine fast convergence and stability
and generally provides good results [56]. In the modeling of hydrological processes, challenging issues
arise from the highly nonlinear nature of the measured variables and their multiple interrelations [57].
To effectively model such large inputs, the selection of appropriate model architecture and the number
of hidden neurons and nodes is crucial [58]. The selection of the hidden nodes is the tricky part in
ANN modeling. To date, there are no exact guidelines for issues such as how many hidden layers
and hidden nodes should be included in an ANN model [59]. Thus, we employed a trial and error
approach to find the optimal number of nodes for the hidden layer.

In this paper, we split the data into training and test sets, where the test data were kept out
of the process of producing the ANN model in order to test its predictive power. For the period
of 1986 to 2015 (30 years), the study area experienced significant changes in rainfall, and thus we
chose the years 1986 to 2009 (288 months), precisely 80% of the dataset, for the training set, and from
2010 to 2015 (72 months), i.e., 20% of the dataset, as the testing set. Thus, the results presented in
the results section are the estimates of the performance of the ANN on the test data. The climate and
SST signals surrounding the study area and hydro-metrological and local variables were considered as
predictors. The large-scale potential climate predictors included in the ANN model formulation were
the ENSO, IOD, southern oscillation index (SOI), and Pacific decadal oscillation (PDO). According
to References [14] and [28], drought predictions are also based on on lags in the impacts of ENSO
events. The identification of the time lag between a large-scale climate phenomenon and drought
conditions helps to minimize the impacts of ENSO on the region. Thus, a cross-correlation analysis was
performed to measure the relationship between the lag times of the potential predictors and the SPEI
drought index.

It was evident, as shown in Figure 5, that rainfall and PET had the highest correlations with the SPEI
12 for shorter lag periods. Similarly, Nino indices also had a significant correlation. On the other hand,
among the climate signals, significantly positive and negative relationships were observed for IOD and
SOI, whereas PDO showed weak relationships with SPEI. Based on the cross-correlations plot shown
in Figure 5, seven different ANN models (shown in Table 3) were proposed. Our input selection was
based on the outcome of the cross-correlation analysis, i.e., the observed relationships between SPEI
and time-lagged climate variables and local variables.

The first model was built using all available data, and, from that, we systematically discarded
inputs to compare the accuracy level and the sensitivity of inputs, e.g., by adding and removing climate
signals and local variables, etc. In general, this approach helped us to check which models achieved
better prediction. The effects of climate signals and local variables were also independently investigated
for their value in explaining SPEI variation at different lead times. In general, this systematic selection
of input variables aimed to check the sensitivity of input variables in order to arrive at a highly
accurate model.
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Table 3. Input variables proposed in the search for suitable models for predicting SPEI.

Model
No. of
Input

Variables
Year Month Rainfall Max

T
Min

T PET SOI IOD PDO N3
SST

N3.4
SST

N4
SST

M1 12 X X X X X X X X X X X X
M2 11 X X X X X X X X X X X
M3 10 X X X X X X X X X X
M4 8 X X X X X X X X
M5 6 X X X X X X
M6 6 X X X X X X
M7 4 X X X X

3.4. Statistical Performance Measures

The implementation of the ANN in predicting SPEI values was assessed via the coefficient
of determination (R2), root-mean-square error (RMSE), Willmott’s index of agreement (d), and
the Nash–Sutcliffe coefficient of efficiency (E). The following mathematical equations define
these metrics.

R2 =
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Pi − Pi

)
√∑N
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)2
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where N is the number of test datasets, Oi is the observed SPEI value, and Pi is the ANN-predicted
SPEI value. RMSE was used to measure the average ANN model prediction error to indicate how
close the predicted values were to the observed. Lower values of the index indicate high prediction
accuracy. The coefficient of determination R2 was determined from the scattered plot of the observed
and predicted SPEI values from the fitted regression line. The best model should have an R2 value
close to unity. R2 = 1 denotes an exact linear relationship between the observed and predicted values.
However, correlation-based measures are oversensitive to extreme values. As a result, a model might
appear to be a good predictor when it is not [60]. The Nash–Sutcliffe coefficient of efficiency [61] is
1 minus the absolute difference between the sum of the squared differences between the predicted
and observed values, standardized by the variance of the observed values during the study period.
The Nash–Sutcliffe coefficient of efficiency (E) statistical measure ranges from −Infinity to 1, and a value
closer to unity indicates a better relationship of the observed to the predicted data. However, it has
drawbacks, as the errors are calculated as square terms and hence larger values in a time-series are
overestimated, whereas lower values are neglected [62]. To overcome the insensitivity of Nash–Sutcliffe
coefficient of efficiency (E) and the coefficient of determination (R2), Willmott’s index of agreement (d)
was proposed [63]. Willmott’s index of agreement (d) gives a value between 0 and 1, and a value close
to unity indicates the realization of the best model, whereas a value close to 0 indicates no agreement
at all. The index improves upon those mentioned above, yet remains sensitive to extreme events. For
sound scientific model calibration and evaluation, a combination of different performance measures is
recommended. The performance of the ANN in terms of the score metrics between the observed SPEI
and predicted ANN outputs were examined and the results are presented in the next section. The best
ANN architecture was trained with the resilient back-propagation learning algorithm with the tangent
sigmoid hidden transfer function. Furthermore, the output transfer function was chosen to be linear.

4. Results and Discussions

4.1. Model Performance

The model performances for predicting time-series SPEI values at different time scales are shown
in Figure 6. The seven models, which varied in the scheme of the inputs for predicting the time-series
SPEI, displayed significantly different results.Water 2020, 12, 643 11 of 19 
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The first four models, which utilized the climate signals, SST indices, and hydro-metrological
variables, had an excellent performance at all time scales (high coefficients of determination and low
root-mean-square error (RMSE) values in forecasting the time-series SPEI for all stations, confirming
that ANN as a data-driven model was very good at predicting time-series hydrological signatures.
However, removing the climate and SST signals (Model 5), hydro-metrological and local variables
(Model 6), or local variables, climate, and SST signals (Model 7) resulted in a very weak and low
correlation between the observed and forecasted SPEI values. We found that the input variables must
be carefully chosen to produce the best model. Model 2, which was built by eliminating the PDO,
which had a very weak relationship with the SPEI, as shown in Figure 4, showed a slight improvement
over Model 1, although Model 1 still provided a reasonable answer.

We then evaluated the performance of ANN Model 2 in predicting the SPEI 12 values. The best
architecture was found to be 11 input layers, 14 hidden layers, and 1 output layer. The quality of
the ANN model for the seven stations was examined via statistical performance measures. The measure
of the errors was assessed using statistical performance Equations (6)–(9) for all stations, as presented
in Table 4 for the test data. Table 4 unveils the averaged model performance statistics for the 72 months
in the test dataset as the coefficient of determination (R2), RMSE, Willmott’s index of agreement (d),
and the Nash–Sutcliffe coefficient of efficiency (E).

Table 4. A measure of ANN model performance based on all statistical measures of the observed SPEI
and predicted SPEI.

Station Name R2 RMSE d E

Alemketema 0.870 0.335 0.965 0.863
Asossa 0.892 0.349 0.966 0.884

Bahir Dar 0.820 0.428 0.946 0.818
Bedele 0.856 0.338 0.959 0.854
Chagni 0.908 0.290 0.975 0.905

Debremarkos 0.865 0.363 0.964 0.862
Gondar 0.949 0.263 0.987 0.949

Overall station average 0.880 0.338 0.966 0.876

From the results summarized in Table 4, the highest coefficient of determination (0.949) and
the smallest RMSE (0.263) was captured at Gondar station. Furthermore, the Willmott’s index of
agreement (d = 0.987) and Nash–Sutcliffe coefficient of efficiency (E = 0.949) values for Gondar station
were the highest among all the stations. On the other hand, the ANN model resulted in the worst
predictions at Bahir Dar station, as it provided a low coefficient of determination (0.82), high RMSE
(0.428), low Willmott’s index of agreement (d = 0.946) value, and low Nash–Sutcliffe coefficient of
efficiency (E = 0.818) compared to the other stations. In total, the model performance metrics averaged
over all stations confirmed that the ANN model performed well in forecasting the drought index.

Another indicator of the quality of model performance is the magnitude of the prediction error
(PE), where PE = SPEIpredicted − SPEIObserved. This was used to check whether the model overpredicted
(PE > 0) or underpredicted (PE < 0) the observed SPEI 12 values. In general, the ideal value of PE is
zero. We present the maximum, minimum, and standard deviations of the PE in Table 5. The smallest
PE was registered for the Gondar station (PE ≈ 0.690), which was also backed by the predicted and
observed SPEI 12 values summarized in Table 4.
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Table 5. The maximum, minimum, and standard deviation values of the prediction error (PE).

Station Name Maximum PE Minimum PE Standard Deviation

Alemketema 1.674 −0.631 0.337
Asossa 0.877 −1.561 0.346

Bahir Dar 1.614 −1.189 0.430
Bedele 0.956 −0.588 0.338
Chagni 1.075 −0.518 0.288

Debremarkos 0.799 −0.964 0.364
Gondar 0.690 −0.653 0.265

The visual comparison plots of the observed and predicted SPEI values in the test period
(2010–2015), shown in Figure 7, provided additional information that the SPEI 12 forecast had less
deviation and therefore it was more accurate. The comparison to assess whether the ANN model
overpredicted or underpredicted the SPEI 12 values showed significant and substantial differences
for Asossa and Bahir Dar stations. The most considerable difference was found for Asossa station,
where nearly 59% were underpredicted, whereas approximately 56% were overpredicted for Bahir
Dar station.Water 2020, 12, 643 13 of 19 
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Figure 7. Observed and predicted SPEI 12 values using the ANN model.

The histogram density plot for the prediction error (PE) in contrast to the normal distributions is
presented in Figure 8. The figure demonstrates the underprediction and overprediction by the best
ANN model for each of the seven stations. The range of the PE for the Gondar station was the smallest
at −0.653 ≤ PE ≤ 0.69. The next best range of the PE was achieved at Chagni station, where it was
−0.518 ≤ PE ≤ 1.075.
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The underprediction for Alemketema, Bedele, Chagni, and Debremarkos stations was 48.6%, 45.8%,
45.8%, and 51.3% respectively. The overpredictions for Alemketema, Bedele, Chagni, and Debremarkos
stations were 51.4%, 54.8%, 54.2%, and 48.7%, respectively. Surprisingly, the overpredictions and
underpredictions were equal for Gondar station. We concluded that for all stations, the ANN model
predictions showed no systematic errors. The distribution of the PE was thinner and had low standard
deviation, which was visually confirmed from its nearly normal distributions.

Additionally, box plots provided an excellent review of the distribution of the data and made
a comparison of the data more accessible. The box in Figure 9 represents 50% of the data points
enclosed by the first and third quartiles. The horizontal line inside the box represents the median
value of the dataset. The whisker lines provide us with the range of the data. Additionally, the dots
below the minimum and above the maximum SPEI values show the outliers of the data. Note that
the figure provides two sets of boxes, one for the observed and the other for the predicted SPEI
values. The observed and predicted SPEI values, on average, had a high level of agreement with each
other. Given the same range for the whiskers, we interpreted this to mean that the observed and
predicted SPEI values varied in the same way. For nearly all stations in this study, the medians were at
approximately the same level.
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Several approaches have been implemented to assess the strength of the association of a specific
explanatory variable for the response variable. Garson’s algorithm, implemented in the NeuralNetTools
library [64], was the approach used in this paper. The method assigns a single value to each explanatory
variable by deconstructing the weights in the model, which then describes the relationship between
the explanatory variable and the response variable [65]. The resulting plot, shown in Figure 10,
provided a list of the most significant variables in descending order. Such a figure is an excellent
tool for variable selection when there are many variables. The top variables of rainfall, maximum
temperature, and potential evapotranspiration contributed more to the ANN model than the bottom
ones, and had high predictive power in classifying drought and non-drought events.Water 2020, 12, 643 15 of 19 
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4.2. Comparison of Different Models

For comparison, we created two models, a linear model with ordinary least squares and a neural
net model with two hidden layers. Standard and simple fitted versus actual, and fitted versus residual
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plots were used to compare model performance visually. As shown in Figure 11a, the ANN model
with two hidden layers had the best performance based on how close the points were to the reference
line. The RMSE errors were 0.753, 0.807, and 1.126 for the two-layer ANN, one-layer ANN, and linear
models, respectively. The ANN models were far better at predicting new data than the linear model.
However, the two-layer model appeared to be slightly better, mainly due to its capacity to capture
greater non-linearity.

Water 2020, 12, 643 15 of 19 

 

 

Figure 10. Variable importance plot from the ANN model. 

4.2. Comparison of Different Models 

For comparison, we created two models, a linear model with ordinary least squares and a neural 
net model with two hidden layers. Standard and simple fitted versus actual, and fitted versus 
residual plots were used to compare model performance visually. As shown in Figure 11a, the ANN 
model with two hidden layers had the best performance based on how close the points were to the 
reference line. The RMSE errors were 0.753, 0.807, and 1.126 for the two-layer ANN, one-layer ANN, 
and linear models, respectively. The ANN models were far better at predicting new data than the 
linear model. However, the two-layer model appeared to be slightly better, mainly due to its capacity 
to capture greater non-linearity. 

 
Figure 11. (a) A scatterplot of the observed versus predicted plots for the two-layer ANN (ANN_2), 
one-layer ANN (ANN_1), and linear models (LM) with a 1:1 reference line plot. (b) The 10-fold cross-
validation root-mean-square errors for the two-layer ANN and one-layer ANN models. 
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Though Figure 11a gives a sense that the ANN provided a better result than the ordinary least
square model, a more rigorous approach was required to differentiate the neural models. A simulation
was run on different segments of the data, namely the 10-fold cross-validation technique. A more
precise estimate of the average RMSE results is plotted in Figure 11b. From this plot, we can see a slight
difference in the RMSE means of the two ANN models. We conducted a Welch two-sample t-test and
found that the p-value = 0.397, with the 95% confidence interval containing zero (−0.3892, 0.0125).
From this result, we can say that there was not enough evidence of a difference between the true means
of the RMSEs of the two models at a significance level of α = 0.05. The performance of the ANN models
did not yield significantly different results, although there were indications that the two-layer layer
model performed slightly better.

5. Conclusions

In this study, the UBN basin of Ethiopia was chosen as a study area to build a data-driven ANN
model for forecasting the SPEI index. The model was trained by utilizing large-scale climate indices
(SOI, IOD, PDO) and SST (Nino 3.0, 3.4, 4.0), which are linked to changes of atmospheric and ocean
circulation, and hydro-metrological variables (RF, Max T, Min T, PET,) as the input variables for
the ANN model, and the output variables were the SPEI values calculated at a 12 months timescale.
Based on the results, we concluded that the best ANN forecasting model built using large-scale climate
indices and SST made better predictions, which was verified by analysis of the prediction errors. For
all stations, the model returned values that were close to the observed values. The box and histogram
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plots revealed a high level of similarity between observed and predicted SPEI values. Furthermore,
we studied the sensitivity of each predictor variable and found that including the PDO as a predictor
variable weakened the quality of the prediction model. Thus, careful assessment needs to made
when choosing input variables. Moreover, ANN models developed in this way are easier and less
complicated to apply, and can be adapted to various areas to better predict the responses of drought
patterns to atmospheric and ocean circulations. Generally, drought forecasting is of great importance in
providing information on future drought conditions, which is of particular importance to sustainable
agricultural and natural resource management in developing nations, which are directly affected by
drought risks in a changing climate. ANNs, as one of the most useful and exciting machine learning
algorithms, give access to short- and long-term forecasts that can provide relevant information to
maintain sustainable agriculture in both developing and developed countries.
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