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Abstract: Wear due to sediment particles in fluid flows, also termed ‘hydroabrasion’ or simply
‘abrasion’, is an omnipresent issue at hydraulic structures as well as in bedrock rivers. However,
interactions between flow field, particle motion, channel topography, material properties and abrasion
have rarely been investigated on a prototype scale, leaving many open questions as to their quantitative
interrelations. Therefore, we investigated hydroabrasion in a multi-year field study at two Swiss
Sediment Bypass Tunnels (SBTs). Abrasion depths of various invert materials, hydraulics and
sediment transport conditions were determined and used to compute the abrasion coefficients kv

of different abrasion models for high-strength concrete and granite. The results reveal that these
models are useful to estimate spatially averaged abrasion rates. The kv-value is about one order of
magnitude higher for granite than for high-strength concrete, hence, using material-specific abrasion
coefficients enhances the prediction accuracy. Three-dimensional flow structures, i.e., secondary
currents occurring both, in the straight and curved sections of the tunnels cause incision channels,
while also longitudinally undulating abrasion patterns were observed. Furthermore, hydroabrasion
concentrated along joints and protruding edges. The maximum abrasion depths were roughly
twice the mean abrasion depths, irrespective of hydraulics, sediment transport conditions and
invert material.

Keywords: reservoir sedimentation; sediment management; hydroabrasion; concrete; granite; field
study; mechanistic saltation abrasion model; bedload transport; high-speed flow; fixed plane bed

1. Introduction

Reservoir sedimentation is a phenomenon of increasing evidence both, in Alpine regions and
worldwide. This negatively affects the multifold purposes of reservoirs, e.g., water supply, irrigation,
hydropower and flood protection. As the worldwide reservoir sedimentation volume meanwhile
exceeds the increase of reservoir capacity, the net storage capacity has been decreasing since about the
turn of the millenium [1–5]. The situation becomes even worse accounting for the population growth
and increasing per capita consumption resulting in an inevitable water shortage in the near future [3–7].
Therefore, sustainable long-term sediment management strategies are required to maintain and provide
sufficient reservoir storage capacity.

Sediment bypass tunnels (SBTs) are an effective countermeasure against reservoir sedimentation
for small- to medium-sized reservoirs with high water availability, as e.g., typical in geologically
young and therefore, erosive mountains, such as the Alps, Andes and Himalayas [8,9]. Sediment-laden
flows are diverted through SBTs around reservoir dams, so that the sediment transport is restored
to pre-dam status. Thus, SBTs contribute to a sustainable use of reservoirs, while enhancing the
eco-morphology and aquatic habitat quality of the downstream river reaches [8,10–16]. However, the
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prevailing hydraulics and sediment transport conditions in the SBTs, i.e., high-speed sediment-laden
flows, can cause severe invert hydroabrasion, which provokes high maintenance cost and, in the worst
case, endangering the tunnel stability [17].

Hydroabrasion is a common phenomenon occurring not only in SBTs and at other hydraulic
structures, e.g., weirs, flushing channels, bottom outlets and diversion tunnels, but also in high-gradient
bedrock rivers. Hence, it plays an import role in river incision and landscape evolution. Hydroabrasion
is defined as continuous material loss from a fixed, submerged surface caused by the contacts of
solid particles transported in the flow [18,19]. Depending on the hydraulic conditions and sediment
properties, such as size and shape, sediment particles can be transported in sliding, rolling, saltation,
or suspension mode causing grinding, rolling, or saltation impact stresses on the surface, respectively.
Among these, impacts of saltating bedload particles govern not only material loss at SBTs and hydraulic
structures, but also long-term bedrock incision and landscape evolution by driving hydroabrasion and
macroabrasion–a process of fracturing bedrock into pluckable sizes mediated by particle impacts [19–23].

Prediction of hydroabrasion is crucial for design service life analysis of invert materials used in
hydraulic structures as well as for landscape evolution studies with potential applications in steep
bedrock channels and channel knickpoint evolutions of exposed bedrock, such as waterfalls [19,24–27].
Bedrock river incision is mostly modelled with a stream power equation [24,28–30]. These equations
relate incision rate to hydraulics, i.e., stream power or bed shear stress without accounting for sediment
transport and are found to be adequate for describing overall long-term developments [19]. However,
they are not suitable for studies with particular interest in the transient local behavior, i.e., on small
spatial or temporal scales, because of lumping potentially complex physical interactions between flow
field, particle motion, bed material properties and hydroabrasion [19,31,32]. In contrast to the stream
power models, mechanistic abrasion models account for the physical process of saltating bedload
particle impacts and relate the incision rate to the kinetic energy transferred to the bed by the impinging
particles. The “saltation abrasion model” (SAM) developed by [21] is a mechanistic abrasion model
often used for bedrock incision analysis. Its basic form reads:

Ar =
YM
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st

W2
im

LP
qs

(
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qs

q∗s

)
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where Ar = vertical abrasion rate, YM = Young’s modulus of the abraded material, kv = dimensionless
resistance coefficient, also termed abrasion coefficient, fst = splitting tensile strength of the abraded
material, Wim = mean vertical particle impact velocity, LP = particle hop length, qs = specific gravimetric
bedload transport rate and qs

* = specific gravimetric bedload transport capacity. The term fst
2/YM

is related to the fracture energy required to detach a unit volume from the base material, while kv

accounts for the efficiency of energy transfer from impinging particles to the invert material. The
second term of Equation (1) is the flux of kinetic impact energy per unit area and time. The last term in
parentheses accounts for the cover effect considering transient alluvial deposits hindering bedload
particle impacts and, hence, bedrock incision. The application of particle motion equations, developed
from a wide range of data from literature (including fixed and movable beds, and subcritical as well as
supercritical flow conditions), has led to the following form of the SAM [21]:
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with g = gravitational acceleration, s = ρs/ρ = 2.65 = ratio of solid to water density, T* = (θ/θc − 1) =

excess transport stage, θ = U*2/((s − 1)gd) = Shields parameter, θc = critical Shields parameter, U* =

(g·Rh·Se)1/2 = friction velocity, Vs = particle settling velocity, d = particle diameter, Rh = hydraulic
radius and Se = energy slope. The excess transport stage accounts for the threshold of particle motion,
whereas the last term relates to the mode shift from saltation to suspension.
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The SAM was successfully tested on laboratory and field data [19,31,33–36]. However, the
determination of the abrasion coefficient kv is yet a challenging issue of ongoing research. The kv-values
were determined for various materials by using a self-developed abrasion mill set-up resulting in the
widely accepted value of kv = 106 for rock, despite large variations of kv = 1 × 106–9 × 106 [21,37].
Variations in kv values are expected since [21] treated YM as a constant, i.e., YM = 50 GPa, which
is a rough simplification regarding the large range of YM for rocks and concretes. Moreover, the
properties of the impinging sediment, e.g., size, angularity and hardness, and of the abraded material,
e.g., Young’s modulus, splitting tensile strength, density, porosity and crystal and clast size, which
significantly affect hydroabrasion, are only partly accounted for in the SAM [19,38–44].

Although the SAM was established based on a wide data set, data for high-speed flows over
planar beds with relatively low roughness, like those found at hydraulic structures and in high-gradient
bedrock rivers, are sparse, in particular regarding information on particle impact. Particle motion
and hydroabrasion under these particular conditions were investigated by [23] based on direct
particle impact measurements with a high-speed camera [23,44,45]. Incorporation of newly developed
equations for particle motion into the basic form of the SAM (Equation (1)) resulted in the “Saltation
Abrasion Model adapted by Auel” (SAMA), which holds for sub- to highly supercritical flows over
fixed planar beds [44,46]:

Ar = g(s− 1)
YM

kv fst2
1

230
qs

(
1−

qs

q∗s

)
(3)

In [44], the abrasion coefficient kv was determined for a range of materials based on laboratory, field
and literature data [21,23,26,32,47]. The authors reported that kv increases with the invert material’s
splitting tensile strength and tends to stabilize at kv ≈ 105 for hard materials, such as rock and concrete
with fst > 1 MPa.

Despite an increasing number of investigations in the recent past, there is still a considerable
uncertainty regarding the determination of kv. More field data not subjected to potential laboratory
scale and model effects are needed to advance knowledge on the governing processes of hydroabrasion
and to validate kv-values [44]. To this end, we investigated hydroabrasion at two Swiss SBTs by
testing various concretes and granite under field conditions for a period of 4 and 19 years [48,49]. The
hydraulics and sediment transport conditions and hence the hydroabrasion processes in SBTs and
high-gradient bedrock rivers are similar. Consequently, the findings of the present investigation also
apply to bedrock incision and landscape evolution processes, although the incision rates are generally
several orders of magnitude smaller due to considerable lower erosive potential [42].

Herein, we introduce the test sites at the Pfaffensprung and Runcahez SBTs and present the
field data used for the evaluation and validation of both saltation abrasion models, i.e., SAM and
SAMA. Furthermore, the abrasion patterns and their temporal evolution are discussed with respect to
three-dimensional flow structures and sediment transport conditions.

2. Field Sites and Data Acquisition

Field investigations were conducted at the Pfaffensprung and Runcahez SBTs in Switzerland.
Tables 1 and 2 list the key data of these test sites, including information on respective reservoirs and
rivers. The abrasion depths of various invert materials were quantified and analyzed with respect
to the hydraulics and sediment transport conditions. The monitoring period was four years for
Pfaffensprung SBT and 19 years for Runcahez SBT. The Runcahez data set is, to the authors’ knowledge,
the first systematic long-term field investigation on hydroabrasion for different invert materials and
hence is of prime importance to evaluate the material behavior and hydroabrasion patterns in a
process-relevant time-scale.
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Table 1. Data of case study sediment bypass tunnels (SBTs) and respective reservoirs and rivers [48,50].

Reservoir Unit Pfaffensprung Runcahez Lago di Rierna

Completion [year] 1922 1962 1967

Position 46◦42′49.8′′ N
8◦36′36.7′′ E

46◦40′45.0′′ N
8◦58′05.7′′ E

46◦21′38.9′′ N
8◦55′27.0′′ E

Volume [106 m3] 0.17 0.44 0.40
Capacity Inflow Ratio (CIR*) [year] 0.0003 0.006 0.01

River Upstream of Reservoir Reuss Rein da Sumvitg Rierna

Mean slope S [–] 0.0374 0.0365 0.10
Mean width b [m] 18 15 5

Bank slope (idealized) [–] 1:1 1:1 1:1
Mean sediment particle size dm [m] 0.25 0.23 0.18

90-percentile sediment particle size d90 [m] 0.68 0.53 0.75
Strickler roughness coefficient kSt [m1/3/s] 22.5 23.5 22.1

Sediment Bypass Tunnel SBT Pfaffensprung Runcahez Val d’Ambra

Completion [year] 1922 1962 1967
Length L/acceleration length Lacc** [m] 282/25 572/65 512/55
Slope S/acceleration slope Sacc ** [–] 0.03/0.35 0.014/0.25 0.02/1.0

Width b [m] 4.4 3.8 3.6
Equivalent sand roughness ks [mm] 3 3 3

Design Qd/maximum discharge Qmax [m3/s] 220/240 110/190 85
General operation duration T [d/year] 100–200 1–4 2.5

Observation duration [year] 4/2 *** 19 47
Tested invert materials [–] Concrete, granite Concrete Concrete

* ratio of reservoir volume to mean annual inflow volume; ** some SBTs have a flow acceleration section at the inlet
with a larger slope and shorter length compared to the slope and length of the rest of the tunnel; *** four and two
years for test location 1 and 2, respectively.

Table 2. Properties of tested invert materials (mean value ± standard deviation) in the SBTs
Pfaffensprung, Runcahez and Val d’Ambra (data from [18,48]).

Material fc [MPa] fst [MPa] ρc [to/m3] YM [GPa]

Pfaffensprung

High-strength concrete 1 (C1) 108 ± 2 11.3 ± 0.3 2.46 ± 0.03 38.6 ± 5.3
High-strength concrete 2 (C2) 78 ± 21 11.2 ± 1.1 2.45 ± 0.045 34.6 ± 11.9

Urner Granite 1 and 2 (G1 and G2) 260 ± 20 10 ± 2 2.65 ± 0.05 59.0 ± 2.7

Runcahez

Silica fume concrete (SC) 85.9 ± 3.1 8.5 ± 2.1 2.67 ±0.02 54.1 ± 2.8
High performance concrete (HPC) 76.7 ± 2.0 7.1 ± 3.0 2.98 ±0.02 52.7 ± 4.1

Steel fiber concrete (SF) 95.9 ± 2.3 8.3 ± 2.0 2.73 ± 0.01 52.1 ± 2.7
Roller compacted concrete (RCC) 55.7 ± 4.6 6.1 ± 1.0 2.56 ± 0.05 49.7 ± 1.3

Polymer concrete (PC) 66.8 ± 3.0 11.7 ± 1.0 2.37 ± 0.03 16.3 ± 1.3

Val d’Ambra

Concrete 40 * 3.4 ** 2.5 * 28.1 ***

* assumed; ** calculated (according to [51]: fst = 0.387 f 0.63
c ); *** calculated (according to Equation (6)).

In addition to the two case study SBTs, hydroabrasion data of the Swiss Val d’Ambra SBT provided
by its operator were included in the data analysis (Tables 1–3). The monitoring period at this SBT
is 47 years. The data set only includes the operator’s experience and concrete volumes used for the
refurbishment of the tunnel invert. Since no direct abrasion measurement was conducted at this site,
the available data set includes more uncertainty and does not provide information on the spatial and
temporal evolution of hydroabrasion.
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Table 3. SBT operation conditions and abrasion depths in the Val d’Ambra SBT between 1967 and 2014 [48].

Parameter Unit 1967–2014

Mean annual SBT operation duration T [d/year] 2.50
Mean discharge in SBT QSBT [m3/s] 42.5

Mean flow depth h [m] 1.60
Mean flow velocity U [m/s] 8.30

Mean Shield’s parameter θ [–] 0.18
Mean annual bedload mass BL [103 to/year] 21.0

Mean annual abrasion depth am [mm/year] 3.0

2.1. Pfaffensprung

The Pfaffensprung reservoir is located on the Reuss River in Wassen, Canton Uri, in the Swiss
Alps. The reservoir built in 1922, was equipped with an SBT from the beginning to reduce reservoir
sedimentation [52,53]. Figure 1 shows the layout of the Pfaffensprung SBT. Four test fields were
implemented on the invert of the Pfaffensprung SBT within the scope of refurbishment works performed
during the low flow winter seasons 2011/2012 and 2012/2013: two 10 m long test fields at the end of the
straight section close to the outlet (location 1 in Figure 1) and two 20 m long test fields in the curvature
section (location 2 in Figure 1). Test location 1 still exists, whereas the invert at test location 2 was
removed after two years of operation during an extensive refurbishment of the tunnel invert. The
observation periods considered for test location 1 and 2 are four and two years, respectively. Both test
locations contained a 0.3 m thick pavement of 1 × 1 m2 Urner Granite blocks placed in a staggered
order without joints (accuracy ± 2 mm) and a 0.3 m thick high-strength concrete section. Although the
concrete mixtures are identical (except for steel fibers included in C1, but not in C2 due to their negative
effect on the processability) their properties differ due to varying site conditions during construction
(Table 2). The quarry provided the compressive strength fc, splitting tensile strength fst and elastic
Young’s modulus YM for granite (Table 2). The compressive strength and density of the high-strength
concretes were determined using 28 days old cube (150 mm × 150 mm × 150 mm) and drill core (100
mm × 100 mm) samples. The bending tensile strength fbt was determined by testing beam samples
(120 mm × 120 mm × 360 mm). The compressive strength and the cylindrical compressive strength
fc,cyl are related [54], as follows:

fc,cyl ≈ 0.8 fc (4)
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continuously monitored at a 15 min time interval by radar instruments installed both, in the SBT and 
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time series, daily averaged discharge data were used in this study. Despite a certain information loss, 
this is an acceptable approach, since the SBT is in operation for several months per year. 

The invert material surfaces of the test fields were mapped by using a terrestrial laser scanner 
(TLS), as shown in Figure 2. The abrasion depths are defined as the vertical distance between two 
TLS recordings. Each TLS recording consists of a three-dimensional-point cloud of roughly 108 
measurement points, being the limit for data analysis. The first (reference) surface scan was 
performed after installation of the test fields. The subsequent scans followed every winter during the 
low flow season. The scan resolution in horizontal and vertical direction was 0.036°. The 
measurement errors stem from possible shifts of the target bolts, the target-based registration of the 
TLS scans and the errors of the laser beam. The error of each measurement point is ±3.3 mm and is 
smaller for abrasion depth calculation over large spatial scales due to averaging. 

Figure 1. (a) Overview and (b) cross section of the Pfaffensprung SBT (position 46◦42′49.8′′ N
8◦36′36.7′′ E) with test field locations 1 and 2 and radar instrumentation for discharge monitoring,
position of Figure 2 highlighted red.



Water 2020, 12, 469 6 of 27

Water 2020, 12, 469 7 of 29 

 

 
Figure 2. Measurement installation in Pfaffensprung SBT at test field location 1 during scanning in 
March 2014, (1) terrestrial laser scanner (TLS), (2) temporary mounted targets and (3) ground water 
drainage, view in flow direction from high-strength concrete (C1) over granite pavement (G1) to SBT 
outlet. 

2.2. Runcahez 

The Runcahez reservoir was built in 1962 at the Rein da Sumvitg River [18,48]. It was equipped 
with an SBT from the beginning to reduce reservoir sedimentation. The layout of the SBT is shown 
in Figure 3 and general information is given in Table 1. 

The SBT is used for bypassing sediment-laden discharges during flood peaks lasting a few hours 
resulting in a mean annual operation duration of only some hours [18,48]. Although the design 
discharge of the SBT is Qd = 110 m3/s under free-surface flow conditions, it can still bypass a maximum 
discharge of Qmax = 190 m3/s under pressurized inflow conditions [57]. 

Five 10 m long and 3.8 m wide test fields were implemented downstream of the inlet bend in 
1995 (Figure 3). The compressive strength fc of the tested invert materials was determined from cube 
samples (120 mm × 120 mm × 120 mm) and the bending tensile strengths fbt and elastic Young’s 
modulus YM from beam samples (120 mm × 120 mm × 360 mm) [18]. The splitting tensile strength was 
derived from the bending tensile strength according to Equation (5). Table 2 summarizes the material 
properties. Note that the roller compacted concrete (RCC) suffered massive abrasion along the tunnel 
walls due to improper compaction and required a replacement after 1999. 

 

Figure 3. (a) Overview and (b) cross section of the Runcahez SBT (position 46°40’45.0” N 8°58’05.7” E; 
adapted from [18]). 

No discharge measurement data, neither from the Rein da Sumvitg River at Runcahez nor from 
the SBT, are available from 1999 to 2014. Therefore, the 15-min. hydrograph of the neighboring 
national gauging station (Encardens, Federal Office of the Environment (FOEN)-Station Number 
2430) was scaled to derive discharge data of the Rein da Sumvitg River at Runcahez. The scaling 
factor of 4.4 was obtained from least square fitting of flood discharge data in the Rein da Sumvitg at 

Figure 2. Measurement installation in Pfaffensprung SBT at test field location 1 during scanning in
March 2014, (1) terrestrial laser scanner (TLS), (2) temporary mounted targets and (3) ground water
drainage, view in flow direction from high-strength concrete (C1) over granite pavement (G1) to
SBT outlet.

The splitting tensile strength is calculated based on the bending tensile strength [55]:

fst ≈
fbt

1.35
(5)

The Young’s modulus was computed according to [56]:

YM = k1 × k2 × 33500
(
ρc

ρ∗

)2( fc,cyl

f∗

)1/3

(6)

with k1 = 1.005 for river gravel aggregate, k2 = 0.95 for silica fume addition, ρ* = reference concrete
density = 2.4 to/m3 and f * = reference concrete compressive strength = 60 MPa holding for concretes
with fc,cyl = 40–160 MPa.

The operator of the facility (Hydropower plant Amsteg of the Swiss Federal Railways SBB)
provided discharge data of the Reuss River and the Pfaffensprung SBT. The discharges were continuously
monitored at a 15 min time interval by radar instruments installed both, in the SBT and in the river
at the reservoir head (Figure 1). However, due to considerable gaps in the continuous time series,
daily averaged discharge data were used in this study. Despite a certain information loss, this is an
acceptable approach, since the SBT is in operation for several months per year.

The invert material surfaces of the test fields were mapped by using a terrestrial laser scanner
(TLS), as shown in Figure 2. The abrasion depths are defined as the vertical distance between two
TLS recordings. Each TLS recording consists of a three-dimensional-point cloud of roughly 108

measurement points, being the limit for data analysis. The first (reference) surface scan was performed
after installation of the test fields. The subsequent scans followed every winter during the low flow
season. The scan resolution in horizontal and vertical direction was 0.036◦. The measurement errors
stem from possible shifts of the target bolts, the target-based registration of the TLS scans and the
errors of the laser beam. The error of each measurement point is ±3.3 mm and is smaller for abrasion
depth calculation over large spatial scales due to averaging.
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2.2. Runcahez

The Runcahez reservoir was built in 1962 at the Rein da Sumvitg River [18,48]. It was equipped
with an SBT from the beginning to reduce reservoir sedimentation. The layout of the SBT is shown in
Figure 3 and general information is given in Table 1.
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Figure 3. (a) Overview and (b) cross section of the Runcahez SBT (position 46◦40′45.0′′ N 8◦58′05.7′′ E;
adapted from [18]).

The SBT is used for bypassing sediment-laden discharges during flood peaks lasting a few hours
resulting in a mean annual operation duration of only some hours [18,48]. Although the design
discharge of the SBT is Qd = 110 m3/s under free-surface flow conditions, it can still bypass a maximum
discharge of Qmax = 190 m3/s under pressurized inflow conditions [57].

Five 10 m long and 3.8 m wide test fields were implemented downstream of the inlet bend in
1995 (Figure 3). The compressive strength fc of the tested invert materials was determined from cube
samples (120 mm × 120 mm × 120 mm) and the bending tensile strengths fbt and elastic Young’s
modulus YM from beam samples (120 mm × 120 mm × 360 mm) [18]. The splitting tensile strength was
derived from the bending tensile strength according to Equation (5). Table 2 summarizes the material
properties. Note that the roller compacted concrete (RCC) suffered massive abrasion along the tunnel
walls due to improper compaction and required a replacement after 1999.

No discharge measurement data, neither from the Rein da Sumvitg River at Runcahez nor from
the SBT, are available from 1999 to 2014. Therefore, the 15-min. hydrograph of the neighboring national
gauging station (Encardens, Federal Office of the Environment (FOEN)-Station Number 2430) was
scaled to derive discharge data of the Rein da Sumvitg River at Runcahez. The scaling factor of 4.4
was obtained from least square fitting of flood discharge data in the Rein da Sumvitg at Runcahez,
provided by [18] and at Encardens, provided by the FOEN, between 1996 and 1999 [48]. The SBT was
assumed to be in operation at inflow discharges of Q ≥ 45 m3/s lasting for more than 2.5 h, since no
measurement data of the operation are available [48].

The hydroabrasion depths of the test fields were geodetically surveyed using a leveling device.
The initial measurement was performed after implementation of the test fields by using an analogue
leveling device [18]. Afterwards, annual surveys were conducted until 1999. The resolution and
accuracy of the measurements are 0.5 m × 0.2 m and ±2 mm, respectively. The subsequent survey
was undertaken in the scope of the present study in fall 2014 using a digital leveling device. The
resolution and measurement accuracy were 0.5 m × 0.4 m and ±2 mm, respectively. The abrasion
depths were determined by directly comparing point measurements of the different recordings. The
abrasion depths within the first four years were small, i.e., close to the measurements error, did not
penetrate the core material and were partly affected by a systematic error resulting in implausible
mean abrasion depths am. Therefore, the 19 years data set (considering only the initial measurement in
1996 and the one after 19 years in 2014) was considered as the most significant and representative one
and hence, was used herein to compute the abrasion coefficient kv. For the RCC test field, only the four
years data of the properly compacted zone were used (only considering the initial measurement in
1996 and the one after four years in 1999).



Water 2020, 12, 469 8 of 27

3. Methods

This chapter first presents the methods and procedures applied to quantify the hydraulics and
sediment transport parameters in the SBTs and corresponding rivers. The determination of spatial
abrasion maps, mean and maximum abrasion depths is explained in a second step and finally the
abrasion model calibration procedure is presented.

3.1. Hydraulics

The flow velocities and depths in the rivers and SBTs were determined based on the hydrograph
data. The mean flow velocities in the rivers were calculated based on the Manning-Strickler
flow equation:

U = kStR
2/3
h S1/2

e (7)

Assuming uniform flow in the river, the slope of the energy line equals the bed slope, i.e., Se = S
and the hydraulic radius Rh follows from the continuity equation. The river bed roughness kSt follows
from the 90-percentile particle diameter of the river bed material d90 [58]:

kSt =
21.1

d1/6
90

(8)

The flow in the SBTs gradually varies, as the SBTs are too short to attain uniform flow. The flow
is accelerated to supercritical conditions at the inlet slightly decelerates along the SBT, but remains
supercritical until the outlet. Therefore, the flow velocities and depths in the SBTs were determined
based on backwater calculations using the Darcy-Weisbach Equation:

U =

√
8g
λ

RhSe (9)

The friction coefficient λ for turbulent flows, as existing in SBTs and in most civil and river
engineering applications, is a function of the bed roughness ks and the Reynolds number R = 4URh/ν,
with ν = kinematic viscosity [59]:

1
√
λ
= −2 log

(
ks/D
3.71

+
2.51

R
√
λ

)
(10)

The bed roughness height in the SBTs is ks = 0.003 m, was obtained from back-water calculations for
design discharge and respective flow depths and corresponds to typical values for rough concrete [60].

3.2. Bedload Transport and Particle Motion

Bedload transport in the SBT depends on the initiation of bedload transport in the river, the extent
of bedload transport in the river and the SBT operating regime. Bedload transport is assumed to be
initiated as soon as the Shields number exceeds a critical value, i.e., θ > θc [61]. Numerous studies
have been conducted on the initiation of bedload transport resulting in a variety of critical Shields
number due to different test conditions and definitions of initiation of particle motion [62]. In the
present study, θc = 0.047 for movable beds in rivers according to [63] and θc = 0.005 for SBTs exhibiting
planar beds of low relative roughness with ks << d according to [45] were selected. At both case study
sites, the rivers exhibit an armor layer, protecting the substrate due to its higher resistance against
erosion [48]. This was accounted for by adapting θc based on the mean grain size of both, the armor
layer dm,a ≈ 0.30 m and the substrate dm,s = dm [64]:

θ′c = θc

(
dm,a

dm,s

)2/3

(11)
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The extent of bedload transport depends on both, the sediment supply and the sediment transport
capacity. The following three equations for the specific gravimetric bedload transport capacity qs

* in
the river are applied herein. The first one is a simplification of an implicit probability function for
bedload transport [65] and was published by Parker [66]:

q∗s = 11.2ρs
(θ− 0.03)4.5

θ3

√
(s− 1)gd3 (12)

The second and third equations are empirical. The well established formula of Smart and Jäggi [67]
is based on a wide data set for slopes of S = 0.0004–0.2. including experimental as well as literature
data of [63] and reads:

q∗s = 4ρs
RhU
(s− 1)

(
d90

d30

)0.2

Se
1.6

(
1−

θc

θ

)
(13)

with θc, depending on the bed slope and the angle of repose ϕ of the sediment particles:

θc = 0.05[cos(arctan(S))]
(
1−

S
tanϕ

)
(14)

According to [67], the effect of the term (d90/d30)0.2 in Equation (13) is weak, so that it can be
replaced by 1.05. The last applied equation published by Cheng [68] is based on literature data for S =

0.0013–0.19 [63,69,70] and follows for θ ≥ θc:

q∗s = 13ρsθ
1.5 exp

(
−0.05
θ1.5

)√
(s− 1)gd3 (15)

Bedload transport is furthermore affected by site-specific conditions. Large immobile boulders
cause significant additional turbulences and hence energy dissipation resulting in an overestimation
of bedload transport capacity in steep channels with S ≥ 0.02–0.03 [71,72]. This phenomenon was
accounted by either using a reduced slope S′ as proposed by [72], or a slope-corrected Shields parameter
θS according to [73]:

S′ = S

0.083
S0.35

(
h

d90

)0.33 fr

(16)

θs =
θ

cos(arctan(S)) tanϕ− sin(arctan(S))
(17)

with h = flow depth and fr = 1 = macro roughness factor for moderate roughness. To avoid bedload
transport overestimation due to energy dissipation in the rivers, a reduced slope correction S′ (Equation
(16)) was used in Equation (13) instead of Se and a slope corrected Shields parameter θS (Equation (17))
instead of θ was used in Equations (12) and (15).

The bedload transport capacity in the Reuss River was computed by applying Equations (12), (13)
and (15) with the corrections described above to the daily discharge data and arithmetically averaging
the resulting values. Finally, the effective specific gravimetric bedload transport qs in the Reuss was
computed using the relation qs/qs

* = 0.80 according to [74]. This approach was validated based on
a former comprehensive study of the bedload transport in the Reuss River including a numerical
investigation as well as extensive field surveys [74–76].

The bedload transport capacity of the Rein da Sumvitg River was determined by applying
Equation (13) to the 15-min discharge data, while accounting for the energy dissipation by using
Equation (16). The effective bedload transport is smaller than the bedload transport capacity due to
limited sediment supply and follows qs/qs

* = 0.45 according to [18]. The result was validated by means
of literature data [18] and morphologic field surveys including gravel excavation volumes [48].
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The effective bedload transport width of a river exhibiting several flow paths at low and medium
discharges does not correspond to the actual channel width [77]. To account for that, the bedload
effective channel width b′ instead of the channel width b was used to compute gravimetric bedload
transport capacities at both sites. For gravel bed rivers, [77] proposed:

b′ = 1.19× b× exp
[
−0.6

b0.65d0.25
m S0.3g0.18

Q0.36

]
(18)

with Q = discharge.
The estimation of the bedload transport capacity for SBTs differs from that for alluvial beds due to

the low relative roughness of ks/d << 0.1 and non-movable planar bed conditions [67]. For SBTs with
slopes of S = 0.01–0.04, [23] proposed the following empirical formula for the gravimetric bedload
transport capacity:

q∗s = 24.0ρs(θ− 0.002)1.5
√
(s− 1)gd3 (19)

The rolling probability PR and particle hop length LP are given with [45]:

PR = 1.84× T∗−0.94 (20)

LP = 2.3(T∗ − 1)0.8d (21)

whereas the probability of motion in suspension Psu can be defined as [78]:

Psu =
1
16

(
16−

Vs

U∗
−

V2
s

U2
∗

)
exp−

(Vs

U∗

)
(22)

The bedload transport capacity in the SBT was computed by applying Equation (19) to the
hydrograph of the SBT, while the effective bedload transport rates in the SBT depend on the sediment
supplied by the river and the SBT operation.

In general, SBTs are designed to bypass all the incoming sediments and to avoid sediment
aggradation and clogging of the SBT. Therefore, the bedload transport capacity of the SBTs is
considerably higher than that of the feeding river.

3.3. Hydroabrasion

In a first step, the spatially averaged abrasion depths am (obtained from discrete surface
measurements by either a TLS or geodetic levelling) were computed. In a second step, mean abrasion
rates Ar were calculated by dividing spatially averaged abrasion depths am with the corresponding SBT
operation durations T. Furthermore, the 95%-percentile abrasion depths, herein denoted as maximum
abrasion depths amax, were determined. This parameter is assumed to be decisive for design service
life analysis and economical investigations of hydraulic structures.

3.4. Model Calibration

Re-writing the Saltation Abrasion Model (SAM) (Equation (2)) and the Saltation Abrasion Model
adapted by Auel (SAMA) (Equation (3)) leads to:

kv =
1

Ar
0.08g(s− 1)

YM

f 2
st

qs

(
1−

qs

q∗s

)
T∗−0.5

(
1−

(U∗
Vs

)2)1.5

(23)

kv =
1

Ar

YM

fst2

(s− 1)g
230

qs

(
1−

qs

q∗s

)
(24)
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with Vs = particle settling velocity according to [79]:

Vs =
(s− 1)gd2

18ν+
√

0.75(s− 1)gd3
(25)

The abrasion coefficient kv was calibrated based on the present field data for the (i) SAM assuming
a constant Young’s modulus YM = 50 GPa, (ii) SAM using the effective Young’s moduli (SAM*) and
(iii) SAMA also accounting for the effective Young’s moduli.

The model input parameters, i.e., mean hydraulic parameters, gravimetric sediment transport
rates and capacities and spatially averaged abrasion depths for the Pfaffensprung and the Runcahez
SBTs are described hereafter. Thereby, the cumulative bedload mass BL was obtained by integrating the
volumetric bedload transport in the SBTs over time and multiplying with the specific sediment density
of 2.65 to/m3. The specific gravimetric bedload transport in the SBTs follows from the cumulative
bedload mass, the operation duration and the SBT widths with qs = BL/(b·T). The sediment transport
capacity and particle settling velocity in the SBTs follow from Equations (19) and (25) using the averaged
hydraulic parameters listed in Tables 3–5 for the corresponding period. The invert material properties
used for the determination of the abrasion coefficients are given in Table 2.

4. Results

4.1. Pfaffensprung

The annual SBT operation durations and discharges both, in the Reuss River and in the
Pfaffensprung SBT are listed in Table 4, whereby only SBT operations above the threshold for
initiation of bedload transport were considered. The over-annually averaged bypassed discharge is
QSBT = 32.1 m3/s, the corresponding mean flow depth, flow velocity and Shields parameter in the SBT
were h = 0.75 m, U = 9.79 m/s and θ = 0.040, respectively.

Table 4. Mean annual SBT operation conditions, bedload transport masses and abrasion depths in the
Pfaffensprung SBT for the years 2012 to 2015.

Parameter Unit 2012 2013 2014 2015 Average

SBT operation duration T [d] 91 61 55 96 76
Mean discharge in SBT QSBT [m3/s] 35.5 32.6 25.9 34.5 32.1

Mean flow depth h [m] 0.82 0.76 0.61 0.80 0.75
Mean flow velocity U [m/s] 9.8 9.8 9.7 9.8 9.8

Mean Shield’s parameter θ [–] 0.042 0.039 0.035 0.042 0.040
Bedload mass BL [103 to/year] 460 370 140 430 350

Mean Abrasion Depths am 2012 2013 2014 2015 2012–2015

High-strength concrete 1 (C1) [mm] 15.4 9.3 1.3 5.0 31.0
High-strength concrete 2 (C2) [mm] - 8.9 1.5 - 10.4

Urner Granite 1 (G1) [mm] 2.9 0.6 0.5 1.3 5.3
Urner Granite 2 (G2) [mm] - 1.4 0.6 - 2.0

The adapted critical Shields parameter for the Reuss River exhibiting an armor layer is θc
′ =

0.049 (Equation (11)), which is in agreement with literature data [63,80,81]. The corresponding critical
discharge for initiation of bedload transport amounts to Qc = 38 m3/s. The discharge in the river never
exceeded the design discharge capacity of the SBT during the observation period from 2012 to 2015, so
that the entire bedload mass supplied by the river was assumed to be bypassed (Table 4). Thereby,
the transport capacity in the SBT was always considerably larger compared to that of the river so
that no depositions in the SBT are expected to have taken place. This is in line with the operator’s
experiences confirming no significant accumulations in the reservoir as well as in the SBT. The rolling
and suspension probability of the mean particle size dm are PR = 0.30 (Equation (20)) and Psu = 0.00
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(Equation (22)), respectively. The saltation probability follows with Psal = 1 − PR − Psu = 0.70 indicating
that saltation was the dominating, rolling the minor transport mode. The corresponding particle hop
length amounts to Lp = 2.70 m (Equation (21)).

Close-up pictures of the concrete test fields C1 and C2 show that the cement top layer was washed
away, the coarse aggregates were abraded and a few break-offs of invert fragments and aggregates
occurred (Figure 4a,b). The granite shows a different abrasion pattern, with concentrated material
losses along the longitudinal joints and the upstream edges of the blocks (Figure 4c,d). The abrasion
depths at the upstream edges of the plates, oriented perpendicular to the flow are significantly higher
compared to the block itself, while the abrasion rates decrease with increasing distance to the joints
in flow direction. Abrasion depths along the joints oriented parallel to the flow direction are also
significantly higher compared to the block itself and grow in depth, width and extent with the flow
direction affecting the downstream granite blocks.
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Figure 4. Close-up view of the abraded surface of the Pfaffensprung SBT: (a) high-strength concrete
test field C1 after four operational years, (b) high-strength concrete test field C2 after two operational
years, (c) granite test field G1 after four operational years showing abrasion concentration at upstream
edges and (d) granite test field G1 after four operational years showing abrasion concentration along
joints with downstream abrasion shadows.

The high-resolution abrasion maps of the concrete test fields C1 and C2 are shown in Figures 5
and 6, respectively, those of the granite test fields G1 and G2 in Figures 7 and 8, respectively. All
abrasion maps show survey-device-specific patterns not related to material loss. Regular radial patterns
are attributed to the repeating self-adjustment of the laser scanner. Circular patterns are caused by
beam deflection at the device casing and appear around each laser scan position. The magnitude of the
resulting scatter amounts to < ±3 mm. Apart from these artifacts, the mean detection uncertainty is
< ±3.3 mm. The relative error is significant for small abrasion depths in the range of some millimeters,
but decreases with increasing abrasion depths. The abrasion depths of the granite test fields were
mostly in the range of the detection uncertainty resulting in unrealistic negative abrasion depths of
some millimeters as shown by the blue colored areas in Figures 7 and 8. These unrealistic negative
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abrasion values were not considered when determining the spatially averaged abrasion depths (mean
abrasion depths in Table 4), which were later used for hydroabrasion analysis.Water 2020, 12, 469 14 of 29 
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Figure 7. High-resolution abrasion maps of the 10 m long granite test field G1 installed at test location
1 in Pfaffensprung SBT after (a) one, (b) two and (c) four operational years (blue colored points mark
theoretically negative abrasion depths corresponding to detection uncertainty; grey colored areas could
not be scanned due to ground water drainage installation).
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Figure 8. High-resolution abrasion maps of the 20 m long granite test filed G2 installed at test location 2
in Pfaffensprung SBT after (a) one and (b) two operational years (blue colored points mark theoretically
negative abrasion depths corresponding to detection uncertainty; grey areas could not be scanned due
to ground water drainage installation).

Both high-strength concrete test fields C1 and C2 show abrasion lines perpendicular to the flow
direction, associated to working joints (at x ≈ 4.7 m in Figure 5; at x ≈ 5.5 m and at x = 13 m in Figure 6).
Despite this, the abrasion is dominated by a characteristic longitudinally undulating pattern with a
wavelength of λw = 1.25 ± 0.6 m. Furthermore, a significant abrasion concentration on the orographic
right side is visible and clearly shown by the super-elevated longitudinally averaged cross-sectional
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abrasion profiles in Figure 9. The abrasion depths of both high-strength concretes C1 and C2 were
considerably higher after the first year compared to subsequent years. However, the shape of the
abrasion profiles observed after the first year of operation were conserved during the following years
with a slight trend of amplification.Water 2020, 12, 469 16 of 29 
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Figure 9. Super-elevated longitudinally averaged cross-sectional abrasion profiles of high-strength
concrete test fields (a) C1 at test location 1 and (b) C2 at test location 2 installed at Pfaffensprung SBT
for the years 2012 to 2015; view in flow direction.

The granite test fields G1 and G2 partly indicate implausible negative abrasion depths (colored in
blue) because of small abrasion depths close to the detection uncertainty. Overall, they confirm the
visual surveys revealing abrasion concentrations along the joints.

The mean and maximum cumulative abrasion depths of the high-strength concrete and granite
test fields are shown as a function of the cumulative bedload mass in Figure 10. The abrasion depths
linearly increase with increasing bedload mass confirming the theory expressed by the mechanistic
abrasion models. The ratio between maximum and mean abrasion depths defined by the gradients of
the fits amounts to 43.8/25.0 = 1.8 for high-strength concrete and to 8.2/3.9 = 2.1 for granite. Overall,
the results from the Pfaffensprung SBT show that the abrasion depths and hence abrasion rates of
the granite pavement were on average approx. six times lower compared to those of high-strength
concrete for identical hydraulics and sediment transport conditions.
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Figure 10. (a) Mean and (b) maximum cumulative abrasion depths as a function of cumulative bedload
mass at Pfaffensprung SBT for high-strength concrete test fields C1 and C2 and granite test fields G1
and G2 for the years 2012 to 2015.

Although abrasion on the tunnel walls was not monitored in this study, visual surveys indicated
considerably smaller abrasion at the walls compared to those of the tunnel invert. Furthermore,
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abrasion at the walls mainly occurred close to the invert and decreased with increasing vertical distance
from the invert. The tunnel walls only required small repair works since the commissioning in 1922,
which is in contrast to the tunnel invert with several refurbishments in the same period.

4.2. Runcahez

Mean SBT operation duration and hydraulic conditions for the years 1996 to 2000 and 2001 to 2014
are listed in Table 5. Overall, the SBT was in operation for T = 1.5 d per year bypassing a discharge of
QSBT = 56 m3/s. The corresponding mean flow depth, flow velocity and Shields parameter were h = 2.0
m, U = 7.4 m/s and θ = 0.036, respectively.

Table 5. Mean SBT operation conditions, bedload transport masses and abrasion depths in the Runcahez
SBT for 1996–1999 and 2000–2014 and the overall average.

Parameter Unit 1996–1999 2000–2014 Average

Mean SBT operation duration T [d/year] 1.63 1.37 1.50
Mean discharge in SBT QSBT [m3/s] 56.4 55.7 55.9

Mean flow depth h [m] 2.01 2.00 2.00
Mean flow velocity U [m/s] 7.38 7.35 7.35

Mean Shield’s parameter θ [–] 0.036 0.036 0.036
Mean bedload mass BL [103 to/year] 10.1 10.7 10.6

Mean Abrasion Depths am 1996–1999 2000–2014 1996–2014

Silica fume concrete (SC) [mm/year] 1.6 0.7 16.8
High performance concrete (HPC) [mm/year] 1.5 0.9 20.0

Steel fiber concrete (SF) [mm/year] 1.0 1.2 21.9
Roller compacted concrete (RCC) [mm/year] 1.4 - -

Polymer concrete (PC) [mm/year] 0.4 1.1 27.7

The Rein da Sumvitg River exhibits an armor layer. The adapted critical Shields parameter for
initiation of bedload transport (Equation (11)) is θc

′ = 0.058, which is in agreement with literature
data [63,80,81]. The corresponding critical discharge for the initiation of motion is Qc = 33 m3/s.

The design discharge of the SBT was never exceeded during the observation period, so that
the entire discharge including bedload was assumed to be bypassed without any depositions in the
reservoir. The gravimetric bedload transport capacity of the SBT for the mean discharge amounts to
Qs

* = 0.50 to/s and is thus significantly larger than the corresponding bedload transport capacity of the
Rein da Sumvitg River of Qs

* = 0.08 to/s. As a result, no depositions in the SBT occurred. This was
confirmed by the operator’s experiences revealing no depositions in the SBT. Table 5 lists the bypassed
bedload masses for the years 1996–1999 and 2000–2014.

The rolling and suspension probabilities of the mean particle size in the SBT were PR = 0.33
(Equation (20)) and Psu = 0.00 (Equation (22)), respectively. This results in a saltation probability of Psal
= 1 − PR − Psu = 0.67 indicating that particles were mainly transported in saltation. The computed
particle hop length of the mean particle size amounts to Lp = 2.3 m (Equation (21)).

The individual test fields in the Runcahez SBT show similar abrasion patterns, except for the
RCC exhibiting high material losses close to the tunnel walls due to improper compaction. As a
representative for the other concretes, Figure 11a,b show the interpolated abrasion map of the silica
fume concrete (SC) after four and 19 operational years, respectively. The abrasion map in Figure 11
shows a longitudinally undulating abrasion pattern with a wavelength λw = 2.5 ± 0.5 m and with
two incision channels along the tunnel walls. The temporal evolution of these channels is seen in the
longitudinally averaged cross-sectional profiles of the SC test field (Figure 12). The incision channels
developed close to the tunnel walls and grew both, in depth and width over time. Furthermore, the
abrasion profile is asymmetric. The abrasion depths on the orographic left side are higher than on the
right side.
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The abrasion on the tunnel walls was not monitored in this study. However, several refurbishments
were required at the invert, but none at the walls since the commissioning of the tunnel in 1962.
Furthermore, visual surveys revealed that abrasion at the tunnel walls mainly occurred close to the
invert and decreased with increasing vertical distance from the invert.

4.3. Abrasion Model Calibration

The computed kv-values based on the field data are plotted as a function of the corresponding
material splitting tensile strengths in Figure 14. Irrespective of the model, the resulting data scatter is
comparable, whereas the results of the SAMA are generally one order of magnitude smaller compared
to those of the SAM and SAM*. Furthermore, a strong material dependency is evident. The kv-values
determined for different types of concrete are similar, except for the polymer concrete (PC) and fluctuate
around kv = 1.3 × 106 for the SAM, kv = 8.8 × 105 for the SAM* and kv = 1.9 × 105 for the SAMA,
respectively. The kv-values of granite are kv = 1.4 × 107 for the SAM, kv = 1.6 × 107 for the SAM*

and kv = 2.4 × 106 for the SAMA, hence being roughly one order of magnitude higher than those of
the concretes.
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5. Discussion

5.1. Abrasion Pattern

It was shown that the bedload transport in the SBTs is mainly in saltation mode. Hence,
impingement of saltating particles on the invert governs hydroabrasion in these tunnels. The
mechanistic saltation abrasion models accounting for this mechanism are therefore applicable. The
smoothly abraded surfaces indicate that the bed-parallel component of the kinetic energy trajectory of
the impacting particles is dominant. This is in line with physical scale model test results, revealing that
the particle impact angle in supercritical flows ranges from 2◦ to 8◦ for fixed planar beds [44].

The fact that no refurbishments of the tunnel walls were required, while several refurbishments of
the inverts were performed in the Pfaffensprung and Runcahez SBTs, indicate that the abrasion rates
on the walls were orders of magnitudes smaller compared to those of the tunnel inverts. This implies
that the particle saltation trajectories exhibit a negligible component normal to the tunnel walls in
agreement with [82].

The abrasion monitoring of the invert material test fields in the Pfaffensprung SBT revealed
material-dependent abrasion characteristics (Figures 4–8). The concrete test fields show irregularities
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at the construction joints. Although such joints are supposed to represent spots of structural weakness
where hydroabrasion initiates, the abrasion rates were not significantly higher compared to the rest of
the test field. This suggests a proper implementation and high material quality. The irregularities of
the abrasion patterns are rather caused by smoothing small initial surface irregularities that originated
from implementation in the first year of operation, while no further amplification was observed in the
subsequent years. The joints of the granite pavement also constitute spots of weakness and can be
regarded as the equivalent of the concrete construction joints. While the joints perpendicular to the flow
show similar characteristics as the working joints, i.e., smoothing out initial geometric irregularities at
the upstream edges of the blocks, the joints oriented parallel to the flow direction exhibit a different
behavior revealing a strong self-intensifying process, i.e., growing grooves (Figures 4d and 7c). The
concrete test fields in the Runcahez as well as the Pfaffensprung SBT exhibit a longitudinally undulating
abrasion pattern (Figures 5, 6 and 11) similar to that observed in physical scale model tests [23].
This abrasion pattern is presumably triggered by saltating sediment particles. Bed irregularities
prompt sediment particles to saltate and, hence, initiate abrasion further downstream due to particle
impingement and in return cause bed irregularities initiating abrasion further downstream. This
results in the formation of a regularly undulating abrasion pattern. In the Runcahez SBT, the abrasion
wavelength of λw = 2.5 ± 0.5 m roughly scales with the mean computed particle hop length of LP =

2.28 m, whereas in the Pfaffensprung SBT λw = 1.25 ± 0.6 m is approximately half the computed particle
hop length of LP = 2.70 m. The discharge at which the mean particle hop length is LP = 1.25 m amounts
to Q ≈ 12 m3/s, which was frequently exceeded in the SBT, i.e., for 30 to 90 days per year between
2012 and 2015. A relation between particle motion and abrasion pattern is thus plausible. On the one
hand, the observed variations of the abrasion wavelength could stem from the considerably fluctuating
hydraulics and sediment transport conditions in the Pfaffensprung SBT (flow depths varying from a
few centimeters to some meters and size of particles in motion varying between submillimeter to meter
range), causing significant variations in particle hop length. On the other hand, these variations could
result from a superposition of different abrasion patterns reducing the observed abrasion wavelength.
In order to clarify possible relationships between bedload particle transport mode and abrasion pattern,
further systematic investigations are needed. A comparable undulating abrasion pattern was not
observed for the granite pavement in the Pfaffensprung SBT, which might be attributed to the fact
that abrasion concentrations along the joints are orders of magnitude higher compared to those of the
large-area invert and hence make the latter unrecognizable.

The abrasion pattern further depends on the local flow field and the presence of three-dimensional
flow structures. Regarding SBTs, the secondary currents of Prandtl’s first and second type are of particular
interest [83]. The first type occurs in channel bends, where a spiral flow, induced by centripetal forces,
causes a concentration of sediment transport at the inner side of the bend [84]. The second type exists
in straight narrow open channel flows due to non-homogeneity and anisotropy of turbulence [85]. As
a result, bed shear stresses close to the walls are 20–50% higher compared to the spanwise averaged
values for aspect ratios between 2 and 4 [23,86].

The ratio between maximum and mean abrasion depths determined from the field data was
amax/am = 1.6–2.2. This agrees with literature data on mortar abrasion obtained from physical scale
model tests of [23]. The detected asymmetric abrasion profiles in the Pfaffensprung and Runcahez SBTs
(Figures 9 and 12) are in line with field surveys in other SBTs revealing the formation of an incision
channel along the inner side of a bend and further downstream of the bend [48,87,88]. These incisions
are attributed to Prandtl’s first type of secondary currents [85]. Such currents cause high bed shear stresses
and hence bedload transport concentration at the inner side of the bend leading to an incision channel.
This channel, in return, stabilizes the spiral flow and promotes bedload transport concentrations in
this topographic depression due to gravity [89], resulting in a self-intensifying process. The effect of
Prandtl’s first type of secondary currents is still visible downstream of a bend in the Pfaffensprung SBT,
but gradually re-distributes across the tunnel width downstream of the bend.
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Overall, many observed abrasion characteristics, e.g., abrasion concentrations along irregularities,
the formation of incision channels and undulating abrasion patterns, indicate that hydroabrasion is
a self-intensifying process triggered by surface irregularities and structural weaknesses, as already
hypothesized by [18,23]. This results in material-specific abrasion patterns and implies that abrasion
rates vary considerably in space, provoking unevenly distributed material loss of the invert.

To the authors’ knowledge, the present study encompasses the first systematic long-term field
investigation on hydroabrasion. Despite this, the time-scale of this study is still relatively small
compared to that of hydroabrasion processes in nature and at hydraulic structures, the latter with
a typical design service life time of several decades. However, the results can be regarded as
representative, since the mean abrasion depths of the concrete test fields are large enough to (i) capture
the effect of increasing structural weakening due to particle impingement, (ii) encompass the effect of
surface roughness changes and (iii) observe abrasion behavior of the core material and not only of the
topmost cement layer. The composition and, hence, abrasion behavior of the topmost cement layer
differs from the core material due to the effect of the aggregates [90–93]. The results obtained from the
high-strength concretes at the Pfaffensprung SBT might be attributed to this depth-dependent abrasion
resistance. The abrasion depths observed in the first years were considerably larger than those of the
following years (Figure 9), despite similar impact conditions, which indicates a strengthening effect of
the aggregates.

5.2. Abrasion Model Calibration

The abrasion coefficient kv varies significantly for the different abrasion models, as shown in
Figure 14, due to different particle trajectories and particle impact equations implied in those models.
The kv-values of the SAMA are generally one order of magnitude smaller than those of the SAM [44].
There is a considerable data scatter in the abrasion coefficient kv. Accounting for the effective Young’s
modulus in the SAM* did not reduce this data scatter. Instead, other uncertainties and errors dominate
the model accuracy, such as (i) the determination of representative hydraulic conditions; (ii) the
abrasion measurement errors (±3.3 mm and ±2.0 mm for TLS and geodetic leveling, respectively);
(iii) spatial variations of the invert material bending tensile strength (on average = ±10%) and the
uncertainty of Equation (5) (±6% according to [51]), both used for computing splitting tensile strength;
(iv) the uncertainty of Equation (6) applied for computing invert material Young’s modulus (±5 GPa
according to [56]); (v) the uncertainty of representative sediment particle size (assumed to ±20%); and
(vi) the estimation error of sediment transport rates (assumed to ±50%). Following error propagation,
these uncertainties result in a relative error for kv of σr ≈ 87% for the SAM and SAM* and σr ≈ 91% for
the SAMA on average. Despite this, the present values are in good agreement with literature data for
high-strength concrete as well as for granite. For concrete, both kv = 106 proposed by [21,37] for the
SAM and kv = 1.9 × 105 proposed by [44] for the SAMA were confirmed herein with kv = 1.3 × 106 and
kv = 1.9 × 105, respectively. Furthermore, kv = 1.4 × 107 for granite is in line with kv ≈ 107 proposed
by [21,37] for hard rocks such as granite, quartzite and marble. Therefore, the obtained values listed in
Table 6 are realistic and can be used in a first step for long-term abrasion prediction of brittle materials.

Table 6. Recommended abrasion coefficients.

kv (106)

Material Compressive Strength SAM SAMA

High-strength concrete fc ≈ 75–110 MPa 1.3 0.19
Granite fc ≈ 240–280 MPa 14.0 2.4

The data scatter, error margins and observed trends for both models are comparable (Figure 14).
Therefore, the calibration of the SAMA is exemplarily discussed in the following. The kv-values from the
present prototype data and from literature data [21,23,32,36,39,44,47,94] are plotted in Figure 15 for the
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SAMA as a function of splitting tensile strength. A general trend of increasing kv with increasing fst, in
agreement with [44], is evident indicating that abrasion rates decrease with increasing splitting tensile
strength. However, the stabilization of kv ≈ 105 for hard materials at fst > 1 MPa as revealed by [44]
is not identified. The data from [36,94] considerably deviate from the general trend. The computed
kv-values of the foams tested by [36] are significantly lower compared to the other materials because of
the considerably lower Young’s moduli of YM = 3.9–330 MPa and densities ρc = 87–960 kg/m3. Note
that the latter is not included in the mechanistic abrasion models, although presumed to also affect
hydroabrasion [36,40–42]. The field study of [94] was conducted in a weir stilling basin, presumably
retaining sediments in a recirculating flow field. As a result, the same sediments repeatedly impacted
the invert [95], resulting in a bias of kv towards lower values. Omitting the kv-values of [36,94] due to
different properties of invert materials and the non-representative test set-up, respectively, significantly
reduces the data scatter. Furthermore, Figure 15 displays a certain material-dependency. The highest
kv-values were obtained for rock, followed by concrete and mortar/soft rock. The values for concrete
(denoted by circular symbols) are roughly one order of magnitude smaller than those for hard rocks,
such as granite, quartzite and marble. This implies that the abrasion resistance of concrete is roughly
one order of magnitude lower compared to that of hard rocks. The value for the polymer concrete
(PC) is significantly lower (Figure 14) likely due to the polymer matrix, which increases the material
ductility. As a result, the mechanistic saltation abrasion model developed for brittle materials is not
suitable for predicting the abrasion behavior of such relatively ductile concretes. Therefore, the PC was
not considered herein for model calibration.
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The abrasion coefficients obtained from the prototype data are, in contrast to laboratory results,
not subjected to potential model and scale effects. Despite this, the kv-values derived from laboratory
and prototype data are in a similar range. This is a promising result indicating that there are no major
scale effects and the mechanistic saltation abrasion models are applicable to both, laboratory and
prototype scale.

The data scatter of the obtained kv-values originates not only from measurement errors and
input parameter uncertainties, but also from model uncertainties. Hydroabrasion depends on the
abrasiveness of the sediment (e.g., hardness and shape [96–100]) on the loading side and on various
invert material parameters (e.g., density, porosity, crystal and clast size [36,40–42], or the characteristic
length introduced by [101]) on the material resistance side. These parameters are either inadequately
or not at all accounted for in the models discussed herein, which also contributes to the significant
data scatter. Furthermore, the simplification of T*0.78

≈ T*0.8 of [44] (in Equation (3)) presumes that
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the excess transport stage T* has no effect on abrasion, as already stated by [22,32,47]. A reason for
this might be the fact that increasing flow velocity results on the one hand in higher particle impact
velocities and increased specific energy transfer, but on the other hand, in lower impact angle and
longer particle hop length, which in return reduce the specific energy transfer [44]. This might apply
for small excess transport stages. However, the negligence of the excess transport stage in the SAMA
might be questioned in particular for high excess transport stages. In SBTs, the excess transport
stage can reach T*

≈ 100, so that the term T*0.78/T*0.8 becomes 100−0.02
≈ 0.9. This value and also

its effect on the abrasion rate is probably non-negligible. Measurement of the bedload transport
through the SBTs, e.g., by using a Swiss plate geophone system, is strongly recommended to reduce
the unavoidable uncertainty of bedload transport estimation [14,34,48]. Furthermore, additional
comprehensive laboratory studies, as performed by [102] and field studies, as presented herein, are
needed to further enhance the model prediction accuracy and to clarify the effects of (i) excess transport
stage; (ii) invert material properties other than Young’s modulus and splitting tensile strength; and
(iii) sediment properties on the abrasion rate.

6. Conclusions and Outlook

This paper reports the setup, methods and results of a field investigation on hydroabrasion in two
Swiss SBTs and its modelling for fixed planar beds subjected to supercritical flows with high bedload
transport rates. Based on the obtained field data, a well-known mechanistic saltation abrasion model
and its recently modified version were calibrated for high-strength concretes and granite used as invert
materials in the studied SBTs. The present findings apply not only to SBTs, but also for high-gradient
non-alluvial plane bedrock rivers as well as concrete and rock lined hydraulic structures, e.g., weir
facilities, flushing channels, bottom outlets and diversion and sediment sluicing tunnels, due to the
similarity of flow structures, particle motion characteristics and channel bed properties.

The main findings are: (I) the channel geometry and the flow field considerably affect the abrasion
pattern. Horizontal channel bends cause secondary currents of Prandtl’s first type resulting in bed
shear stress and bedload transport concentrations at the inner side of the bend and, as a result, lead
to the formation of an incision channel. (II) The 95-percentile abrasion depths amount to about 1.6
to 2.2 times the spatially averaged abrasion depths for high-strength concrete and granite. (III) The
abrasion coefficient kv is material-dependent and roughly an order of magnitude higher for granite than
for high-strength concrete. (IV) The abrasion resistance of granite with fc = 240–280 MPa is roughly
six times higher than that of high-strength concrete with fc = 75–110 MPa despite little variations in
splitting tensile strength and elastic Young’s modulus.

Regarding engineering applications, the findings of this study imply that the mechanistic saltation
abrasion models are useful for realistic predictions of mean abrasion rates. However, instead of a
constant kv-value proposed by [21,37], the application of material-specific kv-values listed in Table 6
are recommended to enhance the prediction accuracy of the models. The saltation abrasion models are
one-dimensional models not able to reproduce the three-dimensional processes of hydroabrasion. To
account for that, the local abrasion concentrations can be accounted for with amax/am ≈ 2 as a preliminary
estimate, while their locations can be derived from the local flow field.

Overall, this paper sheds light on hydroabrasion processes in high-speed open-channel flows and
contributes to a better understanding of hydroabrasion at hydraulic structures and of bedrock incision
due to bedload transport. The findings help to enhance the accuracy of mechanistic abrasion models
for a range of applications, but also indicate a considerable potential for model enhancement.

To enhance the model accuracy the challenges of (i) reduction of the uncertainty of model
input parameters; (ii) determination of the interactions and effects of hydraulics, sediment transport
conditions and hydroabrasion; (iii) analysis of the effects of sediment particle and invert material
properties on hydroabrasion; and (iv) finally advancing the saltation abrasion model should be tackled
in further research projects both, in laboratory and field. Thereby, for an accurate determination of
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bedload transport and hydroabrasion depths in the field, the use of a Swiss plate geophone system and
a high resolution 3D laser scanner, respectively, are recommended [14,34,48].
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