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Abstract: In recent years, floods have increased in frequency and intensity, causing tremendous
hardship. In badly affected regions, mostly the rural areas, Weir-type floodgates are the only measure
against floods. However, these manually operated gates are numerous and scattered over vast areas.
This makes flood mitigation efforts very challenging, which causes severe devastation. Current
solutions to automate the floodgates are expensive, black-boxed, and focused on individual gates.
In this paper, we present a Centralized Flood Monitoring and Coordination System developed through
the Internet of Things (IoT) and other open-source technologies. For this work, we developed a
working prototype of an autonomous floodgate that opens/closes according to the level of water. We
also developed the required program to allow the gate controller to publish its data through the IoT
gateway to the cloud. The data was then captured and viewed on a number of IoT clients, both for
individuals and groups of floodgates, in real time. The developed system proved successful as the
autonomous gates were monitored remotely through the established IoT framework, with room for
future development and improvement. This paper serves as a proof of concept and a preparation for
real, on-site implementation of the IoT-floodgates.

Keywords: Internet of Things (IoT); floodgates; watergates; flood management; open-source
development; network-ready controllers; Raspberry Pi systems; open-source IoT clients

1. Introduction

In recent years, floods have increased in frequency and intensity all over the world, causing
tremendous hardship in affected areas. This has increased the importance of flood mitigation measures
and technologies, such as floodgates [1,2]. Floodgates vary in size and complexity; large and
sophisticated gates can be found in hydro-dams, while small and simple ones are found on rivers or
canals in rural regions, which are usually the most badly hit regions by floods [3]. Crude and simple in
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design, these manually operated gates prevent flash floods, protect paddy fields, and prevent damage
to properties and local infrastructures [3]. However, these gates are numerous and often scattered
over vast rural areas, making flood mitigation efforts and coordination very challenging. As a result,
seasonal floods usually come with severe devastation in these regions [4,5].

In the current practice, there are a few main challenges that need to be addressed. The delivery of
water gate information and other details from different locations to the management or the manager
through the site workers is rather time-consuming. This leads to delayed decision-making from the
manager, especially for the water gates that are significantly related and connected to each other.
For example, the opening and closing of water gates that are installed in a line on the waterway will
change the water level at the next area and the management of the next gates. Hence, quick information
updates from each water gate is important in water management.

Furthermore, the manager needs an overall view from all the regions of the waterways to easily
manage the water gates. In other words, all real-time information needs to be received by the
management body at the same time to make the right responses with water gate controls. Currently,
satellites provide the forecast data for water management and preparation, but the situation also needs
real-time data for quick actions.

Hence, water management needs to be improved with quick information updates and full real-time
monitoring. Apart from these aspects, the management also needs to be able to directly control or
override the water gates from the management center. An automation system is not the only required
function for management, but it also needs to be interactive so the manager can take action on the
water gates based on the full picture from the monitoring system.

The proposed solution in this paper is able to manage the challenges above, and provide a quick
information update of the water level and the gates, all information from multiple locations, and an
action button function from the client center.

2. Previous Solutions

Some mechanisms to automate floodgates do exist [6–8], but these efforts are expensive and usually
focused on automating individual gates. Furthermore, they do not allow centralized monitoring of a
group of gates, something the flood mitigation authorities really need as they usually monitor tens or
even hundreds of floodgates in a region.

Some previous systems only applied monitoring of water level or other water parameters. These
systems have no automation function for water gate opening and closure. Through different methods
and focuses including GPRS communication [9–11], with their own developed system [12–14], and
water quality monitoring system [15–17], these solutions were only applied for water monitoring.
However, these systems still need human labor to control the water gate and take the necessary
action at the locations. Although some solutions managed to connect multiple nodes from rivers
and reservoirs [18,19], the centralized function is focused only on monitoring water with no online
gate control.

Other solutions combined the water gate automation and monitoring function [20–22]. The gate is
automatically opened and closed by the system based on the warning level of water; then, the particular
information is visualized in the wireless system. However, the override button from the client interface
is not available, which is the most important feature or function required by the manager to decide
when to control the water gates.

In this paper, those functions from different solutions are combined in one system in order to
provide a complete function for the user, especially in these aspects: quick data update, full picture of
IoT clients, and interactive command button. None of the aforementioned solutions evaluated the
performance through these aspects, but only provided the online interface of the system with other
types of performance evaluation.
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3. Methodology

This section presents the steps needed to develop, implement, and verify the proposed system.
The main steps needed to develop the proposed system include the following elements:

1. Infrastructural requirements: Setting up the electrical power and connectivity at target floodgates.
2. Floodgate automation: Installing the needed sensors, actuators, and network-ready controllers.
3. Broadcasting gate data: Programming the controllers to publish their gate data to the cloud.
4. Viewing gate data: Capturing, processing, and viewing the data through the IoT framework.
5. Data interpretation: Evaluating the system performance with the data output.

3.1. Infrastructural Requirements

Power requirements depend on the gate size and the torque needed to lift it up, as well as the
frequency of fluctuation of the water levels and, therefore, the need to raise and lower the gate [23,24].
A solar cell can be installed near the gates, or it can be connected to the grid. Connectivity can be
established through wireless hotspots, which have become more capable and cost-effective in recent
years. Wired connection could also be established by extending the LAN cables along with the power
cables discussed above.

This step could be the most challenging of all due to the expected costs. However, the authorities
and city officials could consider this as a long-term investment for their region. Aside from enabling
the proposed IoT-floodgates, the established infrastructure (extended power and connectivity) would
greatly benefit the local communities. It could help boost commerce, enhance social interaction, and
further improve development in these regions.

3.2. Floodgate Automation

There are different types of floodgates and mechanisms; the most common type is the Weir gate
mechanism, shown in Figure 1. In this mechanism, a power screw is used to lift the gate door up or
down. The screw is turned using a wheel mounted on top of the gate. For the purpose of this paper,
a working prototype of this mechanism was developed and built by the authors [25,26]. This weir-type
gate has been commonly used in other works [27–29].
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Figure 1. Weir-type floodgate, (a) actual [25] vs. (b) the prototype developed for this work [26]. Figure 1. Weir-type floodgate, (a) actual [25] vs. (b) the prototype developed for this work [26].

The developed prototype shows how this mechanism could be automated. The screw is connected
to an electrical motor through a gearing system. The motor is controlled by a network-ready controller,
which is also connected to the sensors measuring the water level and facilitating the gate automation [30].

Three water gate prototypes were developed in this work to demonstrate the centralized system
with the full information. The two water gate models are in-lab models that were basically modified
from an early stage to improve the gate stability after frequent usage and to make it able to control the
water flow. Both gates were named Gate V1 and Gate V2 as shown in Figures 2 and 3.
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Figure 3. (a) Gate V2 vs. (b) the water test on Gate V2 with the water pump.

The third prototype, Gate V3, is a large-scale prototype that was built on the site at the Malaysian
Agricultural Research and Development Institute (MARDI) to test the prototype with actual water
flow (Figure 4). This prototype consisted of a 5 kg sliding gate, steel platform, and linear actuator with
150 N payload. The three water gate prototypes demonstrate multiple gate nodes at different locations.
The data from those locations will be transferred to the cloud through a wireless network-ready
controller. The hardware components of these three prototypes are shown in Figures 5–7.
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3.2.1. Capturing Water Level

To measure the water level of the river/canal, the HC-SR04 ultrasonic sensor was used. This sensor
shoots an ultrasound ping in the direction of an object, and by measuring the time it takes for its echo
to return, the distance between the sensor and the object can be found, as shown in Figure 8.
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Figure 8. The HC-SR04 sensor used to measure the water level.

As successfully demonstrated by Texas Instruments [31], when the sensor is positioned to face the
water (by being placed on a pole or a similar fixture), the water height can be found. The frequency
of the ultrasonic ping can be set programmatically, as discussed below. Several works were done by
using the ultrasonic sensor to measure the water level [14,18,32].

For the sensor part, the type of the sensor is not the highlight of this work; it can be modified
and improved with other types of sensors that are more suitable and accurate based on the condition
of the location. In addition to that, the component itself is available and is not the unique method in
this work. However, the utilization of the components with an IoT framework are the main focus to
achieve the centralized and interactive system.

3.2.2. Controller Selection and Programming

For the controller, the authors opted to use Raspberry Pi 3 (RPi). The RPi is a network-ready,
cost-effective computer-on-chip. This allowed the authors to program it to perform the tasks of the
proposed system: capturing and processing sensor data, actuating the gate motor, and publishing the
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gate data to the cloud. The Arduino does not have the network capability without a physical network
adaptor [33,34]. Figure 9a shows a schematic diagram of the developed system.
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program algorithm.

Aside from connecting all the input/output devices, the RPi has a built-in network adaptor, which
allows it to connect to the Internet via Wi-Fi, a cable, or Bluetooth; the authors opted for a Wi-Fi
connection. Figure 9b shows the algorithm of the RPi controller program developed for the purpose of
this work. The figure shows only the pseudo code, methods, and libraries used. The actual program
can be found in [35]. Excerpts from the developed program are shown in Figures 10–13. The figures
show the key elements of the developed code, namely the sensor data processing, motor control,
and IoT.
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Restructuring the data: As the data is to be transferred over webservers and clients, it needs to be
packaged in one of the two standard IoT messaging formats: the JSON format, as shown in Figure 13,
or the MQTT (message queuing telemetry transport) protocol [37,38]. There are operational differences
between the two formats, but most IoT clients/services can handle both.

IoT gateway: It is a network-ready device that connects the controller to IoT services and
applications. For the Raspberry Pi, which is network-ready, there is no need for a separate device,
but rather a configuration patch, as discussed in [38]. For non-network-ready controllers, such as the
popular Arduino controllers, a physical gateway is needed.

Publishing web-ready data to the cloud: Once the networking setup is completed and the
IoT protocols are implemented, the JSON or MQTT formatted data are published to the cloud by
hard-coding the JSON or MQTT publish commands into the controller program. This can be further
automated using a number of IoT data publishing services, such as Dweet.io. As seen in Figure 13,
with Dweet.io, all the programmer needs to do is declare the structure of the data. Be it JSON, MQTT,
or others, Dweet.io (through its Python client, Dweepy), will do the rest; it would Dweet, or Data
Tweet the needed information.

3.4. Viewing Gate Data

Once converted to a web-ready format (JSON, MQTT, or others), the gate data can then be viewed
in any client that supports and understands these formats. This includes most operating systems,
web-applications, as well as android and iOS apps, as shown in Figure 10. Once again, a web developer
or an app developer could create a custom-client to view the IoT data or utilize any of the available
open-source IoT solutions for viewing data, such as ThingsBoard.io, FreeBoard.io, or others; both
approaches have advantages and disadvantages. For this work, especially in the early testing stages,
the authors opted to use FreeBoard.io, as shown in Figure 15.

Using Freeboard.io is similar to using social media such as Facebook. The developer logs into
Freeboard, adds the data source, and selects the viewing options. Referring to Figure 9, the multiple
gates are shown with different names: Gate V1, V2, and V3. From the cloud, the information including
water level, gate status, temperature, humidity, and location of those water gate prototypes are
published in Freeboard.io.
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3.5. Data Interpretation

To prove that the centralized water management system is effective, the data must be collected,
and the developed system needs to be evaluated from the data. There are three main parameters that
need to be tested on the water gates and the system, which are the data update rate, percentage of data
completion, and response time (Figure 16).

Data update rate is the delay time of the system when the data from the controller terminal is
updated to the IoT Client, Freeboard.io. The average data update rate of each water gate is calculated
from the collected data of the delay time of the water level update. From that result, the authors
can evaluate how fast the developed centralized water monitoring system functions compared to the
current practice as well as the previous solutions.

The percentage of the data completion is evaluated by how many features/data in the IoT Client
are updated compared to the number of the total aspect features in one system. The IoT Client should
demonstrate 100% of data completion to show the full picture of the monitored data.
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The response time is the opposite of the data update rate, which is the time of signal update from
the developed open and close buttons from the IoT Client to the controller of each water gate. In other
words, it is the time between clicking the override button and the motor response.Water 2020, 12, x FOR PEER REVIEW 11 of 18 
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4. Results and Discussion

4.1. Data Update Rate

The data below were collected from the three different water gates: Gates V1, V2, and V3. Gates
V1 and V2 were from the lab location and Gate V3 was from the in-field location. For every water level
update and gate status update, the update rates were collected during a few cycles of gate opening
and closure.

In Figure 17, Gate V1 opened four times with a longer update rate of over 7 s compared to the
data update rate when it is closed. The opening of the gate takes a few seconds before updating the
data to the IoT Cloud. In the IoT framework, the open command was set with 5 s of the motor rotation.
The average data update rate was calculated as 2.57 s for every update.
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Similarly, as shown in Figure 18, some data update rates of the in-lab Gate V2 were higher during
the gate-opening phase because the motor rate was set for a few seconds to ensure the gate was fully
opened. As the water level was higher than 5 cm, the water gate opened to reduce the water level.
The average update rate for this gate was 2.93 s per update.
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Figure 18. Gate V2 water level and data update rate.

Figure 19 shows the three long cycles of the water gate opening and closure. This in-field water
gate updated the water level data together with other information with an average of 2.14 s of update
rate, from the controller terminal to the IoT Client. The maximum water level was set at 45 cm, which
caused the water level to increase slowly. During the closed phase, the water level increased over time
and reached the maximum limit, and then the gate opened with 10 s of the motor rate.
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From all of the data update rates of those three water gates, the authors can conclude that the data
transmission from each location to the Freeboard.io only takes less than 3 s, which proves that the
developed water management system can monitor the information faster than the current practice,
which is through human updates to the management body.

4.2. Percentage of Data Completion

In this subsection, the results are only the images from the IoT client that show the updated
features in one time. The images show whether the data completion is full or partial.

Figure 20 shows the update was only from one active node at Gate V3, including the data of water
level (gauge and level trend), temperature, and humidity of air. The other two nodes only showed the
previous update of the water level, implying that the status of both gates were not active at that time.
The IoT Client in Figure 14 only demonstrates that 1/3 of the required data were updated from the
controllers. Thus, the data completion was only 33.33%.

Water 2020, 12, x FOR PEER REVIEW 13 of 18 

 

From all of the data update rates of those three water gates, the authors can conclude that the 
data transmission from each location to the Freeboard.io only takes less than 3 s, which proves that 
the developed water management system can monitor the information faster than the current 
practice, which is through human updates to the management body. 

4.2. Percentage of Data Completion 

In this subsection, the results are only the images from the IoT client that show the updated 
features in one time. The images show whether the data completion is full or partial. 

Figure 20 shows the update was only from one active node at Gate V3, including the data of 
water level (gauge and level trend), temperature, and humidity of air. The other two nodes only 
showed the previous update of the water level, implying that the status of both gates were not active 
at that time. The IoT Client in Figure 14 only demonstrates that 1/3 of the required data were updated 
from the controllers. Thus, the data completion was only 33.33%. 

Compared to Figure 21, only two gates updated the particular data, which were Gate V2 and 
V3. Gate V1 stopped updating after publishing the information to the cloud several times. Although 
the water pump was switched on, the water level did not increase over time because of the 
disconnected system. The IoT Client from Freeboard at that time showed 2/3 of data completion. 

Figure 22 demonstrates the full picture of the IoT Client, which showed all parameter updates 
from different nodes of the water gates including water level, gate status, temperature, humidity, and 
location of the individual gate. Hence, the IoT Client basically showed 100% of data completion when 
each node actively updated the information through wireless connection. From that, the authors can 
state that this developed system is suitable for the user from the water management to get a full 
picture of all the water properties. 

 
Figure 20. 1/3 of data completion from the IoT Client. Figure 20. 1/3 of data completion from the IoT Client.



Water 2020, 12, 502 14 of 18

Compared to Figure 21, only two gates updated the particular data, which were Gate V2 and V3.
Gate V1 stopped updating after publishing the information to the cloud several times. Although the
water pump was switched on, the water level did not increase over time because of the disconnected
system. The IoT Client from Freeboard at that time showed 2/3 of data completion.Water 2020, 12, x FOR PEER REVIEW 14 of 18 

 

 
Figure 21. 2/3 of data completion from the IoT Client (Gate V1 stop updating). 

 
Figure 22. 100% of data completion from the IoT Client. 

4.3. Response Time 

Response time is the rate of the signal from the IoT Client to the controller at the water gate 
location. The override button is under development by using Netpie.io (Figure 23), another ready-
made IoT Client that can provide the button feature compared to Freeboard.io. The response time is 
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Figure 21. 2/3 of data completion from the IoT Client (Gate V1 stop updating).

Figure 22 demonstrates the full picture of the IoT Client, which showed all parameter updates
from different nodes of the water gates including water level, gate status, temperature, humidity, and
location of the individual gate. Hence, the IoT Client basically showed 100% of data completion when
each node actively updated the information through wireless connection. From that, the authors can
state that this developed system is suitable for the user from the water management to get a full picture
of all the water properties.
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4.3. Response Time

Response time is the rate of the signal from the IoT Client to the controller at the water gate location.
The override button is under development by using Netpie.io (Figure 23), another ready-made IoT
Client that can provide the button feature compared to Freeboard.io. The response time is the same as
the rate of data update because both conduct a two-way data transmission. Hence, the response time
also averages between 1 to 3 s in order to send the open and close command from the IoT Client to
the controllers.Water 2020, 12, x FOR PEER REVIEW 15 of 18 
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From the results presented in Sections 4.1–4.3, the authors can conclude that the developed system
manages water through multiple water gates. The developed system is centralized because it can
monitor the related information of different water gates in real-time with a quick data update and a
full picture from the IoT Client. Additionally, the system not only implemented an automation feature,
but also provided a two-way communication that facilitates the interaction between the client and
the water gates. The client can control the water gates after getting and evaluating the full picture
from the IoT Client, through the override button that sends the command to each water gate. Thus,
the developed water management system is not only centralized and automated, but also interactive.

5. Conclusions

This paper presents the development steps needed to utilize the IoT to develop a Centralized
and Interactive Water Management system. Apart from the cost of equipment, the technology used is
completely open-source, and thus, it is open for customization, extension, and future development
and improvement. The HC-SR04 ultrasonic sensor was used to measure the level of water in real
time. This information was captured by the Raspberry Pi, where it was packaged in JSON format, and
published to the cloud.

Extensive use of IoT solutions and services was implemented in this work. However, a custom
IoT client was developed for the centralized monitoring platform. This combination made it possible
to develop parts of the proposed system.

The success of the working prototype provided a working ground for the on-site implementation
and testing. Aside from the hardware implementation, more robust sensor choice and infrastructural
setup, the developed software, IoT solutions, and networking protocols remain the same.

There is plenty of room for improvement in this work: more sensors could be added to capture
more relevant data, and remote control of the gates could be developed once the required networking
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setup is achieved. Other than that, the power source setup can be improved by adding a solar power
system after the power usage research, battery consideration and transformer selection.

In the real application, the system should use a suitable sensor that can withstand the environmental
effect, especially the rain and storm effect. Thus, the selected sensors need to be waterproof
for deployment.

The available data transmission technologies can be selected based on the situation of the
application/field, the advantages and shortcoming of the technologies. Some aspects need to be
considered including the cost, range, and battery life. This project was started with Wi-Fi technology in
the early stage for the water gate test. For future works, the utilization of LoRa technology is expected
in order to manage multiple gates that are scattered over a large area.
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