
water

Article

Utilizing the Internet of Things (IoT) to Develop a
Remotely Monitored Autonomous Floodgate for
Water Management and Control

Sami Salama Hussen Hajjaj 1,* , Mohamed Thariq Hameed Sultan 2,3,4,*,
Muhammad Hafizuddin Moktar 5 and Seng Hua Lee 6

1 Centre for Advanced Mechatroics and Robotics (CaMaRo), Universiti Tenaga Nasional (UNITEN),
Jalan IKRAM-UNITEN, Kajang 43000, Selangor Darul Ehsan, Malaysia

2 Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP),
Universiti Putra Malaysia, UPM Serdang 43400, Selangor Darul Ehsan, Malaysia

3 Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia,
UPM Serdang 43400, Selangor Darul Ehsan, Malaysia

4 Aerospace Malaysia Innovation Centre (944741-A), Prime Minister’s Department, MIGHT Partnership Hub,
Jalan Impact, Cyberjaya 63000, Selangor Darul Ehsan, Malaysia

5 Department of Mechanical Engineering, Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN,
Kajang 43000, Selangor Darul Ehsan, Malaysia; hafizskai07@gmail.com

6 Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP),
Universiti Putra Malaysia, UPM Serdang 43400, Selangor Darul Ehsan, Malaysia; lee_seng@upm.edu.my

* Correspondence: ssalama@uniten.edu.my (S.S.H.H.); thariq@upm.edu.my (M.T.H.S.)

Received: 15 December 2019; Accepted: 10 January 2020; Published: 12 February 2020
����������
�������

Abstract: In recent years, floods have increased in frequency and intensity, causing tremendous
hardship. In badly affected regions, mostly the rural areas, Weir-type floodgates are the only measure
against floods. However, these manually operated gates are numerous and scattered over vast areas.
This makes flood mitigation efforts very challenging, which causes severe devastation. Current
solutions to automate the floodgates are expensive, black-boxed, and focused on individual gates.
In this paper, we present a Centralized Flood Monitoring and Coordination System developed through
the Internet of Things (IoT) and other open-source technologies. For this work, we developed a
working prototype of an autonomous floodgate that opens/closes according to the level of water. We
also developed the required program to allow the gate controller to publish its data through the IoT
gateway to the cloud. The data was then captured and viewed on a number of IoT clients, both for
individuals and groups of floodgates, in real time. The developed system proved successful as the
autonomous gates were monitored remotely through the established IoT framework, with room for
future development and improvement. This paper serves as a proof of concept and a preparation for
real, on-site implementation of the IoT-floodgates.

Keywords: Internet of Things (IoT); floodgates; watergates; flood management; open-source
development; network-ready controllers; Raspberry Pi systems; open-source IoT clients

1. Introduction

In recent years, floods have increased in frequency and intensity all over the world, causing
tremendous hardship in affected areas. This has increased the importance of flood mitigation measures
and technologies, such as floodgates [1,2]. Floodgates vary in size and complexity; large and
sophisticated gates can be found in hydro-dams, while small and simple ones are found on rivers or
canals in rural regions, which are usually the most badly hit regions by floods [3]. Crude and simple in

Water 2020, 12, 502; doi:10.3390/w12020502 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0003-1198-4802
https://orcid.org/0000-0001-6369-9902
http://dx.doi.org/10.3390/w12020502
http://www.mdpi.com/journal/water
https://www.mdpi.com/2073-4441/12/2/502?type=check_update&version=2

Water 2020, 12, 502 2 of 18

design, these manually operated gates prevent flash floods, protect paddy fields, and prevent damage
to properties and local infrastructures [3]. However, these gates are numerous and often scattered
over vast rural areas, making flood mitigation efforts and coordination very challenging. As a result,
seasonal floods usually come with severe devastation in these regions [4,5].

In the current practice, there are a few main challenges that need to be addressed. The delivery of
water gate information and other details from different locations to the management or the manager
through the site workers is rather time-consuming. This leads to delayed decision-making from the
manager, especially for the water gates that are significantly related and connected to each other.
For example, the opening and closing of water gates that are installed in a line on the waterway will
change the water level at the next area and the management of the next gates. Hence, quick information
updates from each water gate is important in water management.

Furthermore, the manager needs an overall view from all the regions of the waterways to easily
manage the water gates. In other words, all real-time information needs to be received by the
management body at the same time to make the right responses with water gate controls. Currently,
satellites provide the forecast data for water management and preparation, but the situation also needs
real-time data for quick actions.

Hence, water management needs to be improved with quick information updates and full real-time
monitoring. Apart from these aspects, the management also needs to be able to directly control or
override the water gates from the management center. An automation system is not the only required
function for management, but it also needs to be interactive so the manager can take action on the
water gates based on the full picture from the monitoring system.

The proposed solution in this paper is able to manage the challenges above, and provide a quick
information update of the water level and the gates, all information from multiple locations, and an
action button function from the client center.

2. Previous Solutions

Some mechanisms to automate floodgates do exist [6–8], but these efforts are expensive and usually
focused on automating individual gates. Furthermore, they do not allow centralized monitoring of a
group of gates, something the flood mitigation authorities really need as they usually monitor tens or
even hundreds of floodgates in a region.

Some previous systems only applied monitoring of water level or other water parameters. These
systems have no automation function for water gate opening and closure. Through different methods
and focuses including GPRS communication [9–11], with their own developed system [12–14], and
water quality monitoring system [15–17], these solutions were only applied for water monitoring.
However, these systems still need human labor to control the water gate and take the necessary
action at the locations. Although some solutions managed to connect multiple nodes from rivers
and reservoirs [18,19], the centralized function is focused only on monitoring water with no online
gate control.

Other solutions combined the water gate automation and monitoring function [20–22]. The gate is
automatically opened and closed by the system based on the warning level of water; then, the particular
information is visualized in the wireless system. However, the override button from the client interface
is not available, which is the most important feature or function required by the manager to decide
when to control the water gates.

In this paper, those functions from different solutions are combined in one system in order to
provide a complete function for the user, especially in these aspects: quick data update, full picture of
IoT clients, and interactive command button. None of the aforementioned solutions evaluated the
performance through these aspects, but only provided the online interface of the system with other
types of performance evaluation.

Water 2020, 12, 502 3 of 18

3. Methodology

This section presents the steps needed to develop, implement, and verify the proposed system.
The main steps needed to develop the proposed system include the following elements:

1. Infrastructural requirements: Setting up the electrical power and connectivity at target floodgates.
2. Floodgate automation: Installing the needed sensors, actuators, and network-ready controllers.
3. Broadcasting gate data: Programming the controllers to publish their gate data to the cloud.
4. Viewing gate data: Capturing, processing, and viewing the data through the IoT framework.
5. Data interpretation: Evaluating the system performance with the data output.

3.1. Infrastructural Requirements

Power requirements depend on the gate size and the torque needed to lift it up, as well as the
frequency of fluctuation of the water levels and, therefore, the need to raise and lower the gate [23,24].
A solar cell can be installed near the gates, or it can be connected to the grid. Connectivity can be
established through wireless hotspots, which have become more capable and cost-effective in recent
years. Wired connection could also be established by extending the LAN cables along with the power
cables discussed above.

This step could be the most challenging of all due to the expected costs. However, the authorities
and city officials could consider this as a long-term investment for their region. Aside from enabling
the proposed IoT-floodgates, the established infrastructure (extended power and connectivity) would
greatly benefit the local communities. It could help boost commerce, enhance social interaction, and
further improve development in these regions.

3.2. Floodgate Automation

There are different types of floodgates and mechanisms; the most common type is the Weir gate
mechanism, shown in Figure 1. In this mechanism, a power screw is used to lift the gate door up or
down. The screw is turned using a wheel mounted on top of the gate. For the purpose of this paper,
a working prototype of this mechanism was developed and built by the authors [25,26]. This weir-type
gate has been commonly used in other works [27–29].

Water 2020, 12, x FOR PEER REVIEW 3 of 18

3. Methodology

This section presents the steps needed to develop, implement, and verify the proposed system.
The main steps needed to develop the proposed system include the following elements:

1. Infrastructural requirements: Setting up the electrical power and connectivity at target
floodgates.

2. Floodgate automation: Installing the needed sensors, actuators, and network-ready controllers.
3. Broadcasting gate data: Programming the controllers to publish their gate data to the cloud.
4. Viewing gate data: Capturing, processing, and viewing the data through the IoT framework.
5. Data interpretation: Evaluating the system performance with the data output.

3.1. Infrastructural Requirements

Power requirements depend on the gate size and the torque needed to lift it up, as well as the
frequency of fluctuation of the water levels and, therefore, the need to raise and lower the gate [23,24].
A solar cell can be installed near the gates, or it can be connected to the grid. Connectivity can be
established through wireless hotspots, which have become more capable and cost-effective in recent
years. Wired connection could also be established by extending the LAN cables along with the power
cables discussed above.

This step could be the most challenging of all due to the expected costs. However, the authorities
and city officials could consider this as a long-term investment for their region. Aside from enabling
the proposed IoT-floodgates, the established infrastructure (extended power and connectivity) would
greatly benefit the local communities. It could help boost commerce, enhance social interaction, and
further improve development in these regions.

3.2. Floodgate Automation

There are different types of floodgates and mechanisms; the most common type is the Weir gate
mechanism, shown in Figure 1. In this mechanism, a power screw is used to lift the gate door up or
down. The screw is turned using a wheel mounted on top of the gate. For the purpose of this paper,
a working prototype of this mechanism was developed and built by the authors [25,26]. This weir-
type gate has been commonly used in other works [27–29].

The developed prototype shows how this mechanism could be automated. The screw is
connected to an electrical motor through a gearing system. The motor is controlled by a network-
ready controller, which is also connected to the sensors measuring the water level and facilitating the
gate automation [30].

Three water gate prototypes were developed in this work to demonstrate the centralized system
with the full information. The two water gate models are in-lab models that were basically modified
from an early stage to improve the gate stability after frequent usage and to make it able to control
the water flow. Both gates were named Gate V1 and Gate V2 as shown in Figures 2 and 3.

(a) (b)

Figure 1. Weir-type floodgate, (a) actual [25] vs. (b) the prototype developed for this work [26]. Figure 1. Weir-type floodgate, (a) actual [25] vs. (b) the prototype developed for this work [26].

The developed prototype shows how this mechanism could be automated. The screw is connected
to an electrical motor through a gearing system. The motor is controlled by a network-ready controller,
which is also connected to the sensors measuring the water level and facilitating the gate automation [30].

Three water gate prototypes were developed in this work to demonstrate the centralized system
with the full information. The two water gate models are in-lab models that were basically modified
from an early stage to improve the gate stability after frequent usage and to make it able to control the
water flow. Both gates were named Gate V1 and Gate V2 as shown in Figures 2 and 3.

Water 2020, 12, 502 4 of 18
Water 2020, 12, x FOR PEER REVIEW 4 of 18

(a) (b)

Figure 2. Actual model of gate: (a) at first stage vs. (b) the modified model, Gate V1

(a) (b)

Figure 3. (a) Gate V2 vs. (b) the water test on Gate V2 with the water pump.

The third prototype, Gate V3, is a large-scale prototype that was built on the site at the Malaysian
Agricultural Research and Development Institute (MARDI) to test the prototype with actual water
flow (Figure 4). This prototype consisted of a 5 kg sliding gate, steel platform, and linear actuator
with 150 N payload. The three water gate prototypes demonstrate multiple gate nodes at different
locations. The data from those locations will be transferred to the cloud through a wireless network-
ready controller. The hardware components of these three prototypes are shown in Figures 5–7.

Figure 2. Actual model of gate: (a) at first stage vs. (b) the modified model, Gate V1.

Water 2020, 12, x FOR PEER REVIEW 4 of 18

(a) (b)

Figure 2. Actual model of gate: (a) at first stage vs. (b) the modified model, Gate V1

(a) (b)

Figure 3. (a) Gate V2 vs. (b) the water test on Gate V2 with the water pump.

The third prototype, Gate V3, is a large-scale prototype that was built on the site at the Malaysian
Agricultural Research and Development Institute (MARDI) to test the prototype with actual water
flow (Figure 4). This prototype consisted of a 5 kg sliding gate, steel platform, and linear actuator
with 150 N payload. The three water gate prototypes demonstrate multiple gate nodes at different
locations. The data from those locations will be transferred to the cloud through a wireless network-
ready controller. The hardware components of these three prototypes are shown in Figures 5–7.

Figure 3. (a) Gate V2 vs. (b) the water test on Gate V2 with the water pump.

The third prototype, Gate V3, is a large-scale prototype that was built on the site at the Malaysian
Agricultural Research and Development Institute (MARDI) to test the prototype with actual water
flow (Figure 4). This prototype consisted of a 5 kg sliding gate, steel platform, and linear actuator with
150 N payload. The three water gate prototypes demonstrate multiple gate nodes at different locations.
The data from those locations will be transferred to the cloud through a wireless network-ready
controller. The hardware components of these three prototypes are shown in Figures 5–7.

Water 2020, 12, 502 5 of 18

Water 2020, 12, x FOR PEER REVIEW 5 of 18

(a) (b)

Figure 4. (a) In-field prototype, Gate V3 vs. (b) the water flow during Gate V3 opening.

Figure 5. Gate V1 hardware components.

Figure 6. Gate V2 hardware components.

Figure 4. (a) In-field prototype, Gate V3 vs. (b) the water flow during Gate V3 opening.

Water 2020, 12, x FOR PEER REVIEW 5 of 18

(a) (b)

Figure 4. (a) In-field prototype, Gate V3 vs. (b) the water flow during Gate V3 opening.

Figure 5. Gate V1 hardware components.

Figure 6. Gate V2 hardware components.

Figure 5. Gate V1 hardware components.

Water 2020, 12, x FOR PEER REVIEW 5 of 18

(a) (b)

Figure 4. (a) In-field prototype, Gate V3 vs. (b) the water flow during Gate V3 opening.

Figure 5. Gate V1 hardware components.

Figure 6. Gate V2 hardware components. Figure 6. Gate V2 hardware components.

Water 2020, 12, 502 6 of 18
Water 2020, 12, x FOR PEER REVIEW 6 of 18

Figure 7. Gate V3 hardware components.

3.2.1. Capturing Water Level

To measure the water level of the river/canal, the HC-SR04 ultrasonic sensor was used. This
sensor shoots an ultrasound ping in the direction of an object, and by measuring the time it takes for
its echo to return, the distance between the sensor and the object can be found, as shown in Figure 8.

Figure 8. The HC-SR04 sensor used to measure the water level.

As successfully demonstrated by Texas Instruments [31], when the sensor is positioned to face
the water (by being placed on a pole or a similar fixture), the water height can be found. The
frequency of the ultrasonic ping can be set programmatically, as discussed below. Several works were
done by using the ultrasonic sensor to measure the water level [14,18,32].

For the sensor part, the type of the sensor is not the highlight of this work; it can be modified
and improved with other types of sensors that are more suitable and accurate based on the condition
of the location. In addition to that, the component itself is available and is not the unique method in
this work. However, the utilization of the components with an IoT framework are the main focus to
achieve the centralized and interactive system.

3.2.2. Controller Selection and Programming

For the controller, the authors opted to use Raspberry Pi 3 (RPi). The RPi is a network-ready,
cost-effective computer-on-chip. This allowed the authors to program it to perform the tasks of the
proposed system: capturing and processing sensor data, actuating the gate motor, and publishing the

Figure 7. Gate V3 hardware components.

3.2.1. Capturing Water Level

To measure the water level of the river/canal, the HC-SR04 ultrasonic sensor was used. This sensor
shoots an ultrasound ping in the direction of an object, and by measuring the time it takes for its echo
to return, the distance between the sensor and the object can be found, as shown in Figure 8.

Water 2020, 12, x FOR PEER REVIEW 6 of 18

Figure 7. Gate V3 hardware components.

3.2.1. Capturing Water Level

To measure the water level of the river/canal, the HC-SR04 ultrasonic sensor was used. This
sensor shoots an ultrasound ping in the direction of an object, and by measuring the time it takes for
its echo to return, the distance between the sensor and the object can be found, as shown in Figure 8.

Figure 8. The HC-SR04 sensor used to measure the water level.

As successfully demonstrated by Texas Instruments [31], when the sensor is positioned to face
the water (by being placed on a pole or a similar fixture), the water height can be found. The
frequency of the ultrasonic ping can be set programmatically, as discussed below. Several works were
done by using the ultrasonic sensor to measure the water level [14,18,32].

For the sensor part, the type of the sensor is not the highlight of this work; it can be modified
and improved with other types of sensors that are more suitable and accurate based on the condition
of the location. In addition to that, the component itself is available and is not the unique method in
this work. However, the utilization of the components with an IoT framework are the main focus to
achieve the centralized and interactive system.

3.2.2. Controller Selection and Programming

For the controller, the authors opted to use Raspberry Pi 3 (RPi). The RPi is a network-ready,
cost-effective computer-on-chip. This allowed the authors to program it to perform the tasks of the
proposed system: capturing and processing sensor data, actuating the gate motor, and publishing the

Figure 8. The HC-SR04 sensor used to measure the water level.

As successfully demonstrated by Texas Instruments [31], when the sensor is positioned to face the
water (by being placed on a pole or a similar fixture), the water height can be found. The frequency
of the ultrasonic ping can be set programmatically, as discussed below. Several works were done by
using the ultrasonic sensor to measure the water level [14,18,32].

For the sensor part, the type of the sensor is not the highlight of this work; it can be modified
and improved with other types of sensors that are more suitable and accurate based on the condition
of the location. In addition to that, the component itself is available and is not the unique method in
this work. However, the utilization of the components with an IoT framework are the main focus to
achieve the centralized and interactive system.

3.2.2. Controller Selection and Programming

For the controller, the authors opted to use Raspberry Pi 3 (RPi). The RPi is a network-ready,
cost-effective computer-on-chip. This allowed the authors to program it to perform the tasks of the
proposed system: capturing and processing sensor data, actuating the gate motor, and publishing the

Water 2020, 12, 502 7 of 18

gate data to the cloud. The Arduino does not have the network capability without a physical network
adaptor [33,34]. Figure 9a shows a schematic diagram of the developed system.

Water 2020, 12, x FOR PEER REVIEW 7 of 18

gate data to the cloud. The Arduino does not have the network capability without a physical network
adaptor [33,34]. Figure 9a shows a schematic diagram of the developed system.

(a) (b)

Figure 9. Setup for the Raspberry Pi controller, (a) setup of the hardware components, (b) Controller
program algorithm.

Aside from connecting all the input/output devices, the RPi has a built-in network adaptor,
which allows it to connect to the Internet via Wi-Fi, a cable, or Bluetooth; the authors opted for a Wi-
Fi connection. Figure 9b shows the algorithm of the RPi controller program developed for the purpose
of this work. The figure shows only the pseudo code, methods, and libraries used. The actual program
can be found in [35]. Excerpts from the developed program are shown in Figures 10–13. The figures
show the key elements of the developed code, namely the sensor data processing, motor control, and
IoT.

Figure 10. Code Excerpts: using sensor data to measure water level.

As seen in Figure 10, the sensor shoots the ping for just 0.00001th of a second and then, it
measures the time for the echo to return. Next, knowing that the speed of the ping is 343 s (speed of
sound at sea level), as also provided by the sensor manufacturer, the distance can then be calculated.
The time needs to be divided by two because the echo_duration is the time of the ultrasonic pulse
travel in one trip to the water and back again. Hence, the distance calculation in the python script
follows the method in Figure 11. This, in turn, facilitates the opening and closing of the water gate.

Figure 9. Setup for the Raspberry Pi controller, (a) setup of the hardware components, (b) Controller
program algorithm.

Aside from connecting all the input/output devices, the RPi has a built-in network adaptor, which
allows it to connect to the Internet via Wi-Fi, a cable, or Bluetooth; the authors opted for a Wi-Fi
connection. Figure 9b shows the algorithm of the RPi controller program developed for the purpose of
this work. The figure shows only the pseudo code, methods, and libraries used. The actual program
can be found in [35]. Excerpts from the developed program are shown in Figures 10–13. The figures
show the key elements of the developed code, namely the sensor data processing, motor control,
and IoT.

Water 2020, 12, x FOR PEER REVIEW 7 of 18

gate data to the cloud. The Arduino does not have the network capability without a physical network
adaptor [33,34]. Figure 9a shows a schematic diagram of the developed system.

(a) (b)

Figure 9. Setup for the Raspberry Pi controller, (a) setup of the hardware components, (b) Controller
program algorithm.

Aside from connecting all the input/output devices, the RPi has a built-in network adaptor,
which allows it to connect to the Internet via Wi-Fi, a cable, or Bluetooth; the authors opted for a Wi-
Fi connection. Figure 9b shows the algorithm of the RPi controller program developed for the purpose
of this work. The figure shows only the pseudo code, methods, and libraries used. The actual program
can be found in [35]. Excerpts from the developed program are shown in Figures 10–13. The figures
show the key elements of the developed code, namely the sensor data processing, motor control, and
IoT.

Figure 10. Code Excerpts: using sensor data to measure water level.

As seen in Figure 10, the sensor shoots the ping for just 0.00001th of a second and then, it
measures the time for the echo to return. Next, knowing that the speed of the ping is 343 s (speed of
sound at sea level), as also provided by the sensor manufacturer, the distance can then be calculated.
The time needs to be divided by two because the echo_duration is the time of the ultrasonic pulse
travel in one trip to the water and back again. Hence, the distance calculation in the python script
follows the method in Figure 11. This, in turn, facilitates the opening and closing of the water gate.

Figure 10. Code Excerpts: using sensor data to measure water level.Water 2020, 12, x FOR PEER REVIEW 8 of 18

Figure 11. Distance calculation for ultrasonic sensor [36].

Figure 12 shows a snippet of the program that controls the opening of the gate, namely the
open_gate() function. As seen in the figure, the open_gate() function first checks if the gate is not
already opened; only then, it would proceed by turning the motor in the direction needed to lift the
gate up, clockwise or counter-clockwise, based on its mechanical configuration.

Figure 12. Code Excerpts: controlling motor to open the gate.

As for the gate data, which includes gate id, status, water level, and other related data, it is
broadcasted through the IoT framework using the update_iot() function, as shown in Figure 13.

Figure 13. Code Excerpts: using open-source IoT libraries and services, such as Dweet.io.

The gate_id is a unique number assigned to each gate to differentiate it among other gates in the
target region. After packaging the gate data in a JSON (JavaScript Object Notation) object, which is a
data format understood by all cloud services, browsers, and databases, the data is then published to
the cloud through Dweet.io, an open-source IoT service, as discussed in detail in the next section.

3.3. Broadcasting Gate Data

In order to allow the stakeholders to remotely monitor the floodgates through the IoT
framework, the controller needs to publish its data to the cloud. The process is shown symbolically
in Figure 14. As shown in the figure, publishing gate data to the cloud involves the following
processes:

Figure 11. Distance calculation for ultrasonic sensor [36].

Water 2020, 12, 502 8 of 18

Water 2020, 12, x FOR PEER REVIEW 8 of 18

Figure 11. Distance calculation for ultrasonic sensor [36].

Figure 12 shows a snippet of the program that controls the opening of the gate, namely the
open_gate() function. As seen in the figure, the open_gate() function first checks if the gate is not
already opened; only then, it would proceed by turning the motor in the direction needed to lift the
gate up, clockwise or counter-clockwise, based on its mechanical configuration.

Figure 12. Code Excerpts: controlling motor to open the gate.

As for the gate data, which includes gate id, status, water level, and other related data, it is
broadcasted through the IoT framework using the update_iot() function, as shown in Figure 13.

Figure 13. Code Excerpts: using open-source IoT libraries and services, such as Dweet.io.

The gate_id is a unique number assigned to each gate to differentiate it among other gates in the
target region. After packaging the gate data in a JSON (JavaScript Object Notation) object, which is a
data format understood by all cloud services, browsers, and databases, the data is then published to
the cloud through Dweet.io, an open-source IoT service, as discussed in detail in the next section.

3.3. Broadcasting Gate Data

In order to allow the stakeholders to remotely monitor the floodgates through the IoT
framework, the controller needs to publish its data to the cloud. The process is shown symbolically
in Figure 14. As shown in the figure, publishing gate data to the cloud involves the following
processes:

Figure 12. Code Excerpts: controlling motor to open the gate.

Water 2020, 12, x FOR PEER REVIEW 8 of 18

Figure 11. Distance calculation for ultrasonic sensor [36].

Figure 12 shows a snippet of the program that controls the opening of the gate, namely the
open_gate() function. As seen in the figure, the open_gate() function first checks if the gate is not
already opened; only then, it would proceed by turning the motor in the direction needed to lift the
gate up, clockwise or counter-clockwise, based on its mechanical configuration.

Figure 12. Code Excerpts: controlling motor to open the gate.

As for the gate data, which includes gate id, status, water level, and other related data, it is
broadcasted through the IoT framework using the update_iot() function, as shown in Figure 13.

Figure 13. Code Excerpts: using open-source IoT libraries and services, such as Dweet.io.

The gate_id is a unique number assigned to each gate to differentiate it among other gates in the
target region. After packaging the gate data in a JSON (JavaScript Object Notation) object, which is a
data format understood by all cloud services, browsers, and databases, the data is then published to
the cloud through Dweet.io, an open-source IoT service, as discussed in detail in the next section.

3.3. Broadcasting Gate Data

In order to allow the stakeholders to remotely monitor the floodgates through the IoT
framework, the controller needs to publish its data to the cloud. The process is shown symbolically
in Figure 14. As shown in the figure, publishing gate data to the cloud involves the following
processes:

Figure 13. Code Excerpts: using open-source IoT libraries and services, such as Dweet.io.

As seen in Figure 10, the sensor shoots the ping for just 0.00001th of a second and then, it measures
the time for the echo to return. Next, knowing that the speed of the ping is 343 s (speed of sound at
sea level), as also provided by the sensor manufacturer, the distance can then be calculated. The time
needs to be divided by two because the echo_duration is the time of the ultrasonic pulse travel in
one trip to the water and back again. Hence, the distance calculation in the python script follows the
method in Figure 11. This, in turn, facilitates the opening and closing of the water gate.

Figure 12 shows a snippet of the program that controls the opening of the gate, namely the
open_gate() function. As seen in the figure, the open_gate() function first checks if the gate is not
already opened; only then, it would proceed by turning the motor in the direction needed to lift the
gate up, clockwise or counter-clockwise, based on its mechanical configuration.

As for the gate data, which includes gate id, status, water level, and other related data, it is
broadcasted through the IoT framework using the update_iot() function, as shown in Figure 13.

The gate_id is a unique number assigned to each gate to differentiate it among other gates in the
target region. After packaging the gate data in a JSON (JavaScript Object Notation) object, which is a
data format understood by all cloud services, browsers, and databases, the data is then published to
the cloud through Dweet.io, an open-source IoT service, as discussed in detail in the next section.

3.3. Broadcasting Gate Data

In order to allow the stakeholders to remotely monitor the floodgates through the IoT framework,
the controller needs to publish its data to the cloud. The process is shown symbolically in Figure 14.
As shown in the figure, publishing gate data to the cloud involves the following processes:Water 2020, 12, x FOR PEER REVIEW 9 of 18

Figure 14. Publishing gate data to the cloud.

Restructuring the data: As the data is to be transferred over webservers and clients, it needs to
be packaged in one of the two standard IoT messaging formats: the JSON format, as shown in Figure
13, or the MQTT (message queuing telemetry transport) protocol [37,38]. There are operational
differences between the two formats, but most IoT clients/services can handle both.

IoT gateway: It is a network-ready device that connects the controller to IoT services and
applications. For the Raspberry Pi, which is network-ready, there is no need for a separate device,
but rather a configuration patch, as discussed in [38]. For non-network-ready controllers, such as the
popular Arduino controllers, a physical gateway is needed.

Publishing web-ready data to the cloud: Once the networking setup is completed and the IoT
protocols are implemented, the JSON or MQTT formatted data are published to the cloud by hard-
coding the JSON or MQTT publish commands into the controller program. This can be further
automated using a number of IoT data publishing services, such as Dweet.io. As seen in Figure 13,
with Dweet.io, all the programmer needs to do is declare the structure of the data. Be it JSON, MQTT,
or others, Dweet.io (through its Python client, Dweepy), will do the rest; it would Dweet, or Data
Tweet the needed information.

3.4. Viewing Gate Data

Once converted to a web-ready format (JSON, MQTT, or others), the gate data can then be
viewed in any client that supports and understands these formats. This includes most operating
systems, web-applications, as well as android and iOS apps, as shown in Figure 10. Once again, a
web developer or an app developer could create a custom-client to view the IoT data or utilize any
of the available open-source IoT solutions for viewing data, such as ThingsBoard.io, FreeBoard.io, or
others; both approaches have advantages and disadvantages. For this work, especially in the early
testing stages, the authors opted to use FreeBoard.io, as shown in Figure 15.

Using Freeboard.io is similar to using social media such as Facebook. The developer logs into
Freeboard, adds the data source, and selects the viewing options. Referring to Figure 9, the multiple
gates are shown with different names: Gate V1, V2, and V3. From the cloud, the information including
water level, gate status, temperature, humidity, and location of those water gate prototypes are
published in Freeboard.io.

Figure 14. Publishing gate data to the cloud.

Water 2020, 12, 502 9 of 18

Restructuring the data: As the data is to be transferred over webservers and clients, it needs to be
packaged in one of the two standard IoT messaging formats: the JSON format, as shown in Figure 13,
or the MQTT (message queuing telemetry transport) protocol [37,38]. There are operational differences
between the two formats, but most IoT clients/services can handle both.

IoT gateway: It is a network-ready device that connects the controller to IoT services and
applications. For the Raspberry Pi, which is network-ready, there is no need for a separate device,
but rather a configuration patch, as discussed in [38]. For non-network-ready controllers, such as the
popular Arduino controllers, a physical gateway is needed.

Publishing web-ready data to the cloud: Once the networking setup is completed and the
IoT protocols are implemented, the JSON or MQTT formatted data are published to the cloud by
hard-coding the JSON or MQTT publish commands into the controller program. This can be further
automated using a number of IoT data publishing services, such as Dweet.io. As seen in Figure 13,
with Dweet.io, all the programmer needs to do is declare the structure of the data. Be it JSON, MQTT,
or others, Dweet.io (through its Python client, Dweepy), will do the rest; it would Dweet, or Data
Tweet the needed information.

3.4. Viewing Gate Data

Once converted to a web-ready format (JSON, MQTT, or others), the gate data can then be viewed
in any client that supports and understands these formats. This includes most operating systems,
web-applications, as well as android and iOS apps, as shown in Figure 10. Once again, a web developer
or an app developer could create a custom-client to view the IoT data or utilize any of the available
open-source IoT solutions for viewing data, such as ThingsBoard.io, FreeBoard.io, or others; both
approaches have advantages and disadvantages. For this work, especially in the early testing stages,
the authors opted to use FreeBoard.io, as shown in Figure 15.

Using Freeboard.io is similar to using social media such as Facebook. The developer logs into
Freeboard, adds the data source, and selects the viewing options. Referring to Figure 9, the multiple
gates are shown with different names: Gate V1, V2, and V3. From the cloud, the information including
water level, gate status, temperature, humidity, and location of those water gate prototypes are
published in Freeboard.io.

Water 2020, 12, 502 10 of 18

Water 2020, 12, x FOR PEER REVIEW 10 of 18

Figure 15. Publishing gate data to the cloud.

3.5. Data Interpretation

To prove that the centralized water management system is effective, the data must be collected,
and the developed system needs to be evaluated from the data. There are three main parameters that
need to be tested on the water gates and the system, which are the data update rate, percentage of
data completion, and response time (Figure 16).

Data update rate is the delay time of the system when the data from the controller terminal is
updated to the IoT Client, Freeboard.io. The average data update rate of each water gate is calculated
from the collected data of the delay time of the water level update. From that result, the authors can
evaluate how fast the developed centralized water monitoring system functions compared to the
current practice as well as the previous solutions.

The percentage of the data completion is evaluated by how many features/data in the IoT Client
are updated compared to the number of the total aspect features in one system. The IoT Client should
demonstrate 100% of data completion to show the full picture of the monitored data.

The response time is the opposite of the data update rate, which is the time of signal update from
the developed open and close buttons from the IoT Client to the controller of each water gate. In other
words, it is the time between clicking the override button and the motor response.

Figure 15. Publishing gate data to the cloud.

3.5. Data Interpretation

To prove that the centralized water management system is effective, the data must be collected,
and the developed system needs to be evaluated from the data. There are three main parameters that
need to be tested on the water gates and the system, which are the data update rate, percentage of data
completion, and response time (Figure 16).

Data update rate is the delay time of the system when the data from the controller terminal is
updated to the IoT Client, Freeboard.io. The average data update rate of each water gate is calculated
from the collected data of the delay time of the water level update. From that result, the authors
can evaluate how fast the developed centralized water monitoring system functions compared to the
current practice as well as the previous solutions.

The percentage of the data completion is evaluated by how many features/data in the IoT Client
are updated compared to the number of the total aspect features in one system. The IoT Client should
demonstrate 100% of data completion to show the full picture of the monitored data.

Water 2020, 12, 502 11 of 18

The response time is the opposite of the data update rate, which is the time of signal update from
the developed open and close buttons from the IoT Client to the controller of each water gate. In other
words, it is the time between clicking the override button and the motor response.Water 2020, 12, x FOR PEER REVIEW 11 of 18

Figure 16. Time interval would be calculated for the data transmission between the local Raspberry
Pi terminal and the Freeboard.io.

4. Results and Discussion

4.1. Data Update Rate

The data below were collected from the three different water gates: Gates V1, V2, and V3. Gates
V1 and V2 were from the lab location and Gate V3 was from the in-field location. For every water
level update and gate status update, the update rates were collected during a few cycles of gate
opening and closure.

Figure 17. Gate V1 water level and data update rate.

Figure 16. Time interval would be calculated for the data transmission between the local Raspberry Pi
terminal and the Freeboard.io.

4. Results and Discussion

4.1. Data Update Rate

The data below were collected from the three different water gates: Gates V1, V2, and V3. Gates
V1 and V2 were from the lab location and Gate V3 was from the in-field location. For every water level
update and gate status update, the update rates were collected during a few cycles of gate opening
and closure.

In Figure 17, Gate V1 opened four times with a longer update rate of over 7 s compared to the
data update rate when it is closed. The opening of the gate takes a few seconds before updating the
data to the IoT Cloud. In the IoT framework, the open command was set with 5 s of the motor rotation.
The average data update rate was calculated as 2.57 s for every update.

Water 2020, 12, 502 12 of 18

Water 2020, 12, x FOR PEER REVIEW 11 of 18

Figure 16. Time interval would be calculated for the data transmission between the local Raspberry
Pi terminal and the Freeboard.io.

4. Results and Discussion

4.1. Data Update Rate

The data below were collected from the three different water gates: Gates V1, V2, and V3. Gates
V1 and V2 were from the lab location and Gate V3 was from the in-field location. For every water
level update and gate status update, the update rates were collected during a few cycles of gate
opening and closure.

Figure 17. Gate V1 water level and data update rate. Figure 17. Gate V1 water level and data update rate.

Similarly, as shown in Figure 18, some data update rates of the in-lab Gate V2 were higher during
the gate-opening phase because the motor rate was set for a few seconds to ensure the gate was fully
opened. As the water level was higher than 5 cm, the water gate opened to reduce the water level.
The average update rate for this gate was 2.93 s per update.

Water 2020, 12, x FOR PEER REVIEW 12 of 18

In Figure 17, Gate V1 opened four times with a longer update rate of over 7 s compared to the
data update rate when it is closed. The opening of the gate takes a few seconds before updating the
data to the IoT Cloud. In the IoT framework, the open command was set with 5 s of the motor rotation.
The average data update rate was calculated as 2.57 s for every update.

Similarly, as shown in Figure 18, some data update rates of the in-lab Gate V2 were higher during
the gate-opening phase because the motor rate was set for a few seconds to ensure the gate was fully
opened. As the water level was higher than 5 cm, the water gate opened to reduce the water level.
The average update rate for this gate was 2.93 s per update.

Figure 18. Gate V2 water level and data update rate.

Figure 19. Gate V3 water level and data update rate.

Figure 19 shows the three long cycles of the water gate opening and closure. This in-field water
gate updated the water level data together with other information with an average of 2.14 s of update
rate, from the controller terminal to the IoT Client. The maximum water level was set at 45 cm, which
caused the water level to increase slowly. During the closed phase, the water level increased over
time and reached the maximum limit, and then the gate opened with 10 s of the motor rate.

Figure 18. Gate V2 water level and data update rate.

Figure 19 shows the three long cycles of the water gate opening and closure. This in-field water
gate updated the water level data together with other information with an average of 2.14 s of update
rate, from the controller terminal to the IoT Client. The maximum water level was set at 45 cm, which
caused the water level to increase slowly. During the closed phase, the water level increased over time
and reached the maximum limit, and then the gate opened with 10 s of the motor rate.

Water 2020, 12, 502 13 of 18

Water 2020, 12, x FOR PEER REVIEW 12 of 18

In Figure 17, Gate V1 opened four times with a longer update rate of over 7 s compared to the
data update rate when it is closed. The opening of the gate takes a few seconds before updating the
data to the IoT Cloud. In the IoT framework, the open command was set with 5 s of the motor rotation.
The average data update rate was calculated as 2.57 s for every update.

Similarly, as shown in Figure 18, some data update rates of the in-lab Gate V2 were higher during
the gate-opening phase because the motor rate was set for a few seconds to ensure the gate was fully
opened. As the water level was higher than 5 cm, the water gate opened to reduce the water level.
The average update rate for this gate was 2.93 s per update.

Figure 18. Gate V2 water level and data update rate.

Figure 19. Gate V3 water level and data update rate.

Figure 19 shows the three long cycles of the water gate opening and closure. This in-field water
gate updated the water level data together with other information with an average of 2.14 s of update
rate, from the controller terminal to the IoT Client. The maximum water level was set at 45 cm, which
caused the water level to increase slowly. During the closed phase, the water level increased over
time and reached the maximum limit, and then the gate opened with 10 s of the motor rate.

Figure 19. Gate V3 water level and data update rate.

From all of the data update rates of those three water gates, the authors can conclude that the data
transmission from each location to the Freeboard.io only takes less than 3 s, which proves that the
developed water management system can monitor the information faster than the current practice,
which is through human updates to the management body.

4.2. Percentage of Data Completion

In this subsection, the results are only the images from the IoT client that show the updated
features in one time. The images show whether the data completion is full or partial.

Figure 20 shows the update was only from one active node at Gate V3, including the data of water
level (gauge and level trend), temperature, and humidity of air. The other two nodes only showed the
previous update of the water level, implying that the status of both gates were not active at that time.
The IoT Client in Figure 14 only demonstrates that 1/3 of the required data were updated from the
controllers. Thus, the data completion was only 33.33%.

Water 2020, 12, x FOR PEER REVIEW 13 of 18

From all of the data update rates of those three water gates, the authors can conclude that the
data transmission from each location to the Freeboard.io only takes less than 3 s, which proves that
the developed water management system can monitor the information faster than the current
practice, which is through human updates to the management body.

4.2. Percentage of Data Completion

In this subsection, the results are only the images from the IoT client that show the updated
features in one time. The images show whether the data completion is full or partial.

Figure 20 shows the update was only from one active node at Gate V3, including the data of
water level (gauge and level trend), temperature, and humidity of air. The other two nodes only
showed the previous update of the water level, implying that the status of both gates were not active
at that time. The IoT Client in Figure 14 only demonstrates that 1/3 of the required data were updated
from the controllers. Thus, the data completion was only 33.33%.

Compared to Figure 21, only two gates updated the particular data, which were Gate V2 and
V3. Gate V1 stopped updating after publishing the information to the cloud several times. Although
the water pump was switched on, the water level did not increase over time because of the
disconnected system. The IoT Client from Freeboard at that time showed 2/3 of data completion.

Figure 22 demonstrates the full picture of the IoT Client, which showed all parameter updates
from different nodes of the water gates including water level, gate status, temperature, humidity, and
location of the individual gate. Hence, the IoT Client basically showed 100% of data completion when
each node actively updated the information through wireless connection. From that, the authors can
state that this developed system is suitable for the user from the water management to get a full
picture of all the water properties.

Figure 20. 1/3 of data completion from the IoT Client. Figure 20. 1/3 of data completion from the IoT Client.

Water 2020, 12, 502 14 of 18

Compared to Figure 21, only two gates updated the particular data, which were Gate V2 and V3.
Gate V1 stopped updating after publishing the information to the cloud several times. Although the
water pump was switched on, the water level did not increase over time because of the disconnected
system. The IoT Client from Freeboard at that time showed 2/3 of data completion.Water 2020, 12, x FOR PEER REVIEW 14 of 18

Figure 21. 2/3 of data completion from the IoT Client (Gate V1 stop updating).

Figure 22. 100% of data completion from the IoT Client.

4.3. Response Time

Response time is the rate of the signal from the IoT Client to the controller at the water gate
location. The override button is under development by using Netpie.io (Figure 23), another ready-
made IoT Client that can provide the button feature compared to Freeboard.io. The response time is
the same as the rate of data update because both conduct a two-way data transmission. Hence, the
response time also averages between 1 to 3 s in order to send the open and close command from the
IoT Client to the controllers.

Figure 21. 2/3 of data completion from the IoT Client (Gate V1 stop updating).

Figure 22 demonstrates the full picture of the IoT Client, which showed all parameter updates
from different nodes of the water gates including water level, gate status, temperature, humidity, and
location of the individual gate. Hence, the IoT Client basically showed 100% of data completion when
each node actively updated the information through wireless connection. From that, the authors can
state that this developed system is suitable for the user from the water management to get a full picture
of all the water properties.

Water 2020, 12, x FOR PEER REVIEW 14 of 18

Figure 21. 2/3 of data completion from the IoT Client (Gate V1 stop updating).

Figure 22. 100% of data completion from the IoT Client.

4.3. Response Time

Response time is the rate of the signal from the IoT Client to the controller at the water gate
location. The override button is under development by using Netpie.io (Figure 23), another ready-
made IoT Client that can provide the button feature compared to Freeboard.io. The response time is
the same as the rate of data update because both conduct a two-way data transmission. Hence, the
response time also averages between 1 to 3 s in order to send the open and close command from the
IoT Client to the controllers.

Figure 22. 100% of data completion from the IoT Client.

Water 2020, 12, 502 15 of 18

4.3. Response Time

Response time is the rate of the signal from the IoT Client to the controller at the water gate location.
The override button is under development by using Netpie.io (Figure 23), another ready-made IoT
Client that can provide the button feature compared to Freeboard.io. The response time is the same as
the rate of data update because both conduct a two-way data transmission. Hence, the response time
also averages between 1 to 3 s in order to send the open and close command from the IoT Client to
the controllers.Water 2020, 12, x FOR PEER REVIEW 15 of 18

Figure 23. Button function in NETPIE.io.

From the results presented in Sections 4.1–4.3, the authors can conclude that the developed
system manages water through multiple water gates. The developed system is centralized because it
can monitor the related information of different water gates in real-time with a quick data update
and a full picture from the IoT Client. Additionally, the system not only implemented an automation
feature, but also provided a two-way communication that facilitates the interaction between the client
and the water gates. The client can control the water gates after getting and evaluating the full picture
from the IoT Client, through the override button that sends the command to each water gate. Thus,
the developed water management system is not only centralized and automated, but also interactive.

5. Conclusions

This paper presents the development steps needed to utilize the IoT to develop a Centralized
and Interactive Water Management system. Apart from the cost of equipment, the technology used
is completely open-source, and thus, it is open for customization, extension, and future development
and improvement. The HC-SR04 ultrasonic sensor was used to measure the level of water in real
time. This information was captured by the Raspberry Pi, where it was packaged in JSON format,
and published to the cloud.

Extensive use of IoT solutions and services was implemented in this work. However, a custom
IoT client was developed for the centralized monitoring platform. This combination made it possible
to develop parts of the proposed system.

The success of the working prototype provided a working ground for the on-site
implementation and testing. Aside from the hardware implementation, more robust sensor choice
and infrastructural setup, the developed software, IoT solutions, and networking protocols remain
the same.

There is plenty of room for improvement in this work: more sensors could be added to capture
more relevant data, and remote control of the gates could be developed once the required networking
setup is achieved. Other than that, the power source setup can be improved by adding a solar power
system after the power usage research, battery consideration and transformer selection.

In the real application, the system should use a suitable sensor that can withstand the
environmental effect, especially the rain and storm effect. Thus, the selected sensors need to be
waterproof for deployment.

The available data transmission technologies can be selected based on the situation of the
application/field, the advantages and shortcoming of the technologies. Some aspects need to be
considered including the cost, range, and battery life. This project was started with Wi-Fi technology

Figure 23. Button function in NETPIE.io.

From the results presented in Sections 4.1–4.3, the authors can conclude that the developed system
manages water through multiple water gates. The developed system is centralized because it can
monitor the related information of different water gates in real-time with a quick data update and a
full picture from the IoT Client. Additionally, the system not only implemented an automation feature,
but also provided a two-way communication that facilitates the interaction between the client and
the water gates. The client can control the water gates after getting and evaluating the full picture
from the IoT Client, through the override button that sends the command to each water gate. Thus,
the developed water management system is not only centralized and automated, but also interactive.

5. Conclusions

This paper presents the development steps needed to utilize the IoT to develop a Centralized
and Interactive Water Management system. Apart from the cost of equipment, the technology used is
completely open-source, and thus, it is open for customization, extension, and future development
and improvement. The HC-SR04 ultrasonic sensor was used to measure the level of water in real
time. This information was captured by the Raspberry Pi, where it was packaged in JSON format, and
published to the cloud.

Extensive use of IoT solutions and services was implemented in this work. However, a custom
IoT client was developed for the centralized monitoring platform. This combination made it possible
to develop parts of the proposed system.

The success of the working prototype provided a working ground for the on-site implementation
and testing. Aside from the hardware implementation, more robust sensor choice and infrastructural
setup, the developed software, IoT solutions, and networking protocols remain the same.

There is plenty of room for improvement in this work: more sensors could be added to capture
more relevant data, and remote control of the gates could be developed once the required networking

Water 2020, 12, 502 16 of 18

setup is achieved. Other than that, the power source setup can be improved by adding a solar power
system after the power usage research, battery consideration and transformer selection.

In the real application, the system should use a suitable sensor that can withstand the environmental
effect, especially the rain and storm effect. Thus, the selected sensors need to be waterproof
for deployment.

The available data transmission technologies can be selected based on the situation of the
application/field, the advantages and shortcoming of the technologies. Some aspects need to be
considered including the cost, range, and battery life. This project was started with Wi-Fi technology in
the early stage for the water gate test. For future works, the utilization of LoRa technology is expected
in order to manage multiple gates that are scattered over a large area.

Author Contributions: Conceptualization, S.S.H.H. and M.H.M.; Methodology, S.S.H.H. and M.H.M.; Validation,
S.S.H.H. and M.T.H.S.; Formal analysis, S.S.H.H. and M.H.M.; Investigation, M.H.M.; Resources, S.S.H.H. and
M.T.H.S.; Data curation, S.S.H.H. and M.H.M.; Writing—original draft preparation, S.S.H.H., M.T.H.S., M.H.M.
and S.H.L.; Writing—review and editing, S.S.H.H., M.T.H.S. and S.H.L.; Visualization, S.S.H.H., & M.H.M.;
Supervision, M.T.H.S.; Project administration, M.T.H.S.; Funding acquisition M.T.H.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Higher Education Center of Excellence (HICoE), Ministry of Higher
Education, Malaysia.

Acknowledgments: This work is supported by UNITEN and UPM under GP-IPS grant (vote: 9647100) and
Higher Institution Centre of Excellence (HICoE). The authors would like to express their gratitude and sincere
appreciation to the Centre of Advanced Mechatronics and Robotics (CaMaRo), Universiti Tenaga Nasional,
Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia and Laboratory of
Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia
(HiCOE) for their close collaboration in this project.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Guha-Sapir, D.; Philippe, H.; Wallemacq, P.; Below, R. Annual Disaster Statistical Review 2016. Available
online: http://emdat.be/sites/default/files/adsr_2016.pdf (accessed on 26 September 2019).

2. United Nations Office for Disaster Risk Reduction. Global Assessment Report on Disaster Risk Reduction
2019. Available online: https://gar.unisdr.org/sites/default/files/reports/2019-05/full_gar_report.pdf (accessed
on 23 September 2019).

3. Eco-Business Research. Flood Controls in Southeast Asia. Available online: http://www.eco-business.com/

media/uploads/magazine/flood_controls_in_southeast_asia_2017.pdf (accessed on 1 October 2019).
4. Sonali, S.S. Wastewater in Vientiane: Natural and Built Solutions. Available online: http://sea.iwmi.cgiar.org/

2017/03/22/wastewater-vientiane-natural-built-solutions/ (accessed on 2 October 2019).
5. Masseroni, D.; Moller, P.; Tyrell, R.; Romani, M.; Lasagna, A.; Sali, G.; Facchi, A.; Gandolfi, C. Evaluating

performances of the first automatic system for paddy irrigation in Europe. Agric. Water Manag. 2018, 201,
58–69. [CrossRef]

6. Saha, G.; Parua, A.; Sushmitha, R.; Bhat, S. Automatic floodgates control using PLC with added focus
on human safety. In Proceedings of the 2015 International Conference on Control, Instrumentation,
Communication and Computational Technologies (ICCICCT), Kumaracoil, India, 18–19 December 2015;
pp. 417–422.

7. Johnston, S.; Kroon, F.; Slavich, P.; Cibilic, A.; Bruce, A. Restoring the Balance: Guidelines for Managing
Floodgates and Drainage Systems on Coastal Floodplains. Available online: http://www.dpi.nsw.gov.au/__
data/assets/pdf_file/0007/167875/restoring-balance-guidelines.pdf (accessed on 1 October 2019).

8. LEGO Education. Design an Automatic Lego Floodgate to Control Water According to Various Precipitation
Patterns. Available online: https://education.lego.com/en-us/lessons/wedo-2-science/prevent-flooding
(accessed on 16 September 2019).

9. Liu, C.; Shao, W.; Zhang, L.; Chen, H.; Jiag, J.; Xiao, Z.; Meng, Y.; Liu, Z.; Chen, Y.; Li, G. Water Level
Early-Warning Monitor for Power Grid Flood Control. Application Patent CN203672450U, 25 June 2014.

10. Zhu, X.; Liu, M.; Xia, X. Reservoir Flood Control Monitoring System Based on GPRS Communication and
Internet. Application Patent CN105259887A, 20 January 2016.

http://emdat.be/sites/default/files/adsr_2016.pdf
https://gar.unisdr.org/sites/default/files/reports/2019-05/full_gar_report.pdf
http://www.eco-business.com/media/uploads/magazine/flood_controls_in_southeast_asia_2017.pdf
http://www.eco-business.com/media/uploads/magazine/flood_controls_in_southeast_asia_2017.pdf
http://sea.iwmi.cgiar.org/2017/03/22/wastewater-vientiane-natural-built-solutions/
http://sea.iwmi.cgiar.org/2017/03/22/wastewater-vientiane-natural-built-solutions/
http://dx.doi.org/10.1016/j.agwat.2017.12.019
http://www.dpi.nsw.gov.au/__data/assets/pdf_file/0007/167875/restoring-balance-guidelines.pdf
http://www.dpi.nsw.gov.au/__data/assets/pdf_file/0007/167875/restoring-balance-guidelines.pdf
https://education.lego.com/en-us/lessons/wedo-2-science/prevent-flooding

Water 2020, 12, 502 17 of 18

11. Yamakawa, K. Water Gate Remote Monitoring System. Patent JP2002190079A, 5 July 2002.
12. Li, B. Farmland Water-Saving Irrigation Monitoring Management Device. Application Patent CN201328292Y,

21 October 2009.
13. Nguyen, T.-D. Energy efficient wireless sensor network and low power consumption station design for

an urban water level monitoring system. In Proceedings of the 2016 3rd National Foundation for Science
and Technology Development Conference on Information and Computer Science (NICS), Danang, Vietnam,
14–16 September 2016; pp. 252–256.

14. Dhandre, N.M.; Kamalasekaran, P.D.; Pandey, P. Dam parameters monitoring system. In Proceedings of the
2016 7th India International Conference on Power Electronics (IICPE), Patiala, India, 17–19 November 2016;
pp. 1–5.

15. Nasser, N.; Ali, A.; Karim, L.; Belhaouari, S. An efficient Wireless Sensor Network-based water quality
monitoring system. In Proceedings of the 2013 ACS International Conference on Computer Systems and
Applications (AICCSA), Ifrane, Morocco, 27–30 May 2013; pp. 1–4.

16. Vacariu, L.; Cret, O.; Hangan, A.; Bacotiu, C. Water Parameters Monitoring on a Cyberwater Platform.
In Proceedings of the 2015 20th International Conference on Control Systems and Computer Science,
Bucharest, Romania, 27–29 May 2015; pp. 797–802.

17. Ilie, A.M.C.; Vaccaro, C.; Rogeiro, J.; Leitao, T.E.; Martins, T. Configuration, programming and implementation
of 3 Smart Water network wireless sensor nodes for assessing the water quality. In Proceedings of the
2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable
Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), San Francisco, CA, USA, 4–8 August 2017; pp. 1–8.

18. Kudva, V.D.; Nayak, P.; Rawat, A.; Anjana, G.R.; Sheetal Kumar, K.R.; Amrutur, B.; Mohan Kumar, M.S.
Towards a real-time campus-scale water balance monitoring system. In Proceedings of the 2015 28th
International Conference on VLSI Design, Bangalore, India, 3–7 January 2015; pp. 87–92.

19. Yang, L.; Jiang, H.; Huang, X. IoT (Internet of Things) Based Centralized Riverbed Water Level Monitoring
System with External Power Supply. Application Patent CN203012525U, 19 June 2013.

20. Zeng, L.; Tang, P.; Cui, F. Internet-of-Things Water Level Monitoring Device. Application Patent
CN105786030A, 20 July 2016.

21. Li, Y.; Bi, Y.W.; Wang, Z.F.; He, J.G.; Wang, Y.T.; Li, X.H.; Li, Z.; Mu, X.D. Intelligent Lock Gate for Flood
Protection Control Device and Its Control Method. Application Patent CN107988995B, 3 September 2019.

22. Rasin, Z.; Hamzah, H.; Aras, M.S.M. Application and evaluation of high power Zigbee based wireless sensor
network in water irrigation control monitoring system. In Proceedings of the 2009 IEEE Symposium on
Industrial Electronics & Applications, Kuala Lumpur, Malaysia, 4–6 October 2009; Volume 2, pp. 548–551.

23. Kamaruddin, N.A.; Tjahjanto, D. Automatic sliding gate used to control water level of a channel in flat urban
area. In Proceedings of the National Seminar on Engineering Technopreneurship, Kuala Lumpur, Malaysia,
23–24 October 2008.

24. Madanhire, I.; Madaka, M.; Mbohwa, C. Design of an automated dam shutter control system: Case study. In
Proceedings of the International Conference on Industrial Engineering and Operations Management (IEOM),
Paris, France, 26–27 July 2018; pp. 2627–2639.

25. FRESNO. Series 7600 Fabricated Canal Gate—Technical Data Sheet. Available online:
https://d2zm9amfddap0m.cloudfront.net/media/resources/Series%207600%20Tech%20Sheet%20update%
20B&165.pdf (accessed on 31 August 2019).

26. Tharvin, R.P.; Thamari, S.; Muhammad, H.B.M.; Kabilan, N.S.; Nur, S.B.A. Developing an IoT Based
Hydro-Gate System that Automate the Closure of Flood Gates Remotely, with and without the Intervention
of Human Operators. Master’s Thesis, University Tenaga Nasional (UNITEN), Bangi, Malaysia, 2017.

27. Al Blair, P.E. Low-Cost Automatic Gates for Irrigation Canals. Available online: http://www.twdb.texas.gov/

publications/reports/contracted_reports/doc/0903580882_harlingen.pdf (accessed on 26 July 2019).
28. Dong, J. A kind of control method and application of the sluice gate on the lower Yellow River. In Proceedings

of the 2011 Second International Conference on Mechanic Automation and Control Engineering, Hohhot,
China, 15–17 July 2011; pp. 16–18.

29. Dolezilek, D.J.; Kalra, A.S. Automation of Water Flow in Networks. U.S. Patent US20140251478A1,
11 September 2014.

https://d2zm9amfddap0m.cloudfront.net/media/resources/Series%207600%20Tech%20Sheet%20update%20B&165.pdf
https://d2zm9amfddap0m.cloudfront.net/media/resources/Series%207600%20Tech%20Sheet%20update%20B&165.pdf
http://www.twdb.texas.gov/publications/reports/contracted_reports/doc/0903580882_harlingen.pdf
http://www.twdb.texas.gov/publications/reports/contracted_reports/doc/0903580882_harlingen.pdf

Water 2020, 12, 502 18 of 18

30. Tech Support. The Ultrasonic Ranging Module HC-SR04. Available online: https://cdn.sparkfun.com/

datasheets/Sensors/Proximity/HCSR04.pdf (accessed on 31 August 2019).
31. Matthew, M. Using Ultrasonic Sensing to Monitor Level in Tanks. Available online: https://www.ti.com/lit/

an/snaa270/snaa270.pdf (accessed on 24 July 2019).
32. Jeswin, C.; Marimuthu, B.; Chithra, K. Ultrasonic water level indicator and controller using AVR

microcontroller. In Proceedings of the 2017 International Conference on Information Communication
and Embedded Systems (ICICES), Chennai, India, 23–24 February 2017; pp. 1–6.

33. Karwati, K.; Kustija, J. Prototype of water level control system. In IOP Conference Series: Materials Science and
Engineering; IOP Publishing: Bristol, UK, 2018; Volume 384, p. 012032.

34. Siddula, S.S.; Babu, P.; Jain, P.C. Water level monitoring and management of dams using IoT. In Proceedings
of the 2018 3rd International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU),
Bhimtal, India, 23–24 February 2018; pp. 1–5.

35. Hajjaj, S.S.H. Github Repository. Available online: https://github.com/sami-s-hajjaj/IoThydrogate (accessed
on 20 October 2018).

36. Hut, T.P. HC-SR04 Ultrasonic Range Sensor on the Raspberry Pi. Available online: https://thepihut.com/

blogs/raspberry-pi-tutorials/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi (accessed on 10 November
2019).

37. Cohn, R.J.; Coppen, R.J.; Banks, A.; Gupta, R. MQTT (Message Queuing Telemetry Transport) Version
3.1.1 Plus Errata 1.0. Available online: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-
errata01-os.html (accessed on 31 August 2019).

38. Bray, T. The I-JSON Message Format. Available online: https://tools.ietf.org/html/rfc7493 (accessed on 4
October 2019).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf
https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf
https://www.ti.com/lit/an/snaa270/snaa270.pdf
https://www.ti.com/lit/an/snaa270/snaa270.pdf
https://github.com/sami-s-hajjaj/IoThydrogate
https://thepihut.com/blogs/raspberry-pi-tutorials/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://thepihut.com/blogs/raspberry-pi-tutorials/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os.html
https://tools.ietf.org/html/rfc7493
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Previous Solutions
	Methodology
	Infrastructural Requirements
	Floodgate Automation
	Capturing Water Level
	Controller Selection and Programming

	Broadcasting Gate Data
	Viewing Gate Data
	Data Interpretation

	Results and Discussion
	Data Update Rate
	Percentage of Data Completion
	Response Time

	Conclusions
	References

