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Abstract: The gas characteristics of an air vessel is one of the key parameters that determines the
protective effect on water hammer pressure. Because of the limitation of the ideal gas state equation
applied for a small-volume vessel, the Van der Waals (VDW) equation and Redlich–Kwong (R–K)
equation are proposed to numerically simulate the pressure oscillation. The R–K polytropic equation
is derived under the assumption that the volume occupied by the air molecules themselves could
be ignored. The effects of cohesion pressure under real gas equations are analyzed by using the
method of characteristics under different vessel diameters. The results show that cohesion pressure
has a significant effect on the small volume vessel. During the first phase of the transient period,
the minimum pressure and water depth calculated by a real gas model are obviously lower than that
calculated by an ideal gas model. Because VDW cohesion pressure has a stronger influence on the
air vessel pressure compared to R–K air cohesion pressure, the amplitude of head oscillation in the
vessel calculated by the R–K equation becomes larger. The numerical results of real gas equations
can provide a higher safe-depth margin of the water depth required in the small-volume vessel,
resulting in the safe operation of the practical pumping pipeline system.

Keywords: small volume air vessel; R–K equation; VDW equation; pressure fluctuation

1. Introduction

Pump failure can result in severe water hammer events, especially in long-distance water-supply
pumping systems [1]. To avoid the adverse effect of a water hammer, an air vessel, which is also known
as air chamber or volumetric tank, is usually introduced to the pipeline systems as the protection
measure. Therefore, the accurate mathematic model of an air vessel is necessary and important for
water hammer simulation during pump failure [2–4].

As an airtight high-pressure container, the air vessel is usually installed in the pipeline adjacent to
the pump outlet for the purpose of negative pressure prevention after pump failure [5–8]. Wood [9]
carried out analytical and experimental investigations, and the results showed that air vessels could
attenuate the pressure surges well along the pipeline. Sun et al. [10] and Yang [11] pointed out the
hydraulic transients after the pump failure can be effectively controlled by reflecting the pressure
wave and reducing head oscillation in the air vessel. The protective effect greatly depends on the
characteristics of expansion and contraction of gas. That is, the performance of the air vessel on
pressure wave reflection and pressure surge control is affected by the characteristics of gas in the vessel.

The polytropic equation of an ideal gas is extensively used for describing the gas characteristics in
the vessel. However, the thermodynamic process of the gas in a confined container is not satisfied
with the reversible polytropic process of ideal gas because of the dissipation effect between gas and
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water surface or gas and wall during the transient process in pipeline system. Thus, the assumption
of the ideal gas is actually not consistent with the gas characteristics in practical pipeline system.
When analyzing the impact of a water hammer on pressure variations in pipelines protected by an
air vessel, the measured pressure values were compared with numerical results from the ideal gas
assumption [12]. A deviation between the measured and calculated pressures existed, which validated
the above inference well. In addition, the effects of related vessel parameters, such as the initial air
volume, wave speed, orifice diameter and the polytropic exponent, to minimize a water hammer were
investigated by both the numerical calculations and the experiments [13]. However, the effect of the
real gas characteristics was not taken into account.

Furthermore, the experimental investigations conducted by Jones et al. [14] confirmed that the gas
approximately followed the law of the ideal gas state equation only under low temperature. Under high
pressure, however, any gas would not completely follow the reversible polytropic relation. The higher
pressure is in air vessel, the greater deviations between the numerical results from ideal equation and
measured values will be. As for the air vessel of a small volume, the pressure fluctuation of the air
vessel is usually huge during the transient process, undergoing high pressure. Therefore, the equation
of state of the ideal gas was not suitable for the gas characteristics in the small-volume air vessel.
Thus, the equations of state of the real gas (Van der Waals (VDW) equation and Redlich–Kwong (R–K)
equation) was proposed in this paper.

The VDW equation and R–K equation are the primary equations of state of gas describing the
real gas characteristics. The above equations of state of a real gas were presented by Moran et al. [15]
and the range of applications was discussed as well. It is well known that the VDW equation is
an equation of state for the air composed of particles that have a non-zero volume and a pairwise
attractive and repulsive inter-particle force. The equation was based on a modification of the ideal gas
law [16], and considered the nonzero size of molecules and the attraction between them [17], which was
approximated to the behavior of a real gas. Van der Waals [18] obtained the equations of state based
on cohesion pressure terms. It is found that, the equation is also qualitatively reasonable for both
the liquid state and gaseous state for lower temperatures. Furthermore, many phenomena, including
supercooling and superheating, were correctly predicted with the assistance of the Van der Waals
equation [19]. Redlich and Kwong [20] improved the accuracy of the VDW equation by introducing
temperature into the cohesion pressure term, which has been widely used in computer procedures for
predicting real gas behavior in recent years. The R–K equation was generally conceded to be one of the
best generalized two parameter equations of state available. In addition, it was remarkably compact,
and attractive for inclusion in large-scale process design computer programs which required efficient
data calculation procedures to be effective [21].

Gas characteristics have great influence on the polytropic exponent of a thermodynamic process.
The most common solution to such a process was the isothermal (n = 1) or isentropic assumption
(n = 1.4) [22]. An average value of 1.2 may be used in design calculations [23–25], whereas the value is
short of theoretical support. Fast transients, field observations and experiments showed that n was
approximately 1.4 in closed air pockets, and the thermodynamic behavior was close to adiabatic with
zero heat transfer [26–30]. However, when calculating closed surge tank behavior for slow transients,
Zhou et al. [31] showed that heat transfer had a significant effect on the thermodynamics of the system
and was, therefore, not properly represented by the polytrophic equation. In long-distance water-supply
transmission pipelines, the vessel oscillation period was caused by an instantaneous check valve
closure. Consequently, it was reasonable to assume the heat exchange was sufficient, and the polytropic
exponent value was 1.0 [32]. Based on the comprehensive analysis above, the thermodynamic process
of the air vessel can be considered as an isothermal process, and corresponding polytropic exponent
value is 1.0 for a long-distance water-supply pumping system.

The key innovative features of this paper are as follows: (1) derivation of the R–K gas polytropic
equation of the air vessel; (2) calculation and analysis of the air vessel model calculated by the ideal
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gas equation, VDW gas equation and R–K gas equation; (3) comparison of the air vessel model under
different vessel diameters.

2. Equation of State of Gas

2.1. Equation of State of Ideal Gas

The polytropic equation of the ideal gas [25] is given below:

PIdealVIdeal
nIdeal = C1 (1)

nIdeal = 1−
R

C−CV
=

C−CP

C−CV
(2)

where PIdeal is the absolute pressure of the ideal gas, Pa, which is equal to the surface pressure plus
the atmospheric pressure; VIdeal is the volume of the ideal gas, m3; C1 is the constant indicating the
specific heat capacity. nIdeal is the polytropic exponent of ideal gas; R is the individual gas constant.
For air, R = 0.2867 KJ/(kg·K); CP is specific heat at constant pressure, kJ/(kg·K); CV is specific heat at
constant volume, kJ/(kg·K); C is specific heat of mole, kJ/(kg·K). For air in the condition of 298.15 K,
100 kPa, CP = 1.004 kJ/(kg·K), CV = 0.717 kJ/(kg·K).

2.2. Equation of State of Van der Waals (VDW) Gas

For m moles of gas, Jin [33] shows the gas polytropic equation of VDW:

P2VnVDW
VDW = C2 (3)

P2 = PVDW +
m2aVDW

V2
2

(4)

VVDW = V2 −mbVDW (5)

nVDW = 1−
R

C−CV
(6)

where PVDW is the absolute pressure of the VDW gas, Pa; VVDW is the effective volume in the VDW
approximation, diminished due to the finite size of the molecules, that is, VVDW is the actual volume of
the VDW gas, m3; aVDW is the pure component parameter of the VDW equation; aVDW/V2

2 is called
“cohesion pressure”, which takes the attractive (electrical (induced dipole-induced dipole) interaction
in nature between gas molecules into account; bVDW is the co-volume of the gas molecules; T is the
absolute temperature of gas, K, nVDW is the polytropic exponent of the VDW gas; C2 is a constant.
aVDW and bVDW are calculated by Equations (A1) and (A2) from Appendix A.1. For air, the values are
161.4744m6

× Pa/kg2, 1.2552× 10−3m3/kg, respectively.

2.3. Equation of State of Redlich–Kwong (R–K) Gas

For m moles of gas, R–K equation [21] is described as:(
PRK +

m2aRK

T0.5V3(V3 + mbRK)

)
(V3 −mbRK) = mRT (7)

P3 = PRK +
m2aRK

T0.5V3(V3 + mbRK)
(8)

VRK = V3 −mbRK (9)

giving
P3VRK = mRT (10)
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where PRK is the absolute pressure of the RK gas, Pa; VRK is the actual volume of the RK gas, m3; aRK is
the pure component parameters of cohesion pressure term; bRK is the co-volume of the gas molecules.
aRK and bRK are calculated by Equations (A3) and (A4) from Appendix A.1. For air, the values are
1883.6076m6

× Pa×K0.5/kg2, 0.873 × 10−3 m3/kg, respectively.
The variation of internal energy of the system [34] can be expressed as:

dU = mCVdT +

[
T
(
∂PRK

∂T

)
V
− PRK

]
dV3 = mCVdT + 1.5

m2aRK

T0.5V3(V3 + mbRK)
dV3 (11)

where dU is the small variation of internal energy.
According to the first law of thermodynamics, this gives:

dQ = dU + dW (12)

dQ = CdT (13)

dW = PRKdV3 (14)

where dQ is heat exchange between the internal and external system; dW is net work exchanged
between the internal and external system.

By substituting Equations (11), (13) and (14) into Equation (12), this yields:

mCdT= mCVdT + 1.5
m2aRK

T0.5V3(V3 + mbRK)
dV3 + PRKdV3 (15)

By substituting Equations (7) and (10) into Equation (15), this yields:(
1.5

mRT
VRK

− 0.5PRK

)
dV3 + m(CV −C)dT = 0 (16)

in which dVRK = d(V3 −mbRK) = dV3. Then Equation (16) becomes:

1.5
dVRK

VRK
− 0.5

PRK

mRT
dVRK +

CV −C
R

dT
T

= 0 (17)

The bulk volume of air molecules themselves is negligible compared with the air volume in the
vessel (V3 >> mbRK). That is, the volume occupied by the air molecules themselves could be ignored,
so an approximate treatment (VRK ≈ V3) is made.

By substituting Equations (7) and (10) and VRK ≈ V3 into Equation (17), this gives:

dVRK

VRK
+

0.5maRK

RT1.5V2
RK

dVRK +
CV −C

R
dT
T

= 0 (18)

Since RT1.5V2
RK >> 0.5maRK, Equation (18) can be simplified as:

dVRK

VRK
+

CV −C
R

dT
T

= 0 (19)

According to Appendix A.2, Equation (19) can be rewritten as:

P3VnRK
RK = C3 (20)

nRK = 1−
R

C−CV
(21)
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where C3 is a constant. Equation (21) is a simplified R–K gas polytropic equation under the assumption
of the bulk volume of air molecules themselves could be negligible. nRK is the R–K gas polytropic
exponent. According to Equations (2), (6) and (21), the polytropic exponents of VDW and for the given
approximation of RK do not differ from the ideal gas case.

3. Mathematical Model of Air Vessel

An air vessel is a container filled with compressed gas and water. In order to eliminate the positive
surge and negative surge in the vessel, a connecting pipe is installed at the junction of the air vessel and
the pipeline. The mathematic model of the air vessel is established, as shown in Figure 1. The following
equations describe the head and flow equations at the junction of the air vessel and the pipeline [25].
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Figure 1. Mathematical model of air vessel.

The characteristic equations for sections U and D can be expressed as:

C+ : HB = CP − BP ·QU (22)

C− : HB = CM + BM ·QD (23)

where HB is the hydraulic grade at junction P, m; CP, BP, CM and BM = constants in MOC (method of
characteristic equations); U is the subscript which denotes the left boundary point of the air vessel;
D is the subscript which denotes the right boundary point of the air vessel; QU is the discharge into
junction P, m3; QD is the discharge out of junction P, m3.

The continuity equation at the junction P can be written as:

QS = QU −QD (24)

where QS is the discharge through the connecting pipe either in positive or negative direction, m3.
In the air vessel, water follows the relation:

dHS
dt

=
QS

AS
(25)

where HS is the water level of air vessel, m; Z is the water depth, m; AS is the cross-sectional area of air
vessel, m2; t is the time, s.

In the vessel, the air follows the following polytropic relation:

PiVi
n j = Ci (26)

where i = 1, 2 and 3; Pi is the pressure of air, Pa, represent ideal, VDW and RK air, respectively; Vi is
the actual (effective) volume of air, m3; nj is the polytropic exponent; Ci is a constant.
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If the elasticity of water and vessel wall is not considered, the air head and water level in the
vessel are as follows:

P j

ρg
= HB − σ

QS|QS|

2gA2
0

−HS + H (27)

where Pj is the absolute pressure of air, Pa, represent ideal, VDW and RK air, respectively, under the
condition of ideal gas model, Pi = Pj; ρ is density, for water, ρ = 1000 kg/m3; g is gravitational
acceleration, 9.8 m/s2; H is atmospheric pressure head, m; σ is resistance coefficient of the connecting
pipe; A0 is the cross-sectional area of connecting pipe, m2.

Considering ∆t is very small according to the calculation of a water hammer, in which ∆t is the
time difference, according to Appendix A.3, Equation (27) can be rewritten as:

P j

ρg
= HB −

σ

2gA2
0

QS|QS0| −

[
HS0 + 0.5∆t

(QS + QS0)

AS

]
+ H (28)

where QS0 and Z0 are the known discharge and water level at the time of t–∆t, respectively.
By substituting Equations (22)–(24) into Equation (28), this gives:

P j

ρg
= H − γ

[(
CP

BP
+

CM

BM

)
−QS

]
/
(

1
BP

+
1

BM

)
− γ

HS0 +
0.5∆t

AS
QS0 +

0.5∆t
AS

+
σ|QS0|

2gA2
0

QS

 (29)

By substituting Equation (26) into Equation (28), the absolute pressure Pj (PIdeal, PVDW and PRK)
can be solved by the Newton–Raphson iteration method. Then, the other transient variables can
be obtained.

4. Case Study

Figure 2 shows a long-distance water supply system equipped with an air vessel. The total length
of the pipeline is 23.40 km, and the discharge is 0.35 m3/s. The water levels of suction sump and outlet
sump of the pumping station are 1666.50 m and 1881.65 m, respectively. The air vessel temperature
is 283.15 K. Three ASP-2B-21-200-580 pumps are installed in parallel, with one pump being backup
unit. And the head of pump is 245.55 m. A check valve is mounted at the outlet of pump for each
pumping subline.
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Figure 2. Schematic diagram of water conveyance system with air vessel.

Since the air vessel is installed nearest to the pump discharge, the fluid in the air vessel will enter
the pipeline rapidly after the pump failure. In order to reduce the size of the air vessel, the check valve
mounted at the outlet of pump is set to be in one-period closing mode with instantaneous closing time
of 1 s. The initial value for the gas mole number (m) is calculated from the equation m = Vair/Vm,
in which Vair is the volume of the air vessel; Vm is the gas molar volume, and is approximately
22.4 L/mol when the air vessel temperature is 283.15 K. For numerical calculations, the calibrated input
data are used, the wave speed a = 1000 m/s, the cross-sectional area of the connecting pipe is 0.1256 m2,
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and the resistance coefficient of the connecting pipe is 0.8. According to Equations (2), (6) and (21),
the polytropic exponent of ideal air, VDW air and RK air (n, nVDW and nRK) under isothermal process
(C =∞) are all equal to 1.

5. Results and Discussion

Equations (4) and (8) shows that the effect of cohesion pressure can be reduced by increasing the
vessel volume and increased by reducing the vessel volume. Therefore, the present study focuses
on the influences of cohesion pressure on the fluctuations of the water depth and air level under
different volume diameters (Dvessel), where Dvessel is the diameter of the air vessel. For the initial air
vessel diameter ranging from 2 m to 3.5 m, numerical solutions are calculated. Table 1 shows the
specifications of the air vessels with different vessel diameters. Table 2 gives the results of predicted
minimum water depths, maximum air levels and minimum air pressures under three gas models for
various initial vessel diameters. The fluctuations of the water depth, air level, air pressure and air
pressure ratio in a vessel under gas models are presented in Figures 3–5, respectively.

Table 1. Specifications of the air vessels with different vessel diameters.

Air Vessel
Diameter (m)

Water Depth
(m)

Air Level
(m)

Air Volume
(m3)

Initial Air Mole
Number

2
1.5 1.8

5.65 252.32
3 12.72 567.86

3.5 17.31 773.21

Table 2. Comparison of predicted minimum water depths and maximum air levels under three gas
models for various initial vessel diameters.

Air Vessel
Diameter (m)

Gas
Model

Minimum Water
Depth (m)

Maximum Air
Level (m)

Minimum Air
Pressure (MPa)

2
Ideal 0.19 3.11 1.46
VDW −0.30 3.60 1.30
R–K −0.13 3.43 1.35

3
Ideal 0.48 2.82 1.61
VDW 0.43 2.87 1.58
R–K 0.45 2.85 1.59

3.5
Ideal 0.60 2.70 1.69
VDW 0.57 2.73 1.67
R–K 0.58 2.72 1.68
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Figure 5. (a) Effect of varying diameter on water depth in the air vessel; (b) effect of varying diameter
on minimum water depth in the air vessel; (c) effect of varying diameter on air pressure in the air vessel;
(d) effect of varying diameter on air pressure ratio in the air vessel during 0–150 s.

As shown in Figure 3a–c, the pressure adjacent to the pump decreases rapidly as soon as there
is pump failure (t = 0), the upstream fluid continually moves downstream together with negative
pressure wave until the positive pressure wave reflects back to the source. The water in the air vessel
(Dvessel = 2 m) quickly enters the pipe to relieve the pressure reduction, which will result in the water
depth dropping, air level rises and air pressure drops in the vessel during the first phase (0~t = 2
L/a = 47.41 s, L is the total length of the pipeline).

The comparison of the fluctuation calculated by three models is discussed. According to
Equations (4) and (10), the air pressure in the vessel calculated by the real gas models is always
smaller compared to the ideal gas model on the account of non-zero intermolecular attractions i.e.,
the positive cohesion pressure. Likewise, the corresponding water levels are lower than those of the
ideal gas. In addition, since the cohesion pressure of VDW is larger than that of the R–K equation
under the same volume, the air pressure calculated by the VDW model is lower than that calculated by
the R–K model. Figure 3c shows that the numerical results of air level and pressure oscillations for
each gas model are consistent with the above theoretical analysis.

Lower pressure means longer oscillation period. Thus, compared with the pressure fluctuations
of the three models, the lag as shown in Figure 3c seems to be compatible with the lower pressure.
Figure 3d shows the air pressure ratio during the first phase (0~t = 2 L/a = 47.41 s, L is the total length of
the pipeline) in order to avoid the influence of lag. The air pressure ratios (PVDW/PIdeal and PRK/PIdeal)
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remain nearly stable in first (0–2 s) and drop at last during the first phase. At t = 47.41 s, the air pressure
ratio values of PVDW/PIdeal and PRK/PIdeal are 0.89 and 0.92, respectively.

Table 2 shows that the minimum water depths calculated by the ideal gas model, the VDW model
and the R–K model are 0.19 m, −0.3 m and −0.13 m, respectively, the maximum air levels for the
three models are 3.11 m, 3.60 m and 3.43 m, respectively, and the minimum air pressures for the three
models are 1.46 MPa, 1.30 MPa and 1.35 MPa, respectively. The results in Table 2 show that the real
gas models predict the water depth to be critically low, reducing the safe margin required in the air
vessel (ZVDW −ZIdeal = 0.49 m, ZRK −ZIdeal = 0.32 m). Hence the necessity for the inclusion of real
gas approximations.

As shown in Figure 4a-c, the water depth, air level and air pressure curves of the VDW gas
model and the R–K gas model are almost coincided with that of the ideal gas model for Dvessel = 3 m.
The positive wave reaches the upstream end of the pipe at t = 49.63 s, and the water depths, air levels
and air pressures calculated by the ideal air, VDW and R–K models reach the maximum value at
121.11 s, 123.99 s and 122.97 s, respectively, which are almost the same. Figure 4d shows that the
air pressure ratios remain almost stable first and drop last along with the air expansion during
0–49.63 s. The cohesion pressure has no significant effect due to the small variation of air volume at
the beginning of the transient. Therefore, the pressure ratios is changed but not much during 0–1.1 s.
Then, the influence of cohesion pressure is becoming increasingly obvious. At t = 49.63 s, the minimum
values of PVDW/PIdeal and PRK/PIdeal are 0.983 and 0.989. As seen from Table 2, the pressure and level
differences are now much smaller compared to the ideal gas (≈1%), as a consequence of the negligible
influence of the interatomic attractions in the high-pressure regime (cohesion pressure in Equations (4)
and (8) tend to zero).

Comparison between the VDW gas model and the ideal gas model for varying diameters are
conducted, which are presented in Figure 5a–d. The results show that fluctuations of water depth,
air pressure and air pressure ratio are more violent with the smaller vessel diameter. The differences
of the water depths, air pressures, air levels and air pressure ratio between the ideal model and the
VDW model are larger when the vessel diameter is smaller. Note the asymmetry in the upward and
downward oscillations (including the sudden changes in the water depth and air pressure, Figure 5a,c),
akin to hysteresis. The smaller the diameters, the shorter are the periods of the fluctuations of water
depth and air pressure. For the initial air-vessel diameter ranging from 2 m to 3 m, Figure 5d shows
that the values of air-pressure ratios are almost lower than 1 during the first period. After the first
phase, the trends of air-pressure ratios changes due to the lag. The ratios exceed 1 after the crossover
of the curves (around 116 s, Figure 5d). However, the corresponding points of the pressure curves
corrected for the lag are always lower for the real gases, Figure 5c.

6. Conclusions

In this study, a simplified R–K gas polytropic equation is proposed and derived under the
assumption of the total volume occupied by air molecules themselves could be negligible.

The effect of cohesion pressure is verified by theoretically and numerically studying the comparison
between ideal, VDW and R–K gas equations for the cases of different vessel diameters. The results
show that cohesion pressure of real air in the small-volume air vessel is more significant with respect
to that in the large volume air vessel. For the small volume vessel, the real gas models predict critically
low water levels (≈0.5 m), so that an adequate safety margin can be provided in the operation of
pump-air vessel downstream systems.

This study provides theoretical and numerical support for the influence of cohesion pressure in
small-volume vessel. However, it must be noted that the practical project introduced in this paper
is still under construction, so no measured data are available to make a comparison with the results.
Therefore, future research will be carried out to further verify the impact of cohesion pressure in the air
vessel after the measured data are obtained in the future.
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Abbreviation

VDW Van der Waals
R–K Redlich–Kwong

Appendix A.

Appendix A.1. Derivation Details

In this appendix, the derivation details of aVDW, bVDW, aRK, bRK for gas will be shown by the following
equations [35]:

aVDW =
27R2T2

cr
64Pcr

(A1)

bVDW =
RTcr

8Pcr
(A2)

aRK =
0.42748R2T2.5

cr
Pcr

(A3)

bRK =
0.08664RTcr

Pcr
(A4)

where Tcr is critical temperature, K; Pcr is critical pressure, Pa. For air, Tcr = 132.5 K, pcr = 3.77 ×
106 Pa,aVDW = 161.4744m6

× Pa/kg2, bVDW = 1.2552 × 10−3m3/kg, aRK = 1883.6076m6
× Pa × K0.5/kg2,

bRK = 0.873× 10−3m3/kg.

Appendix A.2. Method for Integral of Equation (19)

Assuming C and CV are independent of temperature, the integral of Equation (19) is:

ln VRK +
CV −C

R
ln T = Const (A5)

namely

T
CV−C

R VRK = Const or TV
R

CV−C

RK = Const (A6)

By substituting Equation (35) into Equation (10), this yields:

P3V
1− R

C−CV
RK = Const (A7)

Consequently, Equation (36) can be rewritten as:

P3VnRK
RK = C3 (A8)

nRK = 1−
R

C−CV
(A9)

Appendix A.3. Approximation of Air-Vessel Model

In this appendix, the frictional resistance of the connecting pipe and the relation of water level and discharge
are approximated.
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Considering ∆t is very small according to the calculation of the water hammer, the integral and second-order
approximation of Equation (25) is:

HS = HS0 +
0.5∆t(QS + QS0)

AS
(A10)

Considering ∆t is very small, the second-order approximation of the frictional resistance of the connecting
pipe is:

σ
QS|QS|

2gA2
0

= σ
QS|QS0|

2gA2
0

(A11)
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