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Abstract: The objective of this paper is to estimate the operational efficiency of Mexican water
utilities and identify the context variables that impact their efficiency. In particular, a bootstrap
data envelopment analysis (DEA) and a bootstrap truncated regression analysis are combined in a
two-stage research method. In the first stage, an input-oriented DEA model is used to determine
bootstrap efficiency scores. Then, the corrected distribution function of the efficiency scores is used
to estimate a truncated regression which is aimed to identify the significant influential context
variables. Three categorical and two continuous context variables are considered in the analysis.
Results show that only one context variable has a significant impact on the water utilities efficiency
scores. Managerial recommendations are drawn from the analysis. It is suggested that water utilities
continue or implement wastewater treatment, persist in decreasing and controlling leakage across the
distribution network, and maximizing sewer coverage.

Keywords: water utilities; water management; data envelopment analysis; bootstrap data envelopment
analysis; double-bootstrap approach

1. Introduction

The significant and undesirable effect of economic and social activities on all natural resources
is a very active current research topic. Human activity is modifying the hydrologic cycle creating
unexpected climate changes that originate severe droughts and floods. A vital resource for the
subsistence of the human race is drinking water. Drinking water management is considered a
significant metric when investigating national economic and sustainable development and social
welfare [1–3]. Developing countries show low operational efficiency of water and sewerage utilities,
which leads to serious environmental and health issues [4]. These issues exacerbate with the rapid
development of urban areas. This article investigates the management of this vital resource in the
developing country of Mexico.

The Organization for Economic Co-operation and Development (OECD) estimates a world
population of more than 10 billion people for the year 2050, which translates to a water demand
increase of about 55% [3]. If the potable water consumption continues at the same rate, it is predicted
that two-thirds of the world population will face water supply issues in the year 2025 [5]. Participants
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in the World Economic Forum in Latin America, held in Brazil in 2018, identified the efficient supply
and management of water as the fifth most important challenge faced by Latin American countries.

Mexico covers 1.96 million km2; it is the fifth and thirteenth largest country in the Americas and
the world respectively. It has an estimated population of 121 million people. The Mexican National
Water Commission (Comisión Nacional del Agua, CONAGUA) forecasts that climate change will
unevenly affect different geographic areas thus generating a huge contrast between dry and wetland
regions, which constitutes a major threat for water availability [6].

The rainy season in central Mexico lasts roughly from May through October. The rain is heaviest
from June to September in the southeast region of the country. The yearly rainfall is about 1489 billion
m3; around 73%, 22%, and 6% of the rainfall evaporates, flows to the rivers, and infiltrates the subsoil
to recharge the aquifer mantles respectively [6]. This unused rainwater suggests that water availability
in central Mexico has not yet reached a critical level. However, water availability is characterized
by multiple asymmetries. The distribution of water is unbalanced and intermittent resulting in poor
distribution, restricted access, and uneven rates. In this regard, Kauffer [7] states that water availability
does not entirely explain the problem of drinking water access in Mexico. Hence, it is even more
important to analyze the adequate use and management of this vital resource.

A frequent stream of research in water management is the privatization of water utilities as a
strategic solution for water supply improvement. It is expected that private water utilities could be
more efficient than public entities. These scenarios have been widely studied, drawing no conclusion.
The relationship between the type of ownership and efficiency is unclear in the water distribution
sector [4,8–14].

Data envelopment analysis is a very popular technique when investigating the efficiency of water
utilities. Some examples showing the variety of studies and approaches are as follows. De Witte and
Marques [15] used the length of mains and number of employees as inputs, and the volume of delivered
drinking water and the number of connections as outputs when assessing the water utilities efficiency
among five different countries. They concluded that a technological gap among countries could explain
some inefficiencies. In the case of a geographic region, Sáez-Fernández et al. [16] investigated the
technical performance of water utilities under the sustainability perspective. They analyzed the case of
the water industry in the region of Andalusia, Spain. The water utilities supply potable water and
provide sewerage services. They highlighted the importance of a few critical performance metrics to
assess the sustainability of the water industry. The key metrics are as follows: the volume of water
introduced in the pipelines, the volume of water consumed by customers, and the volume of water
lost by leakage. In a different research objective, González-Gómez et al. [11] tested the impact of the
type of ownership on the performance efficiency of water utilities. They analyzed private, public,
and private-public water utilities in Spain. Their study of 80 rural water companies did not provide
any conclusion about the relationship between types of ownership and operational efficiency. More
recently, Vishwakarme et al. [17] investigated water supply in an Indian state. They identified factors
of inefficiencies and analyzed their mitigation through public policies and regulation. In a broad
perspective, results from DEA have been used to recommend infrastructure, regulatory, and managerial
improvements in water and sewerage systems [7,18–24].

This paper is aimed at analyzing the operational efficiency of water utilities in Mexico by means of
a double-bootstrap DEA approach. The remaining part of this paper is organized as follows. Section 2
presents a literature review. The proposed research methodology is introduced in Section 3. Section 4
presents the analysis of the water utilities in Mexico and discusses results. Conclusions are given in
Section 5.

2. Literature Review

The literature review is aimed at identifying the current research gaps in the current state of the
art. There are many studies about water utilities management and a high percentage of them studied
their efficiencies. However, just a few studies utilized an approach combining DEA and bootstrapping,
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and only one addressed the Mexican water utilities. Therefore, this literature review is split into three
sections: the first one is a peculiar analysis of water efficiency studies by means of a bibliometric
and main path analysis, the second section analyses the studies combining bootstrapping, DEA, and
regression methods, and the last one reviews the case of the Mexican water utilities.

2.1. Bibliometric and Main Path Analysis

Bibliometrics was introduced by Garfield in 1972 [25,26]. Modern bibliometrics uses automated
methods and applications to explore, organize, and analyze large volumes of historical data that can
be used in strategic decision-making processes [27].

This research uses Clarivate Analytics’ Web of Science database as its data source. The following
phrases were utilized to identify the research articles: “Water” AND “Data Envelopment Analysis” OR
“Stochastic Frontier Analysis”. The word “Water” was defined in the title field. DEA and SFA were
selected as topic that includes title, keywords, and abstract. Notice that this search framework is not
exhaustive. It provides just information of papers using either DEA or SFA for assessing water issues.
The aim of this section is to present a quick descriptive overview of research activities and trends in the
aforementioned search framework. The reader is referred to Berg and Marques [28] for a thorough
discussion of a literature survey in the field.

The Web of Science database was accessed on 3 February 2019 and the search identified a total of
192 research articles and 6 proceeding papers from 1993 to 2019. Figure 1 shows the steady increase of
research articles in the field. The first research paper was published in 1993. Between 1993 and 2005
there were several years without any publications. However, starting in 2005, the rate of growth of
research articles shows a non-linear increasing trend.

Water 2018, 7, x FOR PEER REVIEW  3 of 25 

 

bibliometric and main path analysis, the second section analyses the studies combining 

bootstrapping, DEA, and regression methods, and the last one reviews the case of the Mexican water 

utilities. 

2.1. Bibliometric and Main Path Analysis 

Bibliometrics was introduced by Garfield in 1972 [25,26]. Modern bibliometrics uses automated 

methods and applications to explore, organize, and analyze large volumes of historical data that can 

be used in strategic decision-making processes [27]. 

This research uses Clarivate Analytics’ Web of Science database as its data source. The following 

phrases were utilized to identify the research articles: “Water” AND “Data Envelopment Analysis” 

OR “Stochastic Frontier Analysis”. The word “Water” was defined in the title field. DEA and SFA 

were selected as topic that includes title, keywords, and abstract. Notice that this search framework 

is not exhaustive. It provides just information of papers using either DEA or SFA for assessing water 

issues. The aim of this section is to present a quick descriptive overview of research activities and 

trends in the aforementioned search framework. The reader is referred to Berg and Marques [28] for 

a thorough discussion of a literature survey in the field.  

The Web of Science database was accessed on 3 February 2019 and the search identified a total 

of 192 research articles and 6 proceeding papers from 1993 to 2019. Figure 1 shows the steady increase 

of research articles in the field. The first research paper was published in 1993. Between 1993 and 

2005 there were several years without any publications. However, starting in 2005, the rate of growth 

of research articles shows a non-linear increasing trend. 

 

Figure 1. Number of research article per year. 

The top eleven leading authors, by number of documents published, with at least 5 publications 

are listed in Table 1. The top author is Maria Molinos-Senante who is a professor at the Pontificia 

Universidad Catolica de Chile. The second author is Ramon Sala-Garrido who is a professor at the 

Universidad de Valencia, and who collaborates with Molinos-Senante. The collaborative work 

between Molinos-Senante and Sala-Garrido highlights the importance of social research networks. 

  

1 1
2

1
2 2

4
5

6

12
10

11

15

21 21

27
25

31

1

0

5

10

15

20

25

30

35

1993 1998 2000 2002 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Production of research article per year

Figure 1. Number of research article per year.

The top eleven leading authors, by number of documents published, with at least 5 publications
are listed in Table 1. The top author is Maria Molinos-Senante who is a professor at the Pontificia
Universidad Catolica de Chile. The second author is Ramon Sala-Garrido who is a professor at the
Universidad de Valencia, and who collaborates with Molinos-Senante. The collaborative work between
Molinos-Senante and Sala-Garrido highlights the importance of social research networks.

Citations, in which one article refers to earlier research publications, are the standard means by
which researchers acknowledge the source of their methods, ideas and findings. Additionally, paper’s
citations are often used as a rough estimate of a paper’s significance. Table 2 presents the top five
cited papers. Kirkpatrick et al. [12] is the most cited paper with just under one hundred citations.
Kirkpatrick et al. [12] studied the privatization effect of water services in African countries. Their
results did not show evidence that private utilities perform better than public utilities. Their arguments
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for this lack of improvement are the technology of water supply, the nature of the product, transaction
costs, and regulatory weaknesses.

Table 1. Most productive authors (with at least 5 publications).

Author Number of Articles

Molinos-Senante M 21
Sala-Garrido R 18

Guerrini A 11
Marques RC 11
Romano G 11
Speelman S 8

Frija A 6
Gonzalez-Gomez F 6

Buysse J 5
Maziotis A 5

Van Huylenbroeck G 5

Table 2. Most cited papers.

Paper Total Citations

Kirkpatrick C. et al. [12] The World Bank Economic Review 97
De Witte K, and Marques R. C. [29] Central European Journal of Operations Research 87

Thanassoulis E. [30] European Journal of Operations Research 78
Aida K., et al. [31] Omega The International Journal of Management Science 74

Thanassoulis E. [32] European Journal of Operations Research 66

Another interesting metric to consider is the classification of countries by numbers of publications
during the study period. Table 3 shows the publication productivity of countries in the research stream.
The total number of articles published ranks the countries. The most productive country is China with
37 publications. There is a significant gap with the next country, which is the USA. Table 3 shows
11 countries, of which two are from Asia, one from North America, two from South America, five
from Europe, and one from Oceania. Table 3 suggests a huge heterogeneity of cases and studies when
researching water utilities performance.

Table 3. Most productive countries.

Country Number of Articles

China 37
USA 20
Chile 17
Italy 16
Spain 14

Belgium 10
India 10

Australia 9
Portugal 8

Brazil 6
Germany 6

Several journals have a great deal of influence in the research stream (Table 4). The top two
research outlets are focused on water issues. The third one necessarily includes water issues as well.
The fourth outlet has a broader aim and covers all issues associated to sustainability; it is good to know
that water utilities performance is being studied from the sustainable perspective.
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Table 4. Most relevant sources.

Source Number of Articles

Water Policy 14
Water Resources Management 14

Utilities Policy 11
Sustainability 8

Journal of Cleaner Production 7
Water 7

Applied Economics 6
Environmental Science and Pollution Research 6

Agricultural Water Management 5
Journal of Productivity Analysis 5

Journal of Water Resources Planning and Management 5
Water Science and Technology: Water Supply 5

The analysis of keywords helps to understand the content of the 198 published articles. Table 5
shows a high focus on efficiency and reveals a higher preference among researchers for DEA over SFA.
It suggests that most studies conducted in the field have been performed in the Chinese water industry.

Table 5. Most relevant keywords.

Author Keywords Frequency

Data Envelopment Analysis 95
Efficiency 32

Water utilities 21
Technical efficiency 17

Stochastic frontier analysis 14
Water use efficiency 14

Benchmarking 13
Performance 13

China 10
Water supply 9

A research article having more than one author is called a co-authored article and the authors are
said to be co-authors of each other. An author collaboration network (Figure 2) is one having authors as
nodes and an edge between two authors if both have co-authored a research article. The co-authorship
network analysis is used to identify strong collaborative ties between researchers. Figure 2 indicates
five clusters with strong collaboration. The strongest cluster is the green one showing the collaboration
between Molinos-Senate, Sala-Garrido, and Maziotis. On other hand, the largest cluster is the orange
one depicting the collaboration between Speelman, Buysse, Chebil, Frija, and Van Huylenbroeck.

Researchers in scientific areas cite each other in their research articles, mainly in the journals
devoted to their respective areas. Such citations form a directed network through which there are
many influential paths. The main paths through such citation networks contain the key intellectual
developments in these scientific fields. Figure 3 depicts these ideas using the citations network defined
when searching the research topics “water”, “data envelopment analysis”, and “stochastic frontier
analysis” in the web of science database. Figure 3 depicts the main path and the relevant publications
that correspond to the influential papers about the aforementioned topics. The most cited papers do
not necessarily define the Main Path [33].

Figure 3 shows 21 influential papers that were identified among 198 articles extracted from the Web
of Science database, through the main path analysis using the key-routes technique. They constitute
the main subjects discussed in the research topics. Figure 3 depicts a clustered network, each node
constitutes one research paper, the size of the node is proportional to the number of citations of the article,
and the edge indicates the relationships among articles. The arrowhead shows the direction of the flow
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within the main path. A unique color identifies each cluster and indicates a major subject in the research
stream. The cluster’s subject was determined by a deep analysis of the articles defining the cluster.Water 2018, 7, x FOR PEER REVIEW  6 of 25 

 

 

Figure 2. Author collaboration network. 

Researchers in scientific areas cite each other in their research articles, mainly in the journals 

devoted to their respective areas. Such citations form a directed network through which there are 

many influential paths. The main paths through such citation networks contain the key intellectual 

developments in these scientific fields. Figure 3 depicts these ideas using the citations network 

defined when searching the research topics “water”, “data envelopment analysis”, and “stochastic 

frontier analysis” in the web of science database. Figure 3 depicts the main path and the relevant 

publications that correspond to the influential papers about the aforementioned topics. The most 

cited papers do not necessarily define the Main Path [33]. 

 

Figure 3. Main path suing the global key route. 

Figure 3 shows 21 influential papers that were identified among 198 articles extracted from the 

Web of Science database, through the main path analysis using the key-routes technique. They 

constitute the main subjects discussed in the research topics. Figure 3 depicts a clustered network, 

each node constitutes one research paper, the size of the node is proportional to the number of 

citations of the article, and the edge indicates the relationships among articles. The arrowhead shows 

the direction of the flow within the main path. A unique color identifies each cluster and indicates a 

Figure 2. Author collaboration network.

Water 2018, 7, x FOR PEER REVIEW  6 of 25 

 

 

Figure 2. Author collaboration network. 

Researchers in scientific areas cite each other in their research articles, mainly in the journals 

devoted to their respective areas. Such citations form a directed network through which there are 

many influential paths. The main paths through such citation networks contain the key intellectual 

developments in these scientific fields. Figure 3 depicts these ideas using the citations network 

defined when searching the research topics “water”, “data envelopment analysis”, and “stochastic 

frontier analysis” in the web of science database. Figure 3 depicts the main path and the relevant 

publications that correspond to the influential papers about the aforementioned topics. The most 

cited papers do not necessarily define the Main Path [33]. 

 

Figure 3. Main path suing the global key route. 

Figure 3 shows 21 influential papers that were identified among 198 articles extracted from the 

Web of Science database, through the main path analysis using the key-routes technique. They 

constitute the main subjects discussed in the research topics. Figure 3 depicts a clustered network, 

each node constitutes one research paper, the size of the node is proportional to the number of 

citations of the article, and the edge indicates the relationships among articles. The arrowhead shows 

the direction of the flow within the main path. A unique color identifies each cluster and indicates a 

Figure 3. Main path suing the global key route.

The main path analysis (Figure 3) shows a total of six clusters. The main path begins at the light
blue cluster with Thanassoulis [32] pointing to Thanassoulis [30]. The light blue cluster derives in the
red cluster, which points to the blue cluster, which supports the green cluster. The green cluster defines
two lines of thoughts that derived in the purple and yellow clusters where the main path ends with
Molinos-Senante and Farías [34] and Hu et al. [35] respectively. There are 198 articles in the Web of
Science discussing water issues using either DEA or SFA as research methods. The main path identifies
the 21 papers that constitute the backbone of the knowledge published in this specific research stream
for a period of about 25 years.
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2.2. Bootstrap DEA

This paper uses double-bootstrap DEA as research method. Sometimes this method is called a
two-stage DEA approach. In general, the first stage corresponds to a bootstrap data envelopment
analysis and the second stage is associated with a bootstrap truncated regression analysis. The purpose
of stage one is to estimate the distribution function of the efficiency scores, while the reason of the
second stage is to identify the environmental or context variables that significantly influence the
efficiency scores. Hence, this approach combines a non-parametric analysis with a parametric method.
This section analyzes the papers that investigate water utilities with a bootstrap DEA approach.

Anwandter and Ozuna [4] used DEA and regression analysis to the case of the Mexican water
utilities; they concluded that privatization and other public sector reforms did not positively impact
efficiency. Recently, Wang et al [23] estimated the water use efficiency in 30 Chinese provinces. They
used sewage as undesirable output and incorporated the analysis of five environmental variables. They
found that export dependence, technological progress, and educational value have positive influence
in water services efficiency. On the other hand, industrial influence and government intervention have
negative impacts and no influence in water services efficiency, respectively. These studies did not
apply to any bootstrap procedure. Table 6 shows the inputs, outputs, and environmental variables
considered in these two papers.

Table 6. Papers using DEA and regression analysis.

Paper Inputs Outputs Environmental Variables

Anwandter and Ozuna [4]

Personnel
Electricity
Materials
Chemical

Outside services
Other costs

Water supply
Primary treatment

Secondary Treatment

State or municipal water utility
Autonomous regulation

Service cut allowed
Water lost/water produced

Population density
Non-residential users

Wang et al. [23]
Labor

Capital
Water

Sewage
Per capita GDP

Technological progress
Government intervention

Education
Industrial structure

Export

Simar and Wilson [36] argue that this two-stage DEA approach is incorrect and leads to an
inappropriate inferential process. They suggest the use of a bootstrap procedure to overcome this
drawback. The initial efficiency scores are not a good estimator of the true efficiency scores’ distribution.
Hence, a bootstrap procedure of the efficiency scores is useful to infer the real distribution of efficiency.
Moreover, the bootstrap DEA provides the unbiased or corrected efficiency scores. Pawsey et al. [37]
used a bootstrap DEA; they used four different models, and all of them had operating cost as a common
input and the number of water connections as a unique output. Historic cost, regulatory asset base,
and physical asset base were the distinct inputs used in models one, two, and three respectively. They
concluded the new public management reforms had a significant impact on 16 Victorian water utilities.

This paper uses the bootstrap approach recommended by Simar and Wilson [36] A total of 16
papers using a similar approach to assess the performance of water utilities were identified. They span
from 2007 to 2018 and are listed with their inputs, outputs, and context variables in Table 7.

The papers listed in Table 7 are all similar in the sense that they use a variant of a bootstrap DEA
approach to study water utilities, but they are different in the scope, objective, and the results of the
study. The difference in the analytical approach begins with the selection of inputs, outputs, and context
variables, and it ends with the particular mathematical procedure to combine DEA, bootstrapping, and
regression analysis.

The scope of studies varies from countries to states. De Witte and Marques [29,38], Halkos and
Tzeremes [1], and Mbuvi et al. [39] address the assessment of water services among countries. Ananda [40],
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Carvalho and Marques [41], Guerrini et al. [42], lo Storto [43], Marques et al. [44], Molinos-Senante
et al. [45], Pinto et al. [46], Pointon and Mathews [21], and Zschille and Walter [47] investigate the
performance of water utilities in a specific country. Finally, Güngör-Demirci et al. [48], Güngör-Demirci
et al. [49], and Renzetti and Dupont [50] focus their studies on the water utilities of one state.

These research articles identified the context variables that have a significant impact on efficiency
scores [40,43,44,47,50]. Carvalho and Marques [41], Pinto et al. [46], and De Witte and Marques [29,38]
found that regulatory and benchmarking incentives significantly impact efficiency. A positive impact
from clean drinking water and adequate sewage disposal was identified by Halkos and Tzeremes [1]
and Zschille and Walter [47]. However, Carvalho and Marques [41] concluded that the water utilities’
performance is lower when drinking water supply and wastewater services are offered. Güngör-Demirci
et al. [48] determined that precipitation had a negative impact on efficiencies; but in a second different
study, Güngör-Demirci et al. [49] concluded a positive and negative impact of precipitation in a financial
and production model respectively. Ananda [40], Güngör-Demirci et al. [49], and Molinos-Senante
et al. [45] highlighted the positive impact of customer density; however, the results of Guerrini et al. [42]
showed the opposite. Mbuvi et al. [39] concluded that the country’s economic development is positively
linked to utilities efficiency. Geographical location was a significant positive factor in the study of Lo
Storto [43]. These results show a broad heterogeneity that is similar to the diversity of the analyzed
cases. De Witte and Marques [15] discuss a special methodology based on metafrontier analysis to
assess the impact of environmental variables.

The extensive diversity of analyzed cases and their results confirm the complexity of defining a
standard set of inputs, outputs, and environmental variables for assessing the efficiency of water utilities.
This study adds to this complexity by characterizing the current situation of water utilities in Mexico.

Table 7. Papers using bootstrap DEA and regression analysis.

Paper Inputs Outputs Environmental Variables

De Witte &
Marques
[29,38]

Number of employees
Length of mains

Volume of water
Number of connections

Leakage
Groundwater extraction

Industry water/household delivery
Gross regional product
Water unique activity

Corporatization
Delivery in one municipality

Regulator
Benchmarking

Renzetti &
Dupont [50]

Materials
Labor

Distribution length
Sum of annual deliveries

Elevation
Population density

Residential water usage/total water
agency output

Surface or groundwater
Private dwellings

Summer temperature
Precipitation

Carvalho &
Marques [41]

Staff cost
Operations and

maintenance expenses
Capital expenses

Volume of water
delivered

Number of customers

Scope (combinations of water &
wastewater)
Ownership
Regulation

% Purchased water
% of surface water provided

% surface water source
Customer density-water

Customer density-wastewater
Peak factor

% Residential customers
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Table 7. Cont.

Paper Inputs Outputs Environmental Variables

Halkos &
Tzeremes [1]

Gross fixed capital
formation (% of GDP)

Labor force
GDP

Pop. with sustainable access to
water

Pop. with sustainable access to
sanitation

Mbuvi et al.
[39]

Employees
Network Length

Population served
Water sold

Total water connections
Daily water supply

Pop. served/Target pop.
Water sold/Target pop

Water connections/Target
pop.

Independent regulation
Performance contract use

GDP
Network density

Zschille &
Walter [47] Revenues

Water meters
Water delivered to

households
Water delivered to

nonhouseholds
Network length

Population
Volume of water intake

Output density
Leak ratio

Groundwater ratio
Elevation difference

Debt per capita
Dummy for east

Dummy for private
Dummy for sewage

Guerrini et al.
[42]

Depreciation + interest
paid

Staff costs
Operating costs
Length of mains

Population served
Total revenues

Degree of investment diversification
Customer density

Size

Lo Storto [43]

Aqueduct network
length

Sewerage network length
Total production cost

Revenue from service
delivered

Number of municipalities
Number of connections

Population
Num. of connections/total network

length
Num. of connections/num. of

municipalities

Ananda [40] Operating expenditure
Length of water mains

Total urban water
supplied

Output quality

% surface water
% recycling water
% groundwater

Total connected properties
Properties served per km of water

main
% residential consumption

Leak
Production density

Marques et al.
[44]

Capital cost
Staff cost

Other operational
expenditures

Volume of water billed
Number of customers

Region
Prefecture

Owner
Water source

Vertical integration
Peak factor

Consumption per capita
Customer density

Water losses
Monthly water charge

Outsourcing
Subsidies

Gross domestic product (GDP)
Time
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Table 7. Cont.

Paper Inputs Outputs Environmental Variables

Pointon &
Mathews [21]

Labor
Capital
Other

Water delivered
Equivalent population

served

Water abstraction from rivers
Total water pop./length of mains

Total sewerage pop./length of
sewers

Leakage
Trade effluent

Pinto et al.
[46]

Mains length
Staff

Other operational costs

Volume of water sold
Number of households

Different types of water sources
Vertical integration of the services

Economies of scope
Corporatization

Private sector participation,
Customer density
Economies of scale

Household disposable income
Desired quality of service.

Güngör-Demirci
et al. [48]

Operating expenses
Energy Operating revenue

Number of connections
Customer density

Groundwater volume/total water
production

Leak
Precipitation

Güngör-Demirci
et al. [49]

Operating expenses
Energy

Financial model:
Operating revenue
Production Model:

Volume of water sold

Number of connections
Customer density

Groundwater volume/total water
production

Nonrevenue water
Precipitation

Molinos-Senante
et al. [45]

Operating costs
Labor

Network length

Water distributed
Customers with

wastewater treatment
service

Indicator of drinking
water quality

Non-revenue water
Peak factor

Customer density
Ownership

Water source

2.3. Mexican Water Utilities

The water operation agencies (Organismos de operacion del agua) are the entities responsible for
water supply and sewerage services in Mexico. These agencies are responsible for efficiently supplying
good-quality potable water and maintaining the sustainability of this vital resource. However, the
actions of these agencies are focused on increasing the water system infrastructure. There is scarce
information about water quality, service quality, and performance indicators [51].

Anwandter and Ozuna [4] studied the case of the Mexican water utilities. Their study was
motivated by the worldwide efforts to decentralize public utilities as an improvement strategy in
developing countries. The water utility sector was not exempted from these public reforms efforts and
they analyzed the reforms’ impact in the context of the Mexican water utilities.

Since its development, a national company operated the water system in Mexico. The first
decentralization attempts initiated in the 1950s with the creation of potable water committees at the
municipal level. It is in the 1980s when control was passed from the federal government to the state
and municipal level.

Anwandter and Ozuna [4] used Mexican utilities data from 1995. Their DEA model considered
the following inputs: number of employees, number of kilowatt-hours consumed, materials cost,
chemical cost, outside service cost, and other costs. Water supply, primary treatment, and secondary
treatment were the corresponding outputs.
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Anwandter and Ozuna [4] found about 50% of water suppliers efficient. In a second step,
Anwandter and Ozuna [4] used two methods to compare the impact of environmental variables (public
sector reforms) in the efficiency scores of the Mexican water utilities. Six environmental variables
composed by three categorical and three continuous variables were used in the second stage. The
three categorical variables correspond to: 1) a variable indicating if the water utility was a state or
municipal entity, 2) a variable signaling if the water utility was or was not an autonomous regulator,
and 3) a variable showing if the ceasing of service was allowed (to minimize the undesirable effect of
late payments). The three continuous variables are: 4) the ratio between water lost and water produced,
5) population density, and 6) percent of non-residential users.

The results of Tobit regression showed that two variables were significant, the ratio of water lost
to water produced which had a negative effect on the efficiency, and the percentage of non-residential
users, which had a positive effect on efficiency. They concluded that public sector reforms did not have
a significant impact on the water utilities efficiencies.

The decentralization of water utilities to the municipal level or toward autonomous water operators
did not have a positive impact on the operational efficiency of Mexican water utilities. The water
sector has a monopolistic nature; the introduction of competition could help to alleviate the operational
asymmetries in the sector and support their performance improvement [4].

This paper contributes in all the subsections of this literature review section. Considering the
bibliometric and main path analysis subsection, this research article supports the increasing nonlinear
trend of water efficiency studies worldwide. It contributes to the large variety of real cases analyzed in
the research literature. It expands the study of the impact of wastewater treatment in the efficiency
of water utilities, as suggested by the arrowhead in the main path (Figure 3). Section 2.2 reviews the
studies using bootstrap DEA as research method. This paper contributes with a different selection and
assessment of inputs, outputs, and context variables. Furthermore, the outputs selected are current
performance measures being tracked and reported by Mexican water utilities. Finally, associated
with the last subsection, this paper updates the study of the efficiency of Mexican water utilities. The
previous study analyzed the impact of public reforms implemented about 20 years ago. After several
years of reform implementation, this paper is aimed at assessing the operational efficiency of these
water utilities and at identifying the significant context variables that influence the aforementioned
operational efficiency.

3. Proposed Methodology

DEA was first introduced by Charnes et al. [52] and has been developed into a widely accepted
academic field. Thirty-some years after the publication of the seminal paper, the use of DEA to analyze
relative efficiency continues and does not show any signs of weakening [53].

A decision-making unit (DMUs) represents the entity under assessment; in this research a DMU
represents a utility that supplies drinking water. Each DMU has an associated set of inputs and
outputs respectively, which represent multiple resources and performance measures. Consider a set
of n DMUs, each DMUj (j = 1, . . . , n) consumes m inputs xij (i = 1, 2, . . . , m) for producing s outputs
yrj (r = 1, 2, . . . , s). The relative efficiency of a particular DMU0 is defined as a ratio of the weighted
sum of outputs to the weighted sum of inputs, and is obtained by solving the following fractional
programming problem:

max
∑s

r=1 uryr0∑m
i=1 vixio

Subject to ∑s
r=1 uryrj∑m
i=1 vixi j

≤ 1, j = 1, 2, . . . . . . , n (1)

ur ≥ 0, r = 1, 2, . . . . . . , s

vi ≥ 0, i = 1, 2, . . . . . . , m
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where ur is the weight given to the rth output and vi is the weight given to the ith input. The fractional
program can be converted into a linear programming problem where w0 is the relative efficiency of
DMU0, the DMU under evaluation.

w0 = max
s∑

r=1

uryr0

Subject to
m∑

i=1

vixio = 1,

s∑
r=1

uryrj −

m∑
i=1

vixi j ≤ 0, j = 1, 2, . . . . . . , n (2)

ur ≥ 0, r = 1, 2, . . . . . . , s

vi ≥ 0, i = 1, 2, . . . . . . , m

In this model, the weighted sum of the inputs for DMU0 is forced to be 1, and DMU0 is efficient if
and only if w0 = 1; a score less than 1 implies that DMU0 is inefficient.

The corresponding dual formulation of model (2) is given by

minθ0

Subject to
n∑

j=1

λ jxi j ≤ θ0xi0, i = 1, 2, . . . .m

n∑
j=1

λ jxrj ≤ yr0, r = 1, 2, . . . .s (3)

λ j ≥ 0, j = 1, 2, . . . .. n

where λj (j = 1, . . . , n) are nonnegative scalars and θ0 is the efficiency of DMU0, the DMU under
assessment. Model (3) is known as the CCR model [52] and is an input oriented model with constant
returns to scale assumption.

n∑
j=1

λ j = 1 (4)

When Equation (4) is added to model (3), the BCC model [54] is defined and it corresponds to an
input oriented model with variable returns to scale assumption.

The solution of model (3) assigns the value of 1 to all efficient DMUs, making it difficult to
differentiate among all efficient DMUs. Several approaches have been proposed for differentiating
DMUs when there are more than one efficient DMU. A common approach is the so called super
efficiency DEA model introduced by Andersen and Petersen [55]. This method enables efficient
DMUs to achieve an efficiency score greater than one, facilitating the assignment of rankings to all
efficient DMUs.

An extension of DEA is the cross efficiency method which was developed for identifying the best
performing DMUs and for ranking DMUs using cross efficiency scores [56,57]. The advantage of the
cross efficiency method is that it alleviates the weak discrimination of the classical DEA model. The
cross efficiency method has two steps. In the first step, the classical efficiency scores are determined
using model (3) with either constant or variable returns to scale assumption. A set of optimal weights
preserving the efficiency values for each DMUp is determined in the second step, and these weights
are used for calculating the peer evaluation score θpj of DMUj (j = 1, . . . , n) using the weights obtained
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for DMUp. Once all peer evaluation cross-efficiency scores have been calculated, each DMUj has n
cross-efficiency scores. The overall cross-efficiency score X-Effj for each specific DMUj is determined
by estimating its corresponding mean of cross-efficiency scores.

The distribution function of the efficiency scores is unknown. Simar and Wilson [36] introduced a
method to bootstrap the DEA scores and estimate the unknown distribution of the efficiency values.
In a second stage, the method evaluates the impact of context variables in the efficiency scores. The
Simar and Wilson [36] estimation method is described as follows:

Step 1. Compute the estimated efficiency score for each DMUj (j = 1, . . . , n) by solving model (3).
The linear program has to be solved n times and at each solution make θj = θ0 to obtain the efficiency
score for each DMUj.

Step 2. Compute a truncated maximum likelihood estimation to regress the efficiency scores
against the context variables, θ j = z jβ+ ε j (j = 1 to n), and provide an estimate β̂ of the coefficient
vector β and estimate σ̂ε of σε, the standard deviation of the residual errors ε j.

Step 3. For each DMUj (j = 1, . . . , n) replicate the following steps (3.1 to 3.4) a total of B1 times.
This process will generate B1 bootstrap estimates σ̂ jb of σ j (j = 1 to n, b = 1, . . . , B1).

Step 3.1 Generate the residual error ε j from the normal distribution N
(
0, σ̂2

ε

)
.

Step 3.2 Estimate the regression θ∗j = z jβ̂+ ε j (j = 1 to n).

Step 3.3 Produce a pseudo data set of inputs and outputs as follows: x∗j = x j

(
θ j
θ∗j

)
and y∗j = y j (j = 1

to n).
Step 3.4 Use the pseudo data set (x∗j, y∗j) to estimate the pseudo efficiency score θ̂∗j by solving

model (3).
Step 4. Estimate the bias corrected efficiency θ̂ j for each DMUj (j = 1, . . . , n) using the bootstrap

estimator or the bias b̂ j where

θ̂ j = θ j − b̂ j and b̂ j =

(
1

B1

∑B1

b=1
θ̂∗jb

)
− θ j.

Step 5. Compute a truncated maximum likelihood estimation to regress the bias corrected
efficiency scores against the context variables, θ̂ j = z jβ+ ε j(j = 1 to n), and provide an estimate β̂∗ of
the coefficient vector β and estimate σ̂∗ε of σε, the standard deviation of the residual errors ε j.

Step 6. Replicate the following steps (6.1 to 6.3) a total of B2 times. This process will generate B2

pairs of bootstrap estimates
(
β̂∗∗j , σ̂∗∗ε j

)
(b = 1, . . . , B2).

Step 6.1 Generate the residual error ε j from the normal distribution N
(
0, σ̂∗ε2

)
.

Step 6.2 Estimate the regression θ̂∗∗j = z jβ̂
∗ + ε j (j = 1 to n).

Step 6.3 Compute a truncated maximum likelihood estimation to regress θ̂∗∗j against the context

variables and provide an estimate β̂∗∗ of the coefficient vector β and an estimate σ̂∗∗ε of σε, the standard
deviation of the residual errors ε j.

Step 7. Construct the (1 − α)% confidence interval for vector β.
Therefore, in this study a double-bootstrap DEA approach is utilized to estimate the efficiency

of the Mexican water utilities and to assess the impact of five context variables in their performance.
A total of B1 = 2000 and B2 = 4000 bootstrap replications were calculated at the first (steps 1–4) and
second stage (steps 5–7) of the double-bootstrap DEA approach, respectively.

4. Case Study

Several studies in developing countries have pointed out that scarcity and availability of data is
a major issue [19,21,22]. Furthermore, inaccurate data make the process even harder [18]. Mexico is
not the exception of this trend. This study is based on the available data of water utilities in Mexico.
The data were obtained from the Measuring Program for Management of Operating Organizations
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(Programa de Indicadores de Gestion de Organismos Operadores) which is part of the Mexican Institute
of Water Technology (Instituto Mexicano de Tecnologia del Agua) and correspond to year 2016. This
research analyzes 36 (n = 36) major organizations responsible for supplying potable water across
the country of Mexico. These water suppliers operate in 21 out of 32 federal states and 12 out of 13
hydrological-administrative regions. Three inputs, three outputs, and five context variables were
gathered for each DMU. This configuration satisfies the rule of thumb that n ≥ max(m× n, (m + n) × 3).

The sets of inputs, outputs, and context variables are part of the public performance report of
the Mexican water utilities. Some of these performance indicators are ratios and their consideration
in our research is unavoidable. Firstly, the scarcity of data impedes the transformation of ratios into
absolute measures. Secondly, the unbalanced and uneven characteristics of drinking water distribution
in Mexico suggest the use of ratio data. For example, if water distribution is intermittent and variable,
then the volume of distributed water is a biased measure of consumption of this resource. While on the
contrary, the ratio liters/per capita/day provides a better estimation of the volume of water delivered to
consumers. Issues associated with ratio data and DEA are discussed by Hollingsworth and Smith [58],
Emrouznejad and Amin [59], and Hatami-Marbinia and Toloob [60]. For examples of research articles
addressing water utilities efficiency using ratio data, the reader is referred to [12,39,61,62].

4.1. Inputs

The first input is the volume of water fed in the water distribution system. It is listed as water
distribution and it is distinct from water consumption. The difference between volume of water
consumption and water distribution is explained by leakage and unused water. Water distribution is
measured in liters per consumer per day and it is aligned with the studies of Renzetti and Dupont [50],
Carvalho and Marques [41], Mbuvi et al. [39], Zschille and Walter [47], Ananda [40], Pointon and
Mathews [21], and Molinos-Senante et al. [45]. The number of employees per thousand consumers
is the second input. It is, perhaps, the most commonly used input when studying the efficiency of
water utilities. The number of employees was considered by De Witte and Marques [15,29], Renzetti
and Dupont [50], Carvalho and Marques [41], Mbuvi et al. [39], Guerrini et al. [42], and Pointon and
Mathews [21]. Zschille and Walter [47] used total revenue as a proxy for total costs. They argued that
revenue covers all operational costs. This is true for the Mexican water utilities, which depend on
revenue and monetary subsidies from the government for covering operational expenses. We use
accounts with on-time payment as proxy for revenue. Furthermore, this approach could be used
for reviewing “whether tariffs for water deliveries are reasonable, and if not, by how much they can
be reduced.” Zschille and Walter [47], p. 3757. Hence, accounts with on-time payment is the third
input and is a proxy of the ratio water-sold/target-population reported by Mbuvi et al. [39]. Since
account with on-time payment is the source of income, it is a proxy for revenues [42,43,47–49] and
capital [21,23,24,38].

4.2. Outputs

The outputs correspond to real performance measures reported by the water utilities in Mexico.
They are financial-operational ratios and they have to be adequately considered when used in DEA
formulations [63]. The first output is the ratio of water production cost to water volume produced.
This performance measure should be minimized. Efficient DMUs should have a lower ratio than
inefficient DMUs. Hence, this ratio is normalized accordingly. This performance measure falls into line
with the inputs and outputs reported by De Witte and Marques [29,38], Carvalho and Marques [41],
Mbuvi et al. [39], Guerrini et al. [42], Ananda [40], Güngör-Demirci et al. [48,49], and Molinos-Senante
et al. [45]. The ratio of volume of water paid to volume of water produced is the second output. Efficient
DMUs should have a higher ratio than inefficient DMUs. This performance measure is aligned with
the inputs and outputs proposed by De Witte and Marques [29,38], Carvalho and Marques [41], Mbuvi
et al. [39], Zschille and Walter [47], and Güngör-Demirci et al. [49]. The financial ratio of total expenses
to total income is the third output. The direction of this output is the same as the first output. Efficient
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DMUs should have a lower ratio than inefficient DMUs. Hence, it is normalized accordingly as well.
Carvalho and Marques [41], Zschille and Walter [47], Guerrini et al. [42], Güngör-Demirci et al. [48],
and Güngör-Demirci et al. [49] used inputs and outputs in concordance with this performance measure.

4.3. Context Variables

The context variables are exogenous factors that affect the efficiency of DMUs. Tables 6 and 7 show
a great variety of variables tested in different cases of water utilities. The results are not conclusive.
A variable that could inhibit efficiency in a specific case could enable efficiency in a different environment.
The reason is the broad heterogeneity of water utilities’ characteristics; they have different internal and
external features that define specific behaviors. Hence, the case of Mexican water utilities is a particular
one. In the past years, several water utilities have migrated from a system of a fixed fee for residential
customers to a system of metering consumer’s consumption. It is expected that metering, at both the
macro and micro level, will enable better control of the system and will support better performance.
Still, not all Mexican water utilities perform either macro-metering or micro-metering. Hence, water
macro-metering and water micro-metering were considered as context variables to study their impact
on the efficiency of Mexican water utilities. Water macro-metering and water micro-metering are two
different categorical variables. Each categorical variable has a value of 1 if it has been implemented by
the water utility, otherwise it is 0. Zschille and Walter [47] considered water meters in their study.

Several authors identified a significant relationship between efficiency of water utilities and
wastewater treatment [29,38,40,41,45]. This synergy suggests the presence of economies of scope [38,42]
when a water utility simultaneously distributes drinking water and treats wastewater. Therefore,
wastewater treatment is incorporated in this study as a categorical variable; its value is 1 if the water
utility performs wastewater treatment, its value is 0 otherwise.

Leakage has an inherent presence in water distribution systems. It is due to multiple factors and
consumes a large amount of water companies’ resources. De Witte and Marques [29,38], Carvalho
and Marques [41], Mbuvi et al. [39], Zschille and Walter [47], Ananda [40], and Güngör-Demirci
et al. [48,49] have analyzed its impact on efficiency. This study considers volume of water lost per
connection as a continuous context variable. Efficient DMUs should have a lower volume of water
lost per connection than inefficient DMUs. Hence, this context variable is normalized accordingly; its
inverse value corresponds to the number of connections that account for the loss of one cubic meter
of water. Therefore, higher values of this normalized continuous context variable should support
higher efficiencies.

The last context variable is sewer coverage. Zschille and Walter [47] used sewage services as a
categorical variable. In this case, sewer coverage is a continuous variable that suggests that companies
providing both potable water and sewage services are more efficient than utilities providing just one
service, an effect of economies of scope [38]. This idea is aligned with the studies of De Witte and
Marques [29,38], Carvalho and Marques [41], Halkos and Tzeremes [1], Lo Storto [43], Pointon and
Mathews [21], and Molinos-Senante et al., [45].

4.4. Results and Discussion

Table 8 presents the summary of attributes for year 2016. Wastewater treatment is the only variable
that presents a standard deviation value that is close to the numerical quantity of the mean, indicating
a high variability of wastewater treatment among the water utilities.

DEA can be performed using either a CRS [52] or a VRS [54] assumption. The VRS efficiency score
measures pure technical efficiency, whereas the CRS efficiency score is composed of a combination of
scale and technical efficiencies; the former is due to the conditions under which the DMU is operating
and the latter is due to the operation of the DMU itself. The ratio of CRS to VRS determines the
scale efficiency.
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Table 8. Summary of Attributes.

Attribute Units Min Mean Max Std. Dev.

Inputs

Water distribution liters/per capita/day 149.42 249.99 400.18 63.92
Number of employees per thousand

consumers
number of
employees 2.13 5.02 14.58 2.39

Accounts with on-time payment % 3.64 62.09 94.00 21.46

Outputs

Ratio production cost/volume produced $/M3 3.56 7.57 14.45 2.67
Ratio water volume paid/water volume

produced % 7.63 45.33 79.00 16.02

Ratio Total expenses/Total income % 70.75 95.64 183.62 20.41

Context Factor

Water macro-metering Dummy binary
variable 0.00 0.81 1.00 0.40

Water micro-metering Dummy binary
variable 0.00 0.81 1.00 0.40

Wastewater treatment Dummy binary
variable 0.00 0.50 1.00 0.51

Volume of water lost per connection M3/connection 40.27 126.86 302.83 64.38
Sewer coverage % 59.00 91.91 100.00 9.25

Table 9 shows the efficiency scores. The second column corresponds to the initial estimation of
the DEA-CRS efficiency scores. The third column shows the bootstrap CRS efficiency scores which are
the corrected CRS efficiency scores. The range of the bootstrap CRS efficiency scores is [0.4226,0.8967]
with a mean of 0.7249. Thus, the water utilities would need an average reduction of 27.51% in inputs
to achieve the efficiency level of their most efficient water company. The fourth and fifth column show
the initial and bootstrap corrected VRS efficiency scores respectively. The range of the bootstrap VRS
efficiency scores is [0.5443,0.9674] with mean of 0.8132. Hence, water suppliers would need an average
reduction of 18.68% in inputs to achieve the efficiency level of their most efficient water utility. This
DEA-VRS result is based on pure technical efficiency which is translated into management skills [64].
The improvement opportunities suggested by these approaches could be explained as follows. In the
case of the first input, water distribution, the result suggests that a big percentage of water is lost
through the water distribution systems. This is an inherent characteristic of water distribution systems
in Mexico and needs to be appropriately addressed in order to increase efficiency. A decrease in the loss
of water across the distribution network will decrease the need for water production while keeping the
same rate of water consumption. The number of employees per thousand consumers (second input) is
translated into labor sub-utilization. The expected result is a significant increase in outputs associated
with an increase in labor productivity. The third input corresponds to the percentage of accounts with
on-time payment; it is similar to the second input. A significant increase in output is expected when
improving the payment system, which translates to a higher rate of accounts with on-time payment.
Furthermore, the average corrected scale efficiency score of 0.8870 score suggests that an increase in
the scale of operations will benefit most of the water utilities.

Table 10 shows the confidence intervals of the bootstrap efficiency scores with α = 0.05. The water
utilities with the higher CRS and VRS efficiency scores are CAASIM and CESPT respectively. They
constitute the most attractive water utilities for benchmarking purposes. A t-test is used to test the
difference between the bootstrap VRS and bootstrap scale efficiencies; a p-value < 0.01 suggests that
both technical and scale factors should be considered to attain efficiency.
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Table 9. Efficiency and Bootstrap Efficiency Scores.

CRS Eff Score Bootstrap CRS Eff Score VRS Eff Score Bootstrap VRS Eff Score
Scale Eff Score Bootstrap Scale Eff Score

DMU θ j θ̂ jb θ j θ̂ jb

COMAPA-G 0.7770 0.7083 0.8536 0.8183 0.9103 0.8656
SAPAS-LP 1.0000 0.8619 1.0000 0.9065 1.0000 0.9508
SIMAS-PN 0.7941 0.7179 0.9659 0.9161 0.8221 0.7836

CESPM 1.0000 0.8707 1.0000 0.9219 1.0000 0.9444
DAPA 0.6895 0.6338 0.6959 0.6589 0.9909 0.9618
JAPAC 0.7138 0.6467 0.8266 0.7965 0.8636 0.8119

JUMAPA 0.8394 0.7430 0.8623 0.8093 0.9734 0.9182
OOMAPAS 0.5362 0.4854 0.5829 0.5443 0.9199 0.8918
SIMAPAG 1.0000 0.8548 1.0000 0.9091 1.0000 0.9403
SOAPAMA 0.7034 0.6464 0.7446 0.6964 0.9446 0.9282

AGUAH 0.9181 0.8089 1.0000 0.8344 0.9181 0.9695
AMD 1.0000 0.8238 1.0000 0.8301 1.0000 0.9923

CAASIM 1.0000 0.8967 1.0000 0.9142 1.0000 0.9809
CAAMTROH 0.8721 0.7779 1.0000 0.9371 0.8721 0.8301

CAEV 0.5743 0.5191 0.6757 0.6458 0.8500 0.8038
CMAPS 1.0000 0.8104 1.0000 0.8417 1.0000 0.9628
CESPT 1.0000 0.8933 1.0000 0.9674 1.0000 0.9235

COMAPA-R 0.7840 0.7046 0.8321 0.7788 0.9423 0.9048
COMAPA-EM 0.7556 0.6547 0.8092 0.7512 0.9338 0.8715

CMAS 0.4733 0.4226 0.5766 0.5447 0.8209 0.7759
DAPASCH 1.0000 0.8875 1.0000 0.9319 1.0000 0.9524

JAPAM 1.0000 0.8341 1.0000 0.9148 1.0000 0.9117
JIAPAZ 0.6424 0.5895 0.8202 0.7839 0.7832 0.7521
SADM 0.8720 0.7872 0.9902 0.9140 0.8806 0.8613

SAPASNIR 1.0000 0.8139 1.0000 0.9276 1.0000 0.8775
SAPACG 0.8550 0.7441 0.9500 0.8540 0.9000 0.8713
SAPAS 0.9181 0.8290 1.0000 0.8922 0.9181 0.9291

SACMEX 0.4821 0.4256 0.6197 0.5850 0.7779 0.7276
SIAPASF 0.9633 0.8716 0.9809 0.9239 0.9820 0.9433
SMAPA 0.5033 0.4492 0.5796 0.5475 0.8683 0.8204

SIMAPARG 1.0000 0.8818 1.0000 0.9432 1.0000 0.9349
SIMAPACO 1.0000 0.8276 1.0000 0.9211 1.0000 0.8985
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Table 9. Cont.

CRS Eff Score Bootstrap CRS Eff Score VRS Eff Score Bootstrap VRS Eff Score
Scale Eff Score Bootstrap Scale Eff Score

DMU θ j θ̂ jb θ j θ̂ jb

SIMAS-A 0.6814 0.6088 0.6851 0.6394 0.9947 0.9521
SOSAPAMIM 0.5537 0.4987 0.6737 0.6424 0.8219 0.7763

SOAPAP 1.0000 0.8461 1.0000 0.9208 1.0000 0.9188
SOSAPAZ 0.8066 0.7222 0.9637 0.9103 0.8370 0.7934

Min 0.4733 0.4226 0.5766 0.5443 0.7779 0.7276
Mean 0.8252 0.7249 0.8802 0.8132 0.9313 0.8870
Max 1.0000 0.8967 1.0000 0.9674 1.0000 0.9923

Std. dev. 0.1784 0.1455 0.1512 0.1317 0.0731 0.0717

Table 10. Bootstrap efficiency scores and their confidence intervals.

CRS Eff
Score

Bootstrap CRS
Eff Score

Lower
Bound

Upper
Bound

VRS Eff
Score

Bootstrap VRS
Eff Score

Lower
Bound

Upper
Bound

DMU θ j θ̂ jb θ̂ jb θ̂ jb θ j θ̂ jb θ̂ jb θ̂ jb

COMAPA-G 0.7770 0.7083 0.6541 0.7861 0.8536 0.8183 0.7877 0.8630
SAPAS-LP 1.0000 0.8619 0.7620 0.9933 1.0000 0.9065 0.8316 1.0906
SIMAS-PN 0.7941 0.7179 0.6580 0.7969 0.9659 0.9161 0.8725 0.9949

CESPM 1.0000 0.8707 0.7743 1.0554 1.0000 0.9219 0.8576 1.0940
DAPA 0.6895 0.6338 0.5952 0.6768 0.6959 0.6589 0.6287 0.7008
JAPAC 0.7138 0.6467 0.5991 0.7291 0.8266 0.7965 0.7748 0.8395

JUMAPA 0.8394 0.7430 0.6772 0.8171 0.8623 0.8093 0.7669 0.8742
OOMAPAS 0.5362 0.4854 0.4490 0.5223 0.5829 0.5443 0.5201 0.5740
SIMAPAG 1.0000 0.8548 0.7513 0.9830 1.0000 0.9091 0.8362 1.0784
SOAPAMA 0.7034 0.6464 0.6031 0.6926 0.7446 0.6964 0.6582 0.7522

AGUAH 0.9181 0.8089 0.7318 0.9301 1.0000 0.8344 0.7210 1.0080
AMD 1.0000 0.8238 0.7300 0.9085 1.0000 0.8301 0.7237 0.8996

CAASIM 1.0000 0.8967 0.8206 0.9787 1.0000 0.9142 0.8459 0.9886
CAAMTROH 0.8721 0.7779 0.7137 0.8532 1.0000 0.9371 0.9108 0.9742

CAEV 0.5743 0.5191 0.4860 0.5563 0.6757 0.6458 0.6294 0.6698
CMAPS 1.0000 0.8104 0.7153 0.9049 1.0000 0.8417 0.7671 0.8967
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Table 10. Cont.

CRS Eff
Score

Bootstrap CRS
Eff Score

Lower
Bound

Upper
Bound

VRS Eff
Score

Bootstrap VRS
Eff Score

Lower
Bound

Upper
Bound

DMU θ j θ̂ jb θ̂ jb θ̂ jb θ j θ̂ jb θ̂ jb θ̂ jb

CESPT 1.0000 0.8933 0.8102 1.0809 1.0000 0.9674 0.9377 1.0557
COMAPA-R 0.7840 0.7046 0.6471 0.7677 0.8321 0.7788 0.7376 0.8450

COMAPA-EM 0.7556 0.6547 0.5940 0.7283 0.8092 0.7512 0.7094 0.8035
CMAS 0.4733 0.4226 0.3879 0.4600 0.5766 0.5447 0.5229 0.5735

DAPASCH 1.0000 0.8875 0.8021 0.9971 1.0000 0.9319 0.8740 1.0803
JAPAM 1.0000 0.8341 0.7206 1.0631 1.0000 0.9148 0.8458 1.0969
JIAPAZ 0.6424 0.5895 0.5573 0.6278 0.8202 0.7839 0.7567 0.8134
SADM 0.8720 0.7872 0.7304 0.8779 0.9902 0.9140 0.8530 1.0137

SAPASNIR 1.0000 0.8139 0.6924 1.0091 1.0000 0.9276 0.8670 1.0857
SAPACG 0.8550 0.7441 0.6684 0.8352 0.9500 0.8540 0.7821 0.9303
SAPAS 0.9181 0.8290 0.7625 0.9187 1.0000 0.8922 0.8084 1.0818

SACMEX 0.4821 0.4256 0.3925 0.4623 0.6197 0.5850 0.5643 0.6128
SIAPASF 0.9633 0.8716 0.8064 0.9535 0.9809 0.9239 0.8806 1.0224
SMAPA 0.5033 0.4492 0.4184 0.4832 0.5796 0.5475 0.5326 0.5672

SIMAPARG 1.0000 0.8818 0.7940 0.9791 1.0000 0.9432 0.8941 1.0819
SIMAPACO 1.0000 0.8276 0.7120 1.0434 1.0000 0.9211 0.8558 1.0883

SIMAS-A 0.6814 0.6088 0.5623 0.6601 0.6851 0.6394 0.6098 0.6938
SOSAPAMIM 0.5537 0.4987 0.4615 0.5370 0.6737 0.6424 0.6229 0.6684

SOAPAP 1.0000 0.8461 0.7390 1.0099 1.0000 0.9208 0.8554 1.0917
SOSAPAZ 0.8066 0.7222 0.6622 0.7887 0.9637 0.9103 0.8669 0.9702

Min 0.4733 0.4226 0.3879 0.4600 0.5766 0.5443 0.5201 0.5672
Mean 0.8252 0.7249 0.6567 0.8185 0.8802 0.8132 0.7641 0.9021
Max 1.0000 0.8967 0.8206 1.0809 1.0000 0.9674 0.9377 1.0969

Std. dev. 0.1784 0.1455 0.1241 0.1877 0.1512 0.1317 0.1191 0.1760
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Table 11 shows the results of the bootstrap truncated regression. The CRS bootstrap efficiency was
the dependent variable and the five context variables, described in Section 4.3, were the independent
variables. The first two variables, water macro-metering and water micro-metering, have a negative
coefficient and do not have a significant influence in efficiency scores. The last three variables have a
positive estimate and only one showed to have a significant p-value. The number of connections per
M3 of water lost has a positive and significant impact on the efficiency scores of the Mexican water
utilities. The first positive estimate is wastewater treatment. It is a categorical variable and the result
means that water utilities that perform wastewater treatment do not attain higher efficiency scores
than utilities that do not perform wastewater treatment. The remaining two positive estimates are
continuous variables. The first one is the inverse of volume of water lost per connection and is relabeled
as number of connections that account for a cubic meter of water lost. The estimate is positive and
significant, which means that the efficiency scores increase as the number of connections increases; it is
equivalent to an efficiency increase when the volume of water lost decreases. The last positive estimate
is sewer coverage and it does not have any significant impact in efficiency. This result suggests that, in
the case of the Mexican water utilities, there is not any significant relationship between sewer coverage
and efficiency.

Table 11. Results of bootstrap truncated regression.

Context Factor Estimate Std. Error t-ratio

Water macro-measuring −0.23132 0.30854 −0.74973
Water micro-measuring −0.10930 0.31267 −0.34956
Wastewater treatment 0.31406 0.26304 1.19398

Number of connections per M3 of water lost 0.69709 0.31215 2.23321*
Sewer coverage 0.01491 0.01023 1.45680

Note: n = 36 * Significant at 5%

These results suggest important managerial recommendations for the Mexican water utilities.
Firstly, it is highly desirable to have utilities with efficient potable water distribution and efficient
wastewater treatment. Figure 3, the main path analysis, identifies wastewater treatment as the
arrowhead in the study of water utilities’ efficiencies. Hu et al. [35] and Zhou et al. [24] highlight
the positive impact of wastewater treatment in the efficiency scores of water utilities. Table 8 shows
a mean of 0.5 for the context variable wastewater treatment. This result suggests that about 50% of
the Mexican water utilities do not perform wastewater treatment and that, according to the results,
it is not a significant factor of efficiency. Therefore, wastewater treatment constitutes an improvement
opportunity, it is expected that wastewater treatment could become a factor of efficiency as suggested
by the main path analysis (Figure 3). Secondly, leakage in the water system remains as a significant
exogenous variable when assessing efficiencies. Mexican water utilities should continue to decrease the
volume of water lost per connection. Table 8 shows a high variability of this variable. It is an endless
continuous improvement journey that should be part of the daily operational agenda of the water
utilities. This result matches the findings of De Witte and Marques [29,38], Ananda [40], Pointon and
Matthews [21], and Güngör-Demirci et al. [49]. Thirdly, sewer coverage is not a significant variable that
supports efficient performance of the Mexican water utilities. Table 8 reports a mean of 91.91% of sewer
coverage, which indicates that most of the water utilities are close to the desirable percentage [21].
However, the minimum is 59%, pointing out an opportunity for some water utilities. Therefore, it is
expected that an increase in sewer coverage could have a significant impact in the efficiency of the
Mexican water utilities, as reported in other analyzed cases [21].

The results of macro-metering and micro-metering are interesting. Metering is important to
maintain control at the different stages of the potable water supply chain. About 80% of the Mexican
water utilities carry on at least one type of metering, but only 61% perform both macro-metering
and micro-metering. The percentage of macro-metering and micro-metering are the same, but their



Water 2020, 12, 553 21 of 24

allocations are different. Some Mexican water utilities conduct just one of them. It could be expected
that better distribution control via metering could help to improve efficiency. However, the results did
not support this hypothesis. At the end, differences detected by water metering through the distribution
network can only be explained by leakage. As discussed above, leakage has a negative impact on the
efficiency of the Mexican water utilities and on others cases as well [21,29,38,40,48]. Minimizing the
undesirable impact of leakage could enable an opportunity for better control of water distribution and
support the uses of macro-metering and micro-metering across the water supply network.

5. Conclusions

This article studied the operational efficiency of Mexican water utilities and the context variables
that impact their efficiency. A double-bootstrap DEA method was used. In the first stage, CRS, VRS,
and scale efficiencies were computed. Then, a bootstrap approach was used to estimate the true
distribution function of the CRS and VRS efficiencies. The corrected scale efficiency was estimated
with the corrected CRS and VRS efficiency scores. In the second stage, the corrected CRS efficiency
was used as the dependent variable in a truncated regression model. Five context variables were
added as independent variables in the regression model: water macro-metering, water micro-metering,
wastewater treatment, number of connections per unit of volume of water lost, and sewer coverage.
The first three are categorical variables and the last two are continuous variables.

The results showed that only the number of connections per unit of volume of water lost had a
positive significant impact on the operational efficiency of the Mexican water utilities. On the contrary,
macro-metering, micro-metering, wastewater treatment, and sewer coverage did not have a significant
influence on efficiency. These results have managerial implications for these water utilities. Most of the
water utilities in Mexico supply potable water and provide sewerage service, but only about 50% of them
perform some type of wastewater treatment. Hence, the first important managerial recommendation is
to implement wastewater treatment. A significant exogenous variable with undesirable influence in
efficiency is leakage. Therefore, water utilities should continue efforts to minimize and control leakage
across the distribution network. Lastly, Mexican water utilities should continue the expansion of sewer
coverage since it showed a positive estimate on the operational efficiency.

It is hoped that this study will motivate future research on the Mexican water utilities and further
investigation on the influence of other context variables in their operational efficiency. Moreover, as
highlighted in the main path analysis, future research is needed to understand the relationship between
operational water efficiency and wastewater treatment. Other methods for operational efficiency
estimation constitute attractive future research streams as well.
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