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Abstract: The phytoremediation potential of macrophytic species has made them an inevitable
component of constructed wetlands (CWs) for the treatment of industrial effluents. The macrophytes
must have tolerance for the harsh conditions imposed by effluents for an effective establishment
of the CW system. In this context, the basic purpose of this work was to investigate the efficacy of
five indigenous emergent macrophytes (Brachiaria mutica, Canna indica, Cyperus laevigatus, Leptochloa
fusca, and Typha domingensis) for the remediation of tannery effluent in vertical subsurface flow CWs.
The ability of each macrophytic species to tolerate pollution load and to remove pollutants from the
effluent was assessed. The effect of tannery effluent on the survival and growth of macrophytes was
also studied. The treated tannery effluent samples were analyzed for electrical conductivity (EC),
pH, biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total dissolved solids
(TDS), total suspended solids (TSS), chlorides (Cl−), sulphates (SO4

2−), oil and grease, and Cr levels.
All of the studied macrophytes significantly decreased the pollution load of tannery effluent, and the
higher nutrient content of effluent stimulated their growth without any signs of negative health
effects. Leptochloa fusca and T. domingensis performed better in removing pollutants and showed
higher growth rates and biomass than other tested macrophytes and can be considered preferred
species for use in CWs treating tannery effluent. Brachiaria mutica showed morphologically better
results than C. indica and C. laevigatus.

Keywords: tannery effluent; wastewater treatment; phytotechnology; wetland plants; tanning
industry; constructed wetlands
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1. Introduction

Tanning is a pollution intensive industry, discharging effluent of complex composition to
the environment that is difficult to depurate by conventional methods [1]. Use of constructed
wetlands (CWs) as biogeochemical engineered systems for sustainable remediation of tannery
effluent is a promising solution that integrates several components such as macrophytes, filter media,
and microorganisms to accelerate the removal of pollutants [2–4]. Low operation and maintenance
costs and environmental and socio-economic sustainability have supported the wide use of CWs
for the treatment of a variety of wastewaters in comparison to conventional wastewater treatment
technologies [5–8]. In the current scenario of limited resources, CWs can also fulfill the increasing
demand of water and energy sources for the agricultural and industrial sectors [9].

Macrophytes are vital for the structural and functional integrity of CWs, and they play a crucial
role in pollution reduction. They perform many functions: provide stability, facilitate filtration,
prevent clogging, promote microbial growth, transport oxygen to the root zone, take up nutrients,
and accelerate removal of pollutants in CWs [10–14].

The type of macrophytes used in treatment wetlands may influence the microbial population
present [15–17], but the composition of the water to be treated may influence both plant growth and
microbial composition. Therefore, macrophytes are a crucial factor in CWs design, because the response
of macrophytes to effluent with the same composition varies from species to species [7,18].

The general requirements for the macrophytes to be used in CWs for particular wastewater
treatment include ecological acceptability, tolerance of pollutants, tolerance to local climatic conditions,
rapid establishment, propagation, growth, and high pollutant removal efficiency [19–21]. Specific
requirements vary depending on the role of macrophytes in CWs, such as design of wetland employed,
mode of operation, flow pattern, loading rate, and nature of wastewater [22,23]. Furthermore,
for efficient treatment of tannery effluents through CWs, selection of specific macrophytic species in
relation to their removal mechanism is essential to achieve maximum pollutant removal in a minimum
time period, under particular conditions [12,24,25].

Previously, a large number of macrophytes, such as Brachiaria decumbens, C. indica, Iris pseudacorus,
Penisetum purpureum [26], Juncus effusus [27], Scirpus americanus, Typha latifolia [28], Cyperus kylinga,
Cyperus rotundus, Ludwigia parvifloria, Marselia quadrifolia [29], Cyperus esculentus, Typha angustifolia,
Vetiveria nemoralis, Vetiveria zizanioides [30], Leersia hexandra [31], Borassus aethiopum, Cyperus alternifolius,
Parawaldeckia karaka, T. domingensis [32], B. mutica, L. fusca, and T. domingensis [33] have been used in
CWs to treat tannery effluent.

In this regard, the most commonly used macrophyte was Phragmites australis for tannery wastewater
treatment [34–38]. Calheiros et al. [39,40] have extensively studied various aspects of tannery
effluent treatment through CWs by using Arundo donax, C. indica, P. australis, Sarcocornia fruticosa,
and Stenotaphrum secundatum.

Klomjek and Nitisoravut [18] have tested eight emergent plant species (Echinodorus cordifolius,
Digitaria bicornis, Cyperus corymbosus, V. zizanioides, Spartina patens, B. mutica, L. fusca, and T. angustifolia)
in CW systems for their tolerance to salinity stress by spiking municipal wastewater with common
salt. They found that E. cordifolius and V. zizanioides were not tolerant to the imposed saline conditions
(14–16 mS/cm), and B. mutica died after the completion of the experiment. Therefore, use of appropriate
macrophytes can accelerate removal of pollutants in CW systems over time [41].

In the present study, five indigenous macrophytes, viz., B. mutica, C. indica, C. laevigatus, L. fusca
and T. domingensis, well acclimatized to the local climatic conditions, were investigated for their ability
to remove pollutants, particularly Cr, from tannery effluent in CWs. Here, use of B. mutica, C. laevigatus,
and L. fusca are new additions.

The lack of detailed research and information concerning the tolerance, growth characteristics,
and treatment performance of macrophytes in CWs facing complex industrial effluents, such as
hypersaline effluents from tanneries, is an important issue that begs for more investigation; the present
study was conducted to deepen this knowledge. Its aims were (1) to evaluate the efficacy of the
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indigenous macrophytes to treat tannery effluent, and (2) to assess the effects of tannery effluent on the
survival and growth of these macrophytes vegetated in CW systems.

2. Materials and Methods

2.1. Design Configuration of CWs

A total of 15 similar vertical flow CW treatment systems were prepared on a small scale (51 cm
× 28 cm × 30 cm) by planting five plant species in triplicate with a total water storage capacity of
each system of 20 L. Approximately 2.5 cm layers each of coconut shavings, gravel, sand, and soil
(from bottom to top in the same order) in a netted basket (51 cm × 28 cm × 13 cm) were placed over a
plastic container fed with tap water (Figure 1a). Leptochloa fusca and B. mutica were grown vegetatively
by inserting stem cuttings in phytoreactors, while to grow C. indica, C. laevigatus, and T. domingensis,
their rhizomes were planted and allowed to establish for 45 days in tap water.
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perforated steel pipe through the wetland surface. 
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the containers was replaced by tap water on a daily basis. 

Figure 1. (a) Schematic diagram of a vertical flow constructed wetland phytoreactor. Photographic
image of constructed wetland phytoreactor planted with Typha domingensis (A), configuration of
constructed wetland showing vertical flow of water through filtration bed by electrical pump (B),
and filtration media/substrate comprising soil, sand, gravel, and coconut shavings (C); (b) Vertical flow
constructed wetland phytoreactors vegetated with Leptochloa fusca (A) and Typha domingensis (B) at
different growth stages showing installation of an electric water pump for circulation of water by a
perforated steel pipe through the wetland surface.

Continuous circulation of tap water, and later on of effluent through wetland surface, was ensured
using a perforated steel pipe attached to electrical pumps (Figure 1b). Average hydraulic loading rate
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(HLR) was set to 300 mL/min. After the plants were fully established (45 days), these phytoreactors were
filled with 25% tannery effluent, followed by 50%, 75%, and 100% depending on their survival at each
concentration at a seven-day interval. Average hydraulic retention time (HRT) of each phytoreactor at
different concentration levels was approximately seven days. Tannery effluent samples were collected
from each phytoreactor every week till there was no further reduction in pollutant level, and finally
the pollutant removal capacity of each plant species was evaluated.

2.2. Collection and Characterization of Tannery Effluent

Tannery effluent samples were collected at the inlet of the common effluent treatment plant (CETP)
receiving wastewater from tanneries in the industrial area of Kasur, Pakistan. The collected sample
was subjected to various physical–chemical analyses to estimate major wastewater quality parameters
including chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total dissolved
solids (TDS), total suspended solids (TSS), sulphates, chlorides, oil and grease, and Cr using standard
methods [42] as shown in Table 1.

Table 1. Physical–chemical characteristics of tannery effluent.

Parameters Values
(Mean ± SD) NEQS Parameters Values

(Mean ± SD) NEQS

Color appearance Black Grey TS (mg/L) 13,710 ± 608 NG
Color intensity (m−1) 61.2 ± 1.2 NG TSS (mg/L) 2854 ± 230 150

Odor Foul smell NG TSeS (mg/L) 8 ± 0.1 NG
Temperature (◦C) 31 ± 0.3 40 SO4

2− (mg/L) 1789 ± 113 NG
pH 8.0 ± 0.4 6–10 Cl− (mg/L) 3315 ± 249 1000

EC (mS/cm) 16.5 ± 1.4 NG Total Cr (mg/L) 134 ± 5.8 1.0
TDS (mg/L) 10,560 ± 978 3500 Cr6+ (mg/L) 0.48 ± 0.15 0.25
COD (mg/L) 5634 ± 245 150 Cr3+ (mg/L) 133 ± 1.4 0.75
BOD5 (mg/L) 2910 ± 341 80 Oil and grease (mg/L) 145 ± 5.6 10

BOD5: Biochemical oxygen demand; COD: Chemical oxygen demand; EC: Electrical conductivity; NEQS: National
Environmental Quality Standards of Pakistan for industrial effluent discharge; NG: Not given; TDS: Total dissolved
solids; TS: Total solids; TSS: Total suspended solids; TSeS: Total settleable solids. All measurements were performed
in triplicates.

2.3. Operation and Maintenance of CWs

The CW phytoreactors were checked for maintenance on a daily basis to ensure proper functioning.
The main concern of these inspections was to attend to the pump that was responsible for making
the effluent flow through the filtration bed of CWs because its obstruction could occur due to the
suspended solids in the effluent. Reduction in water volume by evapotranspiration in all the containers
was replaced by tap water on a daily basis.

2.4. Analysis of Effluent Quality

During the experimental period, effluent samples from each phytoreactor were collected on a
weekly basis. The effect of different macrophytes on the pollutant removal ability of CWs was observed
by subjecting each treated sample to physical and chemical analyses including color, EC, pH, TDS,
COD, BOD5, TSS, SO4

2−, Cl−, oil and grease, and Cr according to standard methods [42].

2.5. Macrophytes Growth and Biomass Yield

To observe the effect of pollutants present in tannery effluent on the growth of all macrophytes
(Figure 2), morphological parameters were measured immediately after harvesting the plants at the
end of the experiment. The shoot length of plants was measured with a scale taking into account the
distance of planting from topsoil, and root length was also measured in the same way, from the depth
of planting to the bottom below the netted basket. Shoots of all macrophytes were harvested by cutting



Water 2020, 12, 549 5 of 12

at soil level in the wetland reactors, while roots were harvested by removing from the filtration bed
and cutting at the base of the netted basket of wetland phytoreactors to measure the fresh weight.
Dry weight of root and shoot was measured after drying in an oven at 60 ◦C for a week.
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Figure 2. Constructed wetland phytoreactors vegetated with different macrophytic plants for the
treatment of tannery effluent.

2.6. Data Analysis

The data gathered from experimentation was analyzed using statistics software version 8.1
(Statistix, Tallahassee, FL, USA). Significant statistical differences (p < 0.05) among macrophytes for
pollution reduction were determined by one-way analysis of variance (ANOVA), and variation in
pollutant removal efficacy among tested macrophytes was determined by least significant difference
(LSD) test.

3. Results

3.1. Characterization of Tannery Effluent

The effluent was characterized in terms of physical–chemical parameters using APHA (American
Public Health Association) [42] standard methods as shown in Table 1. The effluent was characterized
by high salt contents, as shown by the high electrical conductivity levels (16.5 mS/cm) and high contents
of dissolved solids (10,560 mg/L). In addition, BOD5 (2910 mg/L), COD (5634 mg/L), and Cr (134 mg/L)
concentrations were far beyond the permissible limits set by National Environmental Quality Standards
(NEQS) of Pakistan for industrial effluent discharge.

3.2. Treatment Performance of Macrophytes

The performance of studied macrophytes to remove pollutants from tannery effluent was evaluated
for six weeks after their establishment. Leptochloa fusca achieved the highest mean removal percentage
(64% BOD5; 51% COD; 56% TDS; 67% TSS; 42% SO4

2−; 38% Cl−; 47% oil and grease; and 55% Cr).
For T. domingensis the values were 59% BOD5; 47% COD; 43% TDS; 69% TSS; 49% SO4

2−; 46% Cl−;
43% oil and grease; and 48% Cr, while for B. mutica, mean removal percentage was 39% BOD5; 31%
COD; 38% TDS; 53% TSS; 25% SO4

2−; 30% Cl−; 26% oil and grease; and 35% Cr. The treatment with
C. indica and C. laevigatus showed the lowest removal of all pollutants. The efficacy of both L. fusca and
T. domingensis treatments in reducing pollutant concentrations were relatively higher than other tested
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macrophytes. In the present study, the lowest values of pollution variables were observed for effluents
treated with C. indica and C. laevigatus (Figure 3). The initial and final characteristics of tannery effluent
after treatment with different plant species for the studied pollution parameters and their comparison
with NEQS are shown in Table 2.

Table 2. Pollutant reduction in tannery effluent by CW phytotechnology and its comparison with NEQS.

Pollution
Parameters

(mg/L)

Before
Treatment

Mean ± SD

Characteristics of Tannery Effluent after Treatment by CWs Planted with
Different Plant Species Mean ± SD NEQS

L. fusca T. domingensis C. indica B. mutica C. laevigatus

BOD5 2910 ± 341 1047 ± 131 1193 ± 56 1717 ± 165 1775 ± 48 2008 ± 129 80
COD 5634 ± 245 2760 ± 201 2986 ± 237 3775 ± 179 3887 ± 160 4281 ± 242 150
TDS 10,560 ± 978 5913 ± 563 6019 ± 732 7180 ± 945 6547 ± 504 7708 ± 660 3500
TSS 2854 ± 230 942 ± 76 884 ± 146 1541 ± 98 1341 ± 43 1455 ± 94 150

Sulphates 1789 ± 113 1038 ± 104 912 ± 74 1413 ± 140 1342 ± 49 1288 ± 125 NG
Chlorides 3315 ± 249 2055 ± 130 1790 ± 167 2354 ± 248 2320 ± 173 2586 ± 204 1000

Oil and grease 145 ± 5.6 77 ± 2.3 82 ± 12 116 ± 5.1 107 ± 6.6 110 ± 9.3 10
Cr 134 ± 5.8 60 ± 2.4 69 ± 10.7 84 ± 4 87 ± 3.1 103 ± 8.5 1

Each value is a mean of three replicates, ±standard deviation; NEQS: National Environmental Quality Standards of
Pakistan for industrial effluent discharge; NG: Not given.

Water 2020, 12, x FOR PEER REVIEW 6 of 12 

and Cr (134 mg/L) concentrations were far beyond the permissible limits set by National 
Environmental Quality Standards (NEQS) of Pakistan for industrial effluent discharge.  

3.2. Treatment Performance of Macrophytes 

The performance of studied macrophytes to remove pollutants from tannery effluent was 
evaluated for six weeks after their establishment. Leptochloa fusca achieved the highest mean removal 
percentage (64% BOD5; 51% COD; 56% TDS; 67% TSS; 42% SO42−; 38% Cl−; 47% oil and grease; and 
55% Cr). For T. domingensis the values were 59% BOD5; 47% COD; 43% TDS; 69% TSS; 49% SO42−; 46% 
Cl−; 43% oil and grease; and 48% Cr, while for B. mutica, mean removal percentage was 39% BOD5; 
31% COD; 38% TDS; 53% TSS; 25% SO42−; 30% Cl−; 26% oil and grease; and 35% Cr. The treatment 
with C. indica and C. laevigatus showed the lowest removal of all pollutants. The efficacy of both L. 
fusca and T. domingensis treatments in reducing pollutant concentrations were relatively higher than 
other tested macrophytes. In the present study, the lowest values of pollution variables were 
observed for effluents treated with C. indica and C. laevigatus (Figure 3). The initial and final 
characteristics of tannery effluent after treatment with different plant species for the studied pollution 
parameters and their comparison with NEQS are shown in Table 2. 

Table 2. Pollutant reduction in tannery effluent by CW phytotechnology and its comparison with NEQS. 

Pollution 
Parameters 

(mg/L) 

Before 
Treatment 
Mean ± SD 

Characteristics of Tannery Effluent after Treatment by CWs Planted with 
Different Plant Species Mean ± SD NEQS 

L. fusca T. domingensis C. indica B. mutica C. laevigatus 
BOD5 2910 ± 341 1047 ± 131 1193 ± 56 1717 ± 165 1775 ± 48 2008 ± 129 80 
COD 5634 ± 245 2760 ± 201 2986 ± 237 3775 ± 179 3887 ± 160 4281 ± 242 150 
TDS 10,560 ± 978 5913 ± 563 6019 ± 732 7180 ± 945 6547 ± 504 7708 ± 660 3500 
TSS 2854 ± 230 942 ± 76 884 ± 146 1541 ± 98 1341 ± 43 1455 ± 94 150 

Sulphates 1789 ± 113 1038 ± 104 912 ± 74 1413 ± 140 1342 ± 49 1288 ± 125 NG 
Chlorides 3315 ± 249 2055 ± 130 1790 ± 167 2354 ± 248 2320 ± 173 2586 ± 204 1000 

Oil and grease 145 ± 5.6 77 ± 2.3 82 ± 12 116 ± 5.1 107 ± 6.6 110 ± 9.3 10 
Cr 134 ± 5.8 60 ± 2.4 69 ± 10.7 84 ± 4 87 ± 3.1 103 ± 8.5 1 

Each value is a mean of three replicates, ±standard deviation; NEQS: National Environmental Quality 
Standards of Pakistan for industrial effluent discharge; NG: Not given. 

 
Figure 3. Pollutant reduction in tannery effluent by different macrophytes in constructed wetlands. 
Error bars indicate standard deviation among three replicates. Labels (a)–(e) indicate statistically 
significant differences (p < 0.05) among plant species at a 5% level of significance. 

3.3. Growth and Biomass Yield of Macrophytes 

All macrophytes exhibited good survival at all concentrations of tannery effluent. Typha 
domingensis, L. fusca, and B. mutica showed relatively rapid growth in the tannery effluent compared 
to C. indica and C. laevigatus. By the end of the experiment, length and weight (both fresh and dry) of 

a

a
a

a

b b
a

ab

b b

a

a a b
b

c
c d

d

e
c

d

cc
c

c

b

d
c c

cd
d e

c

c
d c d

0
10
20
30
40
50
60
70
80

BOD COD TDS TSS Sulphates Chlorides Oil &
grease

Cr

Po
llu

ta
nt

 re
du

ct
io

n 
 (%

)

Major pollution parameters
L. fusca T. domingensis C. indica B. mutica C. laevigatus

Figure 3. Pollutant reduction in tannery effluent by different macrophytes in constructed wetlands.
Error bars indicate standard deviation among three replicates. Labels (a)–(e) indicate statistically
significant differences (p < 0.05) among plant species at a 5% level of significance.

3.3. Growth and Biomass Yield of Macrophytes

All macrophytes exhibited good survival at all concentrations of tannery effluent. Typha domingensis,
L. fusca, and B. mutica showed relatively rapid growth in the tannery effluent compared to C. indica and
C. laevigatus. By the end of the experiment, length and weight (both fresh and dry) of the root and shoot
of all macrophytes were determined. Among all the macrophytes, T. domingensis exhibited the highest
length, followed by L. fusca, then B. mutica, C. indica, and C. laevigatus. Typha domingensis reached
heights up to 147 cm and L. fusca heights of 132 cm, while heights were 121 cm for B. mutica, 51 cm for
C. indica, and 43 cm for C. laevigatus, as shown in Figure 4. The measurement of fresh and dry biomass
yield at the end of the experiment revealed that the weight (both fresh and dry) of B. mutica shoots was
higher than the remaining macrophytes, while maximum fresh biomass of root was observed by L.
fusca and dry biomass by roots of T. domingensis (Figure 5).
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4. Discussion

It is essential to assess the feasibility of aquatic macrophytes to be used in CWs for treating
high salinity effluent, because the performance of CWs may be compromised if macrophytes fail to
establish [33,43,44]. In the present study, the efficacy of macrophytes to remove pollutants from saline
tannery effluent having high organics and Cr loadings and biomass yield was assessed during a time
period of three months. All the macrophytes developed and proliferated varyingly in the tannery
effluent, without showing any signs of toxicity.

Morphological characteristics and growth behavior of macrophytes revealed great differences
among all the experimental species that were exposed to tannery effluent. This difference in growth
among macrophytes over time is due to their intrinsic nature [40,45–47].

In the present work, use of halophytes (L. fusca and T. domingensis) in CW systems to treat
tannery effluent proved better in terms of rapid growth and pollutant removal than the other tested
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macrophytes, due to their salinity tolerance and metal uptake capacity [33,48]. Removal of BOD5 and
COD, the major pollution indicators of industrial effluents, was comparatively higher in treatment
wetlands vegetated with halophytes than other macrophytes. The ability of halophytes to accumulate
salts and metals made them preferred candidates for salt phytoremediation of saline effluents [48–50].
However, bioaccumulation of salts and metals including Cr within macrophytes has not been assessed
in the present work that may affect final removal, disposal, and/or reuse of harvested macrophytes and
overall operation and maintenance costs of CW systems.

The potential removal of pollutants by macrophytes is influenced both by growth rate and biomass
yield through uptake of nutrients from concentrated effluents. Species of aquatic macrophytes that
have rapid growth and capacity to produce high biomass are more effective for the treatment of tannery
effluents [51]. In the present study, C. indica and C. laevigatus were less effective in removing pollutants
than B. mutica, L. fusca, and T. domingensis, probably because of their slow growth pattern and low
biomass yield.

The effectiveness of macrophytes to remediate effluent is enhanced by harvesting biomass to
maintain high rates of vegetative growth in the macrophytes population, and consequently to create a
positive effect on the removal rate of pollutants as evidenced by Yang et al. [52]. Rozema et al. [53] also
reported enhanced pollutant removal efficiencies by frequent harvesting of T. latifolia and J. torreyi in
CWs. However, in the present study, it was not necessarily due to the relatively short experiment period.

Plant biomass produced after phytoremediation can be used in an environmentally friendly way
as soil conditioner or green fertilizer to reduce secondary pollution [54,55]. For example, it can be
used profitably in subsequent effluent treatment experiments to meet the initial nutrients requirement
for the establishment of plants in CWs. Pat-Espadas et al. [56] suggested the use of residual waste as
construction material to avoid undesirable environmental and health effects.

In the present study, reduction of pollutants from tannery effluent in CWs by B. mutica, L. fusca,
and T. domingensis was attributed to their extensive root growth, which served as an active zone for
degradation of organic and sequestration of inorganic pollutants by microbes. Macrophytes capable of
developing an extensive root system in tannery effluent are more effective in removing its pollutant
concentration as evidenced by earlier studies [44,57–60]. According to Jamshidi et al. [61], wetlands
vegetated with Phragmites sp. exhibited high rates of pollutant reduction due to the development of
an extensive root system that increased oxygen transfer efficiency, thus enhancing contribution of
microbial biomass towards treatment.

Among the tested macrophytes, B. mutica, L. fusca, and T. domingensis turned out to be quite
resilient and effective for the purpose of treating highly polluted tannery effluent, particularly high
concentrations of salts, Cr, and organic compounds.

Moreover, the large-scale adoption of CWs technology for the treatment of highly complex tannery
effluent still requires much fundamental and applied research for effective remediation, to achieve
multipurpose wastewater treatment, biomass reuse/recycle, coping water scarcity, and environmental
protection. In this regard, some progressive and novel approaches can be applied to CW systems like
bioaugmentation, biostimulation, genetically engineered plants or microbes, and salt phytoremediation
to improve their performance and efficiency.

5. Conclusions

The selection of appropriate macrophytes in CWs is crucial for effective treatment of highly
polluted wastewaters generated by tanneries. This investigation demonstrated that treatment wetlands
vegetated with L. fusca and T. domingensis can survive and flourish and facilitate removal of pollutants in
hypersaline tannery effluent. While B. mutica grows rapidly in toxic tannery effluent, it requires frequent
harvesting as plants die after reaching full maturity. The results showed that L. fusca and T. domingensis
were clearly superior for metal uptake and solids, as well as organics removal over other macrophytes
under local climatic conditions. The originality of this research work is the use of halophytic species
(L. fusca) in CWs to combat salinity stress posed during the treatment of hyper saline tannery effluents.
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Therefore, this study suggests the use of native halophytes for the phytoremediation of tannery effluents
in CW bioengineered systems built economically in an environmentally friendly way.
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