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Abstract: In this study, the short-term effects of NaCl stress on the free amino acid content and
composition of root exudates of Phragmites australis were evaluated. Nineteen amino acid types were
detected in all samples. The results indicated that NaCl significantly influenced the total amino
acid (TotAA) content. The TotAA content at 6%� salinity (1098.79 µM g−1 DW) was up to 24 times
higher than that in the control group (45.97 µM g−1 DW) but decreased to 106.32 µM g−1 DW at 6%�

salinity in the first hour. The stress period also significantly affected the TotAA content. After 4 h of
stress, the TotAA content of the control and 1%� salinity groups increased by approximately 30- and
14-fold, and those of the 3%� and 6%� groups decreased to 60% and 37%, respectively. The increase in
TotAA content was primarily caused by the increase in proline content; the proportion of proline
accounted for 58.05% of the TotAA content at 3%� salinity level in 2 h. Most amino acids showed a
significant positive correlation with each other, but proline and methionine showed a different trend.
Therefore, the proline level is a useful indicator of salt stress in Phragmites australis, especially in
saltwater wetlands.
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1. Introduction

Salt stress is one of the most important environmental stress factors that affect wetland plants [1].
It causes a series of physiological and biochemical changes in plants through osmotic stress, ion
toxicity, and imbalance in active oxygen metabolism [2]. For instance, physiological drought, nutrient
deficiency, and cell structure damage can occur, and, especially, plant roots can be immediately injured
by high salinity [3]. Phragmites australis, a representative wetland plant, is found in both freshwater
and saline habitats [4] and even adapts to high-salinity regions. Many previous studies have shown
that P. australis is easily propagated by seed dispersion and vegetatively propagated from vertical and
horizontal rhizomes and stolons [5]. These advantages make P. australis dominant in many wetland
ecosystems. In the worldwide map of P. australis by Srivastava [6], the geographical distribution of
P. australis extends from wetlands in cold temperate regions to tropical wetlands. Furthermore, P.
australis has a robust ability to mitigate environmental pollution, making it the most preferred plant for
application in constructed wetlands [7,8]. P. australis could potentially be used for the treatment of
saline wastewaters or constructed wetlands in areas with high evapotranspiration, which increases
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the salinity of the wastewater [9]. There is a lot of interest in saline wastewater treatment with P.
australis [10,11].

Previous studies have indicated that the threshold of salt tolerance in P. australis varies widely
between 5% and 65%, which reflects the ability of P. australis to adapt to different environments via
its widely varying salt tolerance [12–14]. Mauchamp [15] found that P. australis maintained 100%
germination rate when affected by salinity of more than 10%�. Fageria [16] reported that salt not only
affected the growth and distribution of plant roots but also affected the absorption of nutrients. A large
number of studies have shown that P. australis can acclimatize to saline conditions by suppressing
salt transport to the shoot or salt sequestration or exclusion [17]. Moreover, many plants, including P.
australis, secrete and accumulate a cocktail of organic compounds (carbohydrates, organic acids, and
amino acids) as an adaptive strategy under salinity stress, and the exudation patterns of the plant roots
strongly influence plant performance and health [18–21]. Root exudates also play a crucial role in
phytoremediation engineering [22].

Amino acids, in addition to being the basic components of all living cells [23,24], are important
components of root secretion [25,26]. Amino acids play highly diverse and essential roles in plants.
Plants take up amino acids directly from the soil or assimilate inorganic N into amino acids [27]. As the
building blocks of proteins and enzymes, amino acids are important components for plant structure
and metabolism [28,29]. Amino acids in root secretion have also been regulated to compensate for
the effects of plants under stress and play an important role in plant development, growth, and stress
resistance [30]. Plants induce the accumulation of compatible substances to adjust the osmotic pressure
under salt-stress conditions [31]. Proline, an amino acid, has been found to be an osmotically active
organic solute in the root area [32]. Zhang et al. [33] found that the levels of pyrimidine and purine in
tobacco decreased when treated with 50 mmol (mM) sodium chloride (NaCl), but the levels of proline
and aromatic amino acids increased when the concentration of NaCl was increased to 500 mM. Thus,
some previous studies have used amino acid levels as an indicator of salt stress [32,34,35].

Previous studies on the salt tolerance of plants focused on growth and physiological attributes,
such as gas exchange, relative leaf water content, and photosynthetic parameters [5,36], or salt transport
and ion balance [32,37]. However, little is known about amino acid patterns in relation to salinity;
specifically, there is limited information on the effects of salinity stress on the amino acid content in
the root exudates of P. australis. The examined stress periods had a duration of a few days or even
weeks, and short-term stress (e.g., several hours) has been minimally examined. Therefore, the main
objective of this study was to analyze the amino acids exudated by the roots of P. australis in response to
short-term stress due to varying NaCl concentrations. This information aids in understanding the root
exudates elicited by P. australis in response to salinity stress and acclimation of P. australis to different
environmental conditions.

2. Material and Methods

2.1. Collection of Plant Samples

In the P. australis wetlands of Yizhuang Town, Daxing District, Beijing, China (Supplementary
Materials Figure S1), spring buds of P. australis with attached rhizomes were collected in May, and
then replanted into three plastic buckets (diameter 37 cm and height 35 cm, to simulate a constructed
wetland, the external walls of the buckets were shaded with light-impermeable foil) containing peaty
substrates. The initial chemical characteristics of the substrates were as follows: 38% organic matter,
0.9% available N kg−1 soil, 0.7% available P (P2O5) kg−1 soil, 1% available K (K2O) kg−1 soil, pH
6.8, and electrical conductivity (EC) of 2 mS/cm. All cultivars were grown under natural light and
uncontrolled temperature conditions. After 6 weeks of potting, plants that appeared unhealthy were
discarded, and a bucket of P. australis samples of similar size was selected and excavated out of the
peaty substrate with care to avoid damage to the roots. The peat was cleaned from the surfaces of the
plants with tap water, and the plants were rinsed three times with deionized water.
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2.2. Salt Stress and Sample Pretreatments

P. australis samples from the same bucket were randomly sorted into five treatment groups (five
salinity levels) and separately replanted into containers shaded with light-impermeable foil to prevent
light penetration from the sides, then, 500 mL of deionized water was added. The salinity level of each
container was adjusted using NaCl (AR, Sinopharm, China). NaCl was added to deionize the water to
produce salinity levels of 0%� (blank), 1%�, 3%�, 6%�, and 10%�. These salinity levels were selected
based on a previously work [32]. Subsequently, each P. australis was maintained in the corresponding
containers for 1, 2, and 4 h [38], with three buckets for each treatment group (5 salinity levels × 3 stress
periods), each treatment group had two duplicates. Five hundred milliliters of the NaCl solution
containing the root exudates was filtered through 0.45 µm membranes (Millipore, Builington, MA,
USA) to remove the residual roots and maintained at 4 ◦C for subsequent analyses.

NaCl in the root exudate samples was removed to prevent damage to the high-performance liquid
chromatography (HPLC) column. We used the method described by [39] with some modifications to
remove NaCl. The samples were evaporated under reduced pressure at 70 ◦C to dryness. The residues
(primarily NaCl) were dissolved in glacial acetic acid and filtered through a 0.45 µm membrane. The
evaporation procedure for the amino acid standards was performed in the same manner as that for
the samples, and the recovery rate of each type of amino acid is listed in Table S1. The filtrates were
concentrated to dryness in a rotary evaporator (RE-52A; Zhenjie Instruments, China) under reduced
pressure at 50 ◦C, and the final volume of the residual solution was adjusted to 2 mL for derivatization.

2.3. Analyses

The samples, including the amino acid standards (18AA; Sigma-Aldrich, St. Louis, MO, USA) and
taurine standards (Sigma-Aldrich, St. Louis, MO, USA), were adjusted to the required concentration
with deionized water and derivatized with fluorescein isothiocyanate (FITC; Thermo Fisher Scientific,
Waltham, MA, USA) to produce fluorescent amino acids. The samples were filtered through 0.45
µm sample filters and run on an HPLC system (Dionex U3000; Dionex Corporation, Acworth, GA,
USA) by using a Sentry-C18 8 precolumn (Waters Corporation, Milford, MA, USA) and amino acid
column (4.6 × 250 mm; SMA). The sample injection volume was 20 µL, and the flow rate was 1 mL
min−1. Separation was performed at 40 ◦C with a variable gradient of 0.1 mol/L sodium acetate (pH
6.5), acetonitrile (93:7, v/v), and acetonitrile:water (80:20, v/v) (Table S2). Detection (UV detector) was
performed at 254 nm. The retention time of each amino acid is listed in Table S3. The total elution time
was 55 min. Standard mixtures of the amino acids were used for identification and quantification of
the samples. The total free amino acid (TotAA) content was calculated as the sum of all 18 detected and
quantified amino acids. The dry weight (DW) was determined by placing the plant root in an oven at
70 ◦C until it reached a constant weight. The TotAA content of each amino acid type was provided in
absolute units (µM g−1 DW), and the percentage of each amino acid type was recorded in relative units
(% TotAA) and calculated using the following equation:

A% = (A/TotAA) × 100%, (1)

where A is the content of certain amino acids (µM g−1 DW) and TotAA is the total free amino acid
content (µM g−1 DW).

2.4. Statistical Analyses

A calibration curve was created using amino acid solutions with different concentration gradients,
and the results are shown in Table S4. The amino acid concentrations in each sample were calculated
by peak area. All data are presented as mean ± standard deviation (SD) from three analyses for each
duplicate. Analysis of variance of the data was performed using SPSS 19.0 for Windows (SPSS Inc.,
Chicago, IL, USA) and Excel 2019 (Microsoft Inc., Redmond, WA, USA). Comparisons of the means
were performed using Duncan tests with p < 0.05 as the criterion for significance. Redundancy analysis
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(RDA) was processed and plotted by Canoco 4.5. Correlation analyses and clustering were performed
using R (version 3.6.2) and R Studio Desktop.

3. Results and Discussion

3.1. Variation in Amino Acids under Different Salt Stress Conditions

The recovery of each amino acid was in the range of 84.09% to 116.35% (Table S1); therefore,
the evaporation procedure could be used for NaCl removal. Figure 1 shows variations in the
concentration of each amino acid under different salinity stress conditions. After 1 h, the TotAA content
increased remarkably by up to 24-fold from 0%� to 6%� salinity (Figure 2 and Table S5, from 45.97 to
1098.79 µM g−1 DW). The increase in TotAA was primarily due to the accumulation of proline (Figure 3,
484.80 µM g−1 DW for 3%� and 290.96 µM g−1 DW for 6%�, accounting for 45.40% and 26.48% of the
total amino acids, respectively).
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The proline content increased up to 36-fold at 3%� NaCl concentration and 21-fold at 6% NaCl
concentration as compared with the control (13.59 µM g−1 DW. Other single amino acids, excluding
proline, arginine, and histidine, reached their maximum content at 6%� NaCl concentration (Figure
S2). However, the TotAA and single amino acid content exhibited a sharp reduction from 6%� to 10%�

salinity levels. Proline exhibited a similar reduction from 3%� to 10%� salinity level (Figure 3).
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At 2 h of stress, the TotAA content in each treatment group gradually showed similarities (Table
S5 and Figure 2). The level of each amino acid type was relatively higher at both 0%� and 10%� salinity
and the lowest at 3%� salinity, except for proline and histidine, which showed the highest level at 3%�

salinity and increased by more than four-fold (for proline) and two-fold (for histidine) from 0%� to 3%�

salinity (Table S5 and Figure S2).
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At 4 h of stress, the TotAA content exhibited a tendency to decrease from 0%� to 10%� (Table S5
and Figure 2). Each type of amino acid also exhibited a similar trend, i.e., the amino acid concentration
decreased as the salinity increased. The levels of all amino acids were the highest at 0%� salinity, and
the levels of almost all of them were the lowest at 10%� salinity (Table S5 and Figure S2).

Throughout the experimental period, the concentration of most amino acids was higher in the
blank sample (Figure S3), except for proline. The proline content was the maximum at 3%� salinity
(Figure 3). Proline dominated the TotAA content, especially in the first 2 h, accounting for 34.40% and
28.86% at 1 h and 2 h, respectively, but only 7.37% at 4 h. At each salinity level, proline accounted for a
significant proportion of the TotAA content. In the blank group, proline accounted for only 8.34% of
the TotAA content and slightly increased to 11.05% at 0%� salinity; however, this percentage increased
rapidly to 35.97% at 3%� salinity and, then, was maintained at around 25% at 6%� and 10%� salinity
(Table S5. The rate of increase in proline content varied substantially at different levels of salinity; the
proline content increased by only less than two-fold from 0%� to 1%� salinity levels, in contrast to the
36-fold increase from 1%� to 3%� salinity levels. The rate of increment in glutamate with time was
greater at low salinity levels (0%� and 1%�) than at high salinity levels (10%�). Thus, we speculated
that the proline content increased over a specific NaCl concentration range and decreased when this
range was exceeded. This also indicated that proline plays an important role in the adaptation of P.
australis to salinity stress. In addition, glutamate, threonine, and taurine accounted for a relatively
high proportion (8.41% to 14.99%, 6.19% to 11.50%, and 5.27% to 11.26%) of the TotAA content at each
salinity level (Table S5).

Furthermore, the TotAA content and most of the single amino acids increased with time at 0%�

and 1%� salinity levels (Figure 1 and Table S5). The TotAA content exhibited strong responses in
the first hour and increased by up to 30-fold in the control and 14-fold at 1%� salinity level at 4 h.
Glutamate increased from 3.1 to 228.03 µM g−1 DW in the blank treatment, i.e., by up to 74-fold within
4 h. At 1%� salinity level, proline reached its maximum (five-fold higher than the initial content) at 2 h.
At 3%�, 6%�, and 10%� salinity levels, proline content peaked in the first few hours and subsequently
decreased substantially.

Overall, during relatively short stress periods, the TotAA content increased. When exposed to a
low salinity level, a significant linear relationship was observed between the increase in TotAA content
and the stress period. In almost all the treatment groups, proline served as the dominant amino acid;
the proportion of proline accounted for up to 58.05% of the TotAA content under 3%� salinity level at
2 h.

3.2. Results of the Correlation and Redundancy Analyses

We also analyzed the correlation between each amino acid. As shown in Figure 4, a significant
correlation was observed among all amino acids in general, except proline, methionine, and histidine.
In particular, arginine, alanine, phenylalanine, tyrosine, serine, valine, taurine, isoleucine, and leucine
showed significant positive correlations (p < 0.01). Similarly, a significant positive correlation (p < 0.01)
was observed among aspartate, glutamate, tryptophan, lysine, threonine, cysteine, and glycine. We
clustered all these amino acids into four groups with the hclust package of R (shown as four black wire
frames in Figure 4). The first group, proline and methionine, had a significant positive correlation
(p < 0.05), but no correlation with most of the other amino acids. In the second group, only histidine
showed a correlation with about half of the other groups. Then, the rest two groups, as described
above, showed a significant positive correlation with each other within the group, respectively.
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Further analysis of the correlations between each amino acid and stress factors (stress period
and salinity level) was performed (Figure 5). Redundancy analysis (RDA) was conducted, and the
eigenvalues of the first two axes were 0.159 and 0.008. As shown in Figure 5, almost all the amino
acids had a positive relationship with the stress period; a negative relationship was found between the
stress period and proline or methionine. This indicates that the stress period is more important than
the salinity level for the effects of salt stress on the amino acids of P. australis root exudates, whether
promotion or inhibition. According to the RDA results, the contribution of the stress period was 87.4%,
and the contribution of the salinity level was only 12.6%.
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3.3. Discussion

Root exudates are passively released from cells during metabolism, and these exudates are
secreted and transported through the cell membrane to the rhizosphere [40]. A large amount of data
has shown that plant roots can accumulate amino acids [32,41], particularly proline [42], under high
salinity conditions, and these amino acids extravasate to the rhizosphere [43]. Common responses of P.
australis to salt stressors are changes in the amino acids of the root exudates. Our study indicated that
the TotAA content increased within a certain range of stressful conditions. These results are consistent
with the findings of Thomas and Hardy [32], who reported the amino acid content in the rhizomes and
leaves of P. australis.

Comparisons of the single amino acid levels revealed the obvious quantitative importance of
proline, which exhibited a dramatic increase with salinity over a specific range. Proline has been
extensively studied in the context of plant responses to abiotic stresses. A number of studies have
supported the hypothesis that proline accumulation ability and the degree of salinity tolerance are
positively correlated in a certain threshold [31,32]. Free proline accumulation seems to be a widespread
stress response in higher plants. The pool sizes of several other amino acids also increase under salt
stress [44]; however, the degrees of these changes are not comparable to that of proline accumulation,
which reaches very high levels within a short period after stress induction [45]. Gzik [46] reported that
the amount of proline in sugar beet plants increased under stressful conditions. Changes in the TotAA
content are mainly caused by the accumulation of proline in the rhizomes of P. australis, as discussed by
Thomas and Hardy [32]. Mustapha et al. [5] reported that an increase in the NaCl concentration was
associated with an increase in the accumulation of proline. At 200 mM NaCl, the proline concentration
was approximately 171% of the control value. According to Yang [36], proline in P. australis significantly
increased under NaCl salinity stress and exhibited a strong positive correlation with an increase in
NaCl concentration.
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High concentrations of proline are associated with the protection of membranes and proteins
against the adverse effects of inorganic ions. Proline improves the salt tolerance of Pancratium
maritimum by protecting the protein turnover machinery against stress and damage and upregulating
stress protective proteins [47]. Salt stress signals induce the loss of the feedback inhibition of
A’-pyrroline-5-carboxylate synthetase (P5CS; a key enzyme in proline biosynthesis [45]), which results
in proline accumulation. Proline plays an important role in the acclimation to salinity stress by
mediating osmotic adjustments and protecting the subcellular structures of stressed plants [48].
Stress-mediated changes in proline biosynthesis [49], including the hydrolysis of proteins at toxic NaCl
concentrations [50], oxidative degradation processes [51,52], reduced incorporation of free amino acids
into proteins, and inactivation of proline degradation, can result in increased proline levels in plants
exposed to different stresses, including salinity stress [53].

In our experiment, the proline content increased by less than two-fold at 1%� salinity level as
compared with the control; in contrast, a 36-fold increase was observed between 1%� and 3%� salinity
levels. These findings indicate that a critical salinity level exists. As found in sugar beet, wheat, and
other species [54], proline is only slowly accumulated until the plant reaches a critical salinity level.
Exceeding this salt concentration results in a greater reaction and accumulation of proline in very high
amounts. Therefore, P. australis at 1%� NaCl concentration has not reached its critical salinity level, and
3%� salt concentration is considered to be the critical salinity level in our study. This explanation is
also consistent with the findings of Thomas and Hardy [32].

In our study, the proline level decreased sharply when the salinity level exceeded 3%�. Daniela
et al. [30] explained that this tendency to increase the level of free proline inhibits the biosynthesis
of excessive amounts of proline in plants. High concentrations of proline can ameliorate the adverse
effects of inorganic ions, and this mechanism is associated with the protection of membranes and
proteins. The rapid catabolism of proline after relief from stress provides reducing equivalents that
support mitochondrial oxidative phosphorylation and generation of ATP for the recovery from stress
and repair of stress-induced damage. Therefore, proline levels and proline accumulation dynamics can
be used as indicators of salt stress in P. australis.

Moreover, our study revealed a positive correlation between the amino acid content of the control
group and the stress period. All 19 types of single amino acids were accumulated as the stress period
increased, and these amino acids reached their peak concentrations with the longest stress period. This
phenomenon is consistent with the Lycopersicon esculentum results [55] for the control group, and amino
acids and proline in wild species increase as the duration of stress period increases.

This study was performed on a laboratory scale; thus, some details will inevitably be missing
as compared with those in a natural wetland. In particular, the presence of wetland substrate can
change the way the plants respond to environmental stress and can impact the characteristics of
rhizospheric secretion. In addition, salinity stress is not caused by only NaCl; therefore, the more
complex interactions between salt levels and amino acid secretion in the natural environment should
be noticed. Although there is a certain degree of correlation between amino acid content in both plant
tissues and root secretion, further investigation, such as the direct measurement of amino acid content
in plant tissues, is essential to quantify the relationship.

4. Conclusions

Root secretion plays an important role in plant growth, rhizosphere ecological regulation,
and biogeochemical cycle of nutrient elements. The variations and trends in the rhizosphere
microenvironment can be judged by the composition and content of root exudates. Amino acids are an
essential component of root secretion. Therefore, it is important to discuss the trend of each component
of root exudates, especially amino acids, under different environmental stress conditions.

In this study, the results indicated that salinity stress caused by NaCl significantly influenced P.
australis and the effects of salinity on specific free amino acids played an important role in the adaptation of
the plant to salt stress. The TotAA content of the P. australis root exudates exhibited significant variations
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when exposed to different levels of salt, as well as the stress periods. Therefore, it is important to
investigate the effects of salt stress on each type of amino acid. The results showed that the amino acids
generally had a significant positive correlation, but they could still be clustered into four groups.

Among them, proline was the dominant amino acid and showed relatively unique trends. Proline
is a useful indicator of salt stress, which can monitor the health state of the plant directly, avoiding
inaccurate information resulting from some indirect function when only salinity is used to characterize
the salt stress in complex sewage treatment. Thus, it is important to discuss the trend under different
salinity stress levels when adopting the Phragmites australis wetland system for salinity wastewater
treatment or phytoremediation of salinized soil. It is important to understand the stable operation and
functional guarantee of the Phragmites australis wetland system.
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the experimental period. Defined the highest in each row as 100%, the rest of each row is converted to percentage
by relative value, Table S1: The recovery rate of NaCl remove procedure, Table S2: The gradient elution process of
amino acid mobile phase A and B, Table S3: The HPLC elution time for amino acids, Table S4: The calibration
curve for each kind of amino acid and relative standard deviation (RSD), Table S5: Content of total free amino
acids (TotAA) and single compounds (absolute content) of root exudates of Phragmites australis clones (stress time
1, 2, 4h) compares for five NaCl-salinity levels.
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