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Abstract: We present a study of wave overtopping of barriers. The phenomenon of the wave
overtopping over emerged structures is reproduced both numerically and experimentally. The
numerical simulations are carried out by a numerical scheme for three-dimensional free-surface
flows, which is based on the solution of the Navier—Stokes equations in a novel integral form on a
time-dependent coordinate system. In the adopted numerical scheme, a novel wet-dry technique,
based on the exact solution of the Riemann problem over the dry bed, is proposed. The experimental
tests are carried out by adopting a nonintrusive and continuous-in-space image-analysis technique,
which is able to properly identify the free surface even in very shallow waters or breaking waves.
A comparison between numerical and experimental results, for several wave and water-depth
conditions, is shown.

Keywords: wave overtopping; free-surface flows; numerical simulations; wet-dry technique;
experimental tests; time-dependent coordinates; image analysis

1. Introduction

The prediction of the wave overtopping process over barriers is fundamental to properly design
seawalls, breakwaters, sea dikes and, more generally, structures that have the aim to protect inland areas
from sea waves. For this reason, a large number of studies (e.g., [1-5]) has been carried out in the past
years with the aim of giving estimation to the fundamental parameters that govern the aforementioned
phenomenon. These studies led to the development of modern overtopping prediction formulae [6].
This approach provides a method of evaluation of several essential parameters (overtopping discharge,
maximum run-up, wave transmission), being a robust and simple tool for the prediction of the key
aspects of wave overtopping.

An alternative strategy to study the wave overtopping phenomenon consists in the use of
numerical models. In order to have a reliable prediction of the wave overtopping over a structure,
a numerical model has to consistently simulate different phenomena: wave transformation from
deep to shallow water, wave breaking over variable bathymetry, wave run-up on the structure, wave
transmission, three-dimensional effects. The first numerical models presented in literature for the
overtopping simulation were based on solution of the depth-averaged Nonlinear Shallow Water
Equations (NSWE) (e.g., [7-9]). Using shock-capturing methods, these NSWE-type models possess
the capability to naturally simulate wave breaking [8]. Unfortunately, in NSWE models, frequency
dispersion effects are neglected, so wave propagation cannot be properly reproduced. To overcome this
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issue, a number of models were created solving depth-averaged Boussinesq Equations (e.g., [10-12]),
which incorporate nonlinear and dispersive properties. Boussinesq-type models are able to simulate
both wave propagation (thanks to the modeling of the dispersive terms) and wave breaking (thanks
to the shock-capturing property); for this reason, in recent years they were widely used for wave
overtopping studies [13]. The drawback of these models is that in the shallow water zones, to
properly simulate wave transformation and breaking, dispersive terms have to be turned off, essentially
switching from Boussinesq Equations to NSWE, so that these models are not completely parameter free;
in fact, a criterion to define the switch zone from one set of equations to the other one, has to be chosen.

The limiting aspects of depth-averaged type models can be encompassed by using a model that
solves the three-dimensional Navier-Stokes (NS) Equations [14-16]. In the early NS-type models, the
hydrostatic pressure assumption is made (i.e., [17]). When the vertical fluid acceleration is strong,
mostly in presence of highly dispersive and nonlinear phenomena in deep and intermediate water,
these models may be inaccurate. More recent models take into account the dynamic pressure. In such
models, a two-step procedure is developed: in the first step, the NS equations are solved with the
hydrostatic pressure assumption, neglecting the dynamic pressure; in the second step, the dynamic
pressure is taken into account by solving the so-called Poisson equation.

Free-surface tracking is one of the most challenging issues in three-dimensional models for
free-surface flows. Previous research [18,19] used the Volume Of Fluid (VOF) technique to locate free
surface in a model in which the NS equations are numerically integrated in Cartesian coordinates.
This technique is widely used in numerical methods for free-surface flows, being adopted in some of
the most popular numerical codes available in literature (see for example, [20,21] for the application
of the VOF technique to OpenFOAM®). By means of this technique, the vertical fluxes cross the
computational cell arbitrarily. The drawback of this method is that a correct assignment of pressure
and kinematic boundary conditions at the free surface is difficult. In a different class of models [22,23],
in order to overcome the aforementioned drawback, the Navier-Stokes equations are expressed in a
coordinate system in which the horizontal coordinates are the Cartesian coordinates and the vertical
one is a time-varying coordinate that adjusts to the free-surface movements. By this strategy, the
time-varying physical domain is mapped into a fixed rectangular-prismatic-shape computational
grid, by means of a time-dependent vertical coordinate transformation; the free-surface position is
at the upper computational boundary, so that the kinematic and zero-pressure conditions at the free
surface can be assigned precisely. One of the main drawbacks of the aforementioned models is that
they are not designed to explicitly simulate the wave breaking. In order to overcome this drawback,
several authors recently proposed numerical models based on a conservative differential form [24] or
on an integral form [25,26] of the Navier-Stokes equations, expressed in a time-dependent vertical
coordinate system. In these models, the motion equations are numerically integrated by means of
shock-capturing schemes. As opposed to Boussinesg-type models, no criterion has to be chosen to
simulate wave-breaking phenomenon.

In the numerical models by [15], [25,26], a simple technique proposed by Ma et al. [24] is
implemented in order to treat the wet—dry front movement: the criterion by means of which a dry cell
changes its status to wet is based on a comparison with the free-surface elevation of the neighboring
cells. This technique proved to be successful in cases in which there is a positive sloping bottom,
but fail to predict the wet—dry front movement over emerged obstacles with flat or negative slope
bottoms. In order to overcome this limitation and to extend the applicability of the model by [26] to the
simulation of wave overtopping of barriers, in this work we propose a novel wet—dry technique, which
is able to locate the wet-dry wave front over flat or negative slope bottoms. In the proposed wet-dry
technique, the exact solution of the Riemann problem over dry bed is adopted to evaluate the celerity
of the wet-dry wave front. This novel wet-dry technique is applied to the numerical model proposed
by [26], and it is validated by numerically simulating the wave overtopping over barriers with flat
crest and negative slope bottom and by comparing the numerical results with experimental data.
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A set of experiments used to validate the numerical results, has been carried out in the wave
flume of the Hydraulics Laboratory of the Department of Civil and Environmental Engineering and
Architecture, University of Cagliari, Italy. Field [27] and laboratory measurements are widely used to
validate numerical models [28,29]. Many of these measurements are carried out by means of resistive
probes as experimental instruments, by means of which water level can be measured. Using resistive
probes, the prediction of the water level in very shallow water zones and in the wave-breaking zone, is
a challenging issue. In this context, Lorke et al. [3] used thin gauges and micropropellers to predict the
water level and flow velocity at the crest of the structure. In order to overcome the aforementioned
issue, we developed a nonintrusive and continuous-in-space technique, based on Image Analysis,
developed and tested by Ferrari et al. [30]. This technique is able to properly identify the wave free
surface even in prohibitive situations for traditional resistive probes, such as very shallow waters and/or
breaking waves. Furthermore, a validation of the proposed model with a random wave overtopping
test, is presented; in fact, random wave tests are of great practical interest, because they can represent
complex real phenomena that can be found in nature.

In this work, we present a numerical and experimental study for the wave overtopping over
barriers. The main element of novelty in the adopted numerical model, consists in the implementation
of wet—dry technique by means of which the celerity of the wet—dry front is correctly evaluated even
over flat or negative slope bottoms. The paper is structured as follows: in Section 2, we describe the
numerical model; in Section 3, we describe the setup for the experimental tests; in Section 4, we present
the results of several validation tests for the numerical model; in Section 5, we present the conclusion
of the study.

2. The Numerical Model

2.1. Governing Equations

Let us consider a moving control volume AV (t), with surface AA(t), which moves with a velocity v
different from the fluid velocity 1. In a Cartesian system of reference (x1, x2, x3), Wand v components
are, respectively, (11, up, u3) and (v1, v, v3). The integral form of the momentum equation over the
control volume AV (#) is:

d — - - - -
— udV—i—f u u—v-ﬁdA:f T-ﬁdA—i—f av 1)
dt Jav P AA() P ®( ) AA() AV () 2

where p is the density of the fluid, f = —grad(Gx3) is the external body force vector per unit mass

(where G is the constant of gravity), T is the stress tensor, 7 is the unit outward normal vector and
the symbol (X) represents the outer product. For an incompressible flow, T can be defined with the
constitutive relation T = —PI 4 2uS (where P is the total pressure, S is the strain rate tensor, I is the
identity tensor and p is the dynamic viscosity). In the context of a free-surface flow, we define 1 as the
free-surface elevation, with respect to an horizontal reference plane. The total pressure can be split into
an hydrostatic part pG(n — x3) and a dynamic part g. Therefore, Equation (1) can be rearranged as:

%fAvmﬁdV: —fM(t)IZ@(Z—Z).ﬁ dA

" K @)

+ fAA(t) 2vS-it dA — fAA(t) Gni dA - % fAV(t) grad(q)dV
where v = 11/ p is the kinematic viscosity. The integral from of the continuity equation over the moving
control volume AV (t) is

d - -
— dV—I—f u—v)ndA=0 3
dt AV(t)p DA(H) p( ) ©)
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Assuming that the flow is incompressible, Equation (3) becomes:

d RN
— dV—i—f Uu—v)idA=0 4
dt Jav() AA(t)( ) @

Let (&1, &2, &é3) be a system of curvilinear coordinates. The transformation from Cartesian
coordinates (x1, x2, x3) to the generalized curvilinear coordinates (&1, &2, &3) is

&1 =&1(x1, x2, x3)
& = &(x1, x2, X3) )
&3 = &3(x1, x2, x3)

. 0 .
Let ?(1) —ox /&) be the covariant base vectors and = &/ dx the contravariant base vectors.

The metric tensor is ¢y, = ?(l) -?(m), with (I,m = 1,2,3). The Jacobian of the transformation is given by

\/E = /det (Clm) (6)

Let us consider AV(t) as a volume element defined by surface elements bounded by curves lying
on the coordinate lines. We define the volume element in the physical space as:

AV(t) = VeAEIAENE @)
and the volume element in the transformed space as:
AV' = AE1AENES ®)

It is possible to see that the volume element defined in Equation (7) is time dependent, while the
one defined in Equation (8) is not. Similarly, we define the surface element in the physical space as
AA(t), which is time dependent, and the surface element in the transformed space as AA*, which is
constant over time.

In a generalized curvilinear coordinate system Equations (2) and (4) become, respectively:

< [ U e d&dérdes =
{for [F (5 - 3)] ¢ VR aggae, - [, [#@( - )¢ VEdggpas |
fone, 618 Ve dtpasy — [ ne NEazgde, |+ 1 [y 7 Ve derdeatss
w2 o, 87 Neaggat, - [, 87" \Edgpa]
n 4 [y Ved&dérdes =
(10)

_[fAA*[H (ﬁ - ;)'?(a) Ve dépdsy — fAA*a, (; - 5)’?(‘1) Ve déﬁdéy]

In Equations (9) and (10) and hereinafter, AA*,+ and AA*,_ indicate the contour surfaces of the
volume element AV* on which &, is constant and which are located at the larger and the smaller value
of &, respectively, and «, 8,y = 1,2, 3 are cyclic.

In order to simulate the fully dispersive wave processes, Equations (9) and (10) can be transformed
in the following way. Let x3 = 0 at the horizontal reference plane defined by the still free surface. Let
H(x1, x2, t) = h(x1, x2) + n(x1, x2, t), where h is the still water depth. Let the bottom elevation with
respect to the horizontal reference plane be z(x1, x2) = —h(x1, x2). Our goal is to accurately represent
the bottom and surface geometry and correctly assign the pressure and kinematic conditions at the
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bottom and at the free surface. A particular transformation from Cartesian to curvilinear coordinates,
in which coordinates vary in time in order to follow the free-surface movements, is

x3+h
&1=x1&=x&= 3H (11)
Under the transformation (Equation (11)), the components of vector v are:
(99(3
=00, =003 = — 12
01 v2=0v3 =~ (12)

This coordinate transformation basically maps the time-varying coordinates of the physical
domain into a fixed coordinate system (&1, &2, &3) where &3 spans from 0 to 1. In addition, the Jacobian
of the transformation becomes

Ve=H (13)

We define the cell-averaged value (in the transformed space), respectively of the conservative
variable Hu and of the primitive variable H (recalling that H does not depend on &3):

—— 1 -

Hu = W f;w Hu déldézdéjg (14)

— 1

H= H d&dé, (15)
fep VAN

where AAE1 5= A&1A& is the horizontal surface element in the transformed space.

By recalling that AV* is not time dependent, by dividing by AV* and by recalling Equations (13)
and (14), Equation (9), expressed in the time-dependent coordinate system defined in Equation (11),
becomes:

oHY _
ot
L é{ far |7 ®(-7)- (“)H]déﬁdév fone, [# (i - 7)- T ]aggaz, |
s i{ for [Gqc Y ]déﬁd&, fune, ¢ Hagpac, | (16)
90 2

AV* AV 9z C Hdéldézdés
U T W gy R

By recalling that AAE1 £ is not time dependent, by dividing by AA} & and by recalling
Equations (13) and (15), Equation (10), expressed in the time-dependent coordinate system defined in
Equation (11), becomes:

oH —(a) f S oy 5) ]
- - dég — -v)-c d&ld
ot AA* f Z[ fm W-v)- ¢ dgy &PH(” v)- ¢ dgpldes (17)

in which &, and &,- indicate the contour lines of the surface element AA* on which &, is constant
and which are located at the larger and the smaller value of &,, respectively. Equation (17) represents
the governing equation that predicts the free-surface motion.

Equations (16) and (17) represent the expression of the three-dimensional motion equations as a

function of the H# and H variables in the coordinate system (&1, &2, &3). The numerical integration of
the abovementioned equations allows the fully dispersive wave-propagation simulation. In order to
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take into account the effects of turbulence, we introduce a turbulent kinematic viscosity, estimated by
means of the Smagorinsky subgrid model.

2.2. Numerical Procedure

Equations (16) and (17) are solved by means of the numerical model proposed by [26].
The numerical scheme consists in a combined finite-volume and finite-difference scheme with a
Godunov-type method, and it is briefly described as follows.

A staggered grid is used, in which velocity is evaluated at cell centers, while pressure is evaluated

at horizontal cell faces. Cell-averaged values H 1 and H are known at the center of the calculation
cells and are the known variables. t(") is the time level of the known variables while t"+1) is the time
level of the unknown variables. A three-stage, third-order nonlinear strong-stability-preserving (SSP)
Runge-Kutta scheme is used in the advancing of the solution.

In order to obtain a divergence-free velocity field at each time level, we apply a pressure correction
formulation. Knowing Hu; ("), we evaluate Hu;"+1) using the three-stage iteration procedure described
below. Let

Hu, (O = Hy, ™ (18)

At each stage p (with p = 1,2, 3) an auxiliary field H_ul,gp) is obtained from Equation (16) by using

values from the previous stage

p-1
mlip) - Z{quml(q) + At ppgD E(q)'ml(q)’ )+ qut]} 19
q=0

where D(H, u;, 7) indicates the right-hand side of Equation (16), in which the term related to the
dynamic pressure gradient is neglected. See [31] for the values of coefficients (), ¢p; and d;. In order
to numerically solve Equation (19), Monotonic Upwind Scheme for Conservation Laws — Total Variation
Diminishing (MUSCL-TVD) reconstructions from cell-averaged values to point-value variables at the
center of the cell faces are employed; an Harten-Lax-Van Leer (HLL) Riemann solver is used to advance
in time the unknown variables at the center of the cell faces.

It is to be noted that the auxiliary velocity field ﬁlfp), evaluated by calculating El(f )
Equation (19) and by calculating pr—l) from Equation (17), does not satisfy the continuity equation. To
obtain a nonhydrostatic divergence-free velocity fields, we correct the pressure field and the auxiliary
velocity field, at each stage p, by introducing a scalar potential ¥, to be evaluated by the well-known
Poisson-like pressure equation,

from

v2y () — (Z* (P)) (20)

p
-—=V
At

Equation (20) is approximated by means of a second-order cell-centered finite-difference scheme,
so that it can be reduced to an algebraic linear system with the form:

AY = b (21)

where A is the coefficient matrix (with 15 nonzero diagonal coefficients), ¥ is the scalar potential vector
and b is the vector of constant terms. The algebraic linear system (Equation (21)) is solved by means of
an iterative procedure based on a four-color, zebra-line Gauss—Seidel alternate method and a multigrid
V-cycle accelerator [32].

The corrector irrotational velocity field is evaluated as follows:

r) (»)
ﬁlgp) _ At(dY . dYW 9&5
p\ 9& &3 dxq

(22)
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_ () _ Dt ¥ gy 93

e = p( & * &3 Ixp 23)
2. _ At(I¥V) 95
Hac = p( 853 89(3 (24)

In order to have a divergence-free velocity field at each stage, we correct the velocity field
as follows:
o =5+ (25)

Let us indicate with L(H, u, 7) the right-hand side of Equation (17). The advancing of the depth

H(p) to the p stage is obtained by:

—=(p)

H =

— 7" +4ﬁ”9mwiw+Aﬂ 26)
Huy "+ is given by
m[(nJrl) _ ml(3) (27)

In order to simulate the run-up and the backwash dynamics of the wet and dry front on a structure,
a novel wet—dry numerical technique is adopted in the scheme. This technique allows the scheme to
simulate precisely the advance of the wet-dry front on the structure.

2.3. Wet=Dry Technique

In the adopted numerical model, a novel wet—dry technique is implemented, in order to allow the
model to simulate waves propagating over flat or negative slope bottoms. Previous research [15,26]
adopted a simple technique proposed by [24] for the treatment of the wet—dry front movement. In
order to introduce the aforementioned technique, let us define a column as a set of calculation cells
stacked on top of each other, having the same x; and x; coordinates. In [15,24,26], a dry column
changes its status to wet if its free-surface elevation is less than the free-surface elevation of an adjacent
wet column. The aforementioned treatment is proven to be effective in the case in which the wet-dry
front propagates over a positive sloping bottom (see Figure 1a), i.e., when at the wet-dry front the
bottom elevation of the dry column is greater than the one of the adjacent wet column. Otherwise, if
the bottom elevation of the dry column is equal to or less than the one of the adjacent wet column
(flat or negative sloping bottom, Figure 1b), the technique proposed by [24] leads to an instantaneous
wetting of the subsequent dry columns with bottom elevation equal to or less than the one of the
first wet column. This would lead to a thin-film treatment, in which the dry state is treated as a wet
state with a thin layer of water; as stated by [33], the thin-film technique fails to correctly evaluate the
celerity of the wet-dry front.

In the context of the study of the wave overtopping over barriers, the bottom can have a zero or
negative slope. In order to avoid the aforementioned drawback, the following wet-dry procedure
has been implemented in the numerical scheme. For the sake of simplicity, the technique is described
for the x1 direction. Let (i, k) be the two indexes which define the center of the calculation cells in
the x; and x3 directions, respectively. Hereinafter, the superscript () indicates the time level 7" of
the known variables, while the superscript (1 + 1) indicates the time level 7"*! = 7 + At, of the
unknown variables. Let us define the column I; as the set of calculation cells stacked on top of each
other, having the same 7 index. The water depth in a wet column is always greater than a minimum
water depth, H; > H,,;,. In a dry column H; = Hy,;,. Let I; be a dry column and I;_; a wet column. The
criterion by means of which I; changes status from dry to wet is described as follows.

Reconstructions defined at the cells that form the wet column I;_; lead to point-value variables

Hi(fi;z and ulffi;z ;- located at the wet—dry cell interfaces. Reconstructions defined at the cells that
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form the dry column I; are not carried out and their point-value variables are set to zero. We evaluate
(n) (n)-
i-1/2 i-1/2k

In order to have an estimate of the wet-dry front celerity S

1iq as the average of u; over Xx3.

1(2 /o» the exact solution of the wet-dry
Riemann problem over a dry bed is used, adopting piecewise constant initial data, Hjp and ujp:

111(”) if X1 <X1i-1/2
Up = i-1/2 ] = (28)
0 if X1 > X1i-1/2
H" if x1 <xq
HID — i—1/2 1 11—1/2 (29)
0 if X1 > X1i-1/2

in which x;;_1 /» represents the position in the x; direction of the interface between the columns I;_;

and I;. From [33], we have:
am)  _ o (n)- [py(n)=
Si—1/2 =il + 2 GHi_l/2 (30)

Is to be noted that the standard solution of the Riemann problem over wet bed, with nonzero
water depth in the initial data, cannot be used, since it would lead to a wrong celerity evaluation.
See [33] for the details about the wet—dry Riemann problem solution.

Knowing the wet-dry front celerity from Equation (30), the distance between x1;_1,, and the
wet—dry front is:

(n+1) _ z(n) (n)
dli—l/z - Si—l/z'At + dli—l/z (31)

The column I; becomes wet if the wet—dry front reaches the successive column interface, so that

"7 = dx (32)
where Ax; is the calculation cell dimension in the x; direction. The above described procedure is
repeated in the x, direction.

It can be noted that, by using the proposed wet-dry technique, the celerity of the wet-dry wave
front is used to evaluate the time in which the subsequent dry cell becomes wet. In this way, in case of
a flat or negative sloping bottom, a dry column does not instantaneously change status to wet.

/ Still free surface St free surface /
ZV

Wet column Dry column Dry column Wet column

(a) (b)

Figure 1. Positive and negative sloping bottoms. (a) Positive sloping bottom and (b) negative
sloping bottom.

3. Experimental Setup

The laboratory tests to validate the numerical model were carried out in a 21.00 m long, 0.30 m
wide and 0.50 m high flume, with glass walls, a piston-type wave-maker and an absorbing beach
designed to minimize the reflections. The wavemaker is controlled by an in-house developed software,
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so that monochromatic regular wave trains are produced. The software controls the wave period and
amplitude. See Figure 2 for the details of the experimental setup. More details on the wavemaker and
flume can be found in [30,34].

(a)

+

wavemaker

(b)

+

absorbing
beach

waves

= 023m/026m/029m

Figure 2. Experimental setup. (a) Plan view and (b) longitudinal section.

The model breakwater employed in the numerical simulations was reproduced by means of a
black-painted trapezoidal obstacle of Perspex. Three hydrostatic water depths were employed (0.29,
0.26 and 0.23 m). The water was seeded with a fluorescent dye, the investigation area was lighted with
a light sheet and images of the experiments were recorded by a digital video camera placed orthogonal
to the investigation area; consequently, the recorded images showed a bright area (water) and a dark
area (background and breakwater). A set of runs with the same combination of wave periods (0.95
and 1.55 s), wave heights (3.50, 2.50 and 1.00 cm) and hydrostatic water levels of the numerical tests
was performed.

In order to not modify the flow and to overtake the issues related to traditional probes with
very shallow water or breaking waves, an image-analysis technique was developed to identify the
free surface. Image-analysis techniques [34,35] have many advantages when compared to traditional
probes, as they are nonintrusive (i.e., the flow is not altered by the probes) and quasicontinuous in
space (i.e., a measure can be obtained on every pixel on the recorded images). A review can be found
in [36].

4. Results and Discussion

4.1. Numerical Simulation Details

All the numerical simulations were run on a 12-CPU workstation using the Message Passing
Interface (MPI) procedure. In all the numerical simulations, 75-80% of the computational time was
spent for the solution of the Poisson-like equation in the velocity correction step of the numerical
procedure. For this reason, a multigrid V-cycle accelerator was used in the numerical model (see
Section 2.2), in order to reduce the simulation time.

4.2. Three-Dimensional Validation Test

In order to validate the three-dimensional nonhydrostatic numerical model presented, we
reproduced the experimental test performed by [37] on a fixed submerged barrier with periodically
spaced rip channels.

According to [37], the basin is characterized by a length equal to 17.20 m and width equal to
18.20 m. The beach has an initial steep slope (1:5) followed by a milder slope (1:30). There are three
submerged breakwaters: the two lateral ones are 3.66 m long, and the central one is 7.32 m long. The
distance between the submerged breakwaters is 1.82 m. The seaward edges of the bar sections are
located at approximately x = 11.10 m with the bar crest at x = 12.00 m and their shoreward edges at
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x = 12.30 m. In Figure 3, a plain view and a longitudinal section of the basin for the experimental test
performed by [37] are shown.

Y
(a) (b)
o | Z

Els Bo )
N ok < ¥
© | = - Q= ©
| a £ X *6
" Q _08 ¥ o

Q = (5]
>0 m.nv

X
x=17.2m
X

Figure 3. Experimental test carried out by [37]. (a) Plan view and (b) longitudinal section.

Regular monochromatic waves are generated at the offshore boundary of the domain. The test
parameters are deep water wave height Hy = 5.12 cm, wave period T = 15, average water depth
at the bar crest i, = 4.73 cm and cross-shore location of the still water line xgyw;, = 1490 cm. The
computational grid resolution is Ax = 0.025 m, Ay = 0.05 m and six layers are used in the vertical
direction. The time step is At = 0.0025 s. The simulation was carried on for a simulated time of 365 s,
and ran for four days. After 65 s, the hydrodynamic field is supposed to be quasistationary, so the
time-averaging of the hydrodynamic quantities is carried out in the interval 65 s-365 s.

Figure 4 shows a comparison of the cross-shore currents at two different longshore sections: the
first at x = 12.20 m (onshore side of the bar) and the second at x = 13.00 m (between the bar and the
shoreline). From Figure 4, it can be seen that at the onshore side of the bar (x = 12.20 m), the agreement
between the numerical results and the measurements obtained by [37] is good; from Figure 5, it can be
seen that in the onshore zone (x = 13.00 m), the numerical results are in quite good accordance with
the experimental ones, even if the numerical model slightly overestimates the offshore currents near
the gap between the barriers.

" 'x=122m
?_ 0:_—_T_—_i e RO J___ g S E,,,,,j,,,z‘:(;ﬁ
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Figure 4. Cross-shore currents at x = 12.20 m (a) and at x = 13.00 m (b). Circles: experimental results

by [37]. Solid line: proposed numerical model.
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Figure 5. Vertical distribution of cross-shore currents at x = 9.00 m, y = 13.60 m (a) and at x = 11.75 m,
y =13.60 m (b). Circles: experimental results by [38]. Solid line: proposed numerical model.

In order to show the ability of the model to reproduce three-dimensional velocity fields, the
numerical model is validated against the laboratory measurements of [38], obtained in the same test
configuration described above. Figure 5 shows the vertical distribution of time-averaged cross-shore
normalized velocity profiles. Normalization is done by dividing the velocity by the celerity ¢ = VGh.
The results are obtained at x = 9.00 m, ¥ = 13.60 m (2.00 m offshore of the bar) and at x = 11.75 m,
y = 13.60 m (inside the gap between the bars). Numerical results are compared against the experimental
measurements obtained by [38].

From Figure 5, it can be seen that the agreement between the numerical results and experiments
is very good. The model is able to reproduce both the offshore current near the free surface in the
offshore zone (Figure 5a) and the strong offshore current located at mid-depth in the zone inside the
gap between the bars (Figure 5b).

4.3. Wave Overtopping Test

To predict the behavior of waves interacting with the barrier in different configurations, three
experimental tests were carried out (see Table 1).

Table 1. Regular wave overtopping test configurations.

Test Mean Water Depth (m) Wave Height (cm) Wave Period (s)
T1 0.23 3.5 1.55

T2 0.26 1 1.55

T3 0.29 25 0.95

In test T1, mean water depth is lower than barrier height, resulting in an emerged barrier. In
test T2, mean water depth is equal to barrier height, resulting in a partially emerged barrier. In test
T3, mean water depth is higher than barrier height, resulting in a submerged barrier. For results
analysis, phase-averaged free-surface elevation is computed. Numerical tests are carried out with
the proposed scheme to reproduce the experiments. For the numerical tests, a fixed time step of
At = 0.0004 s, a horizontal spatial step of Ax = 0.01 m and six layers in the vertical direction are
used. The simulations were carried on for a simulated time of 600 s, and ran for approximately 24 h.
After 40 s, the hydrodynamic field is supposed to be quasistationary, so the phase averaging of the
free-surface elevation is carried out in the interval 40 s-600 s.

4.3.1. Test T1

Figure 6 shows the comparison between numerical results and experimental measurements for
test T1. It must be noted that the wave is able to pass over the barrier only partially. Figure 6a shows
the wave at the end of the run-up phase; the run-up celerity of the wave in the numerical test is slightly
lower than the measured one. Figure 6b shows the wave propagation over the crest of the barrier;
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numerical and experimental results have a good agreement, suggesting that the proposed numerical
model is well able to predict front propagation over flat bottoms, thanks to the proposed wet—dry
technique. Figure 6¢c shows that even the simulated wave run-down is in agreement with the measured
one. Figure 6d shows the wave trough located at the offshore side of the barrier, while Figure 6e shows
the beginning of the run-up phase; Figure 6d,e displays a good accordance between numerical and
experimental predictions. Note that in Figure 6¢,d, at the onshore side of the barrier, some disturbances
of the experimental measurements are present.

(a)

-0.2 0 0.2

Figure 6. Test T1. Phase-averaged free-surface elevation. (a) t/T = 0.0; (b) t/T = 0.2; (c) /T = 0.4;
(d) t/T = 0.6; (e) t/T = 0.8. Circles: experimental results. Red line: numerical results.

4.3.2. Test T2

Figure 7 shows the comparison between numerical results and experimental measurements for
test T2. In this test, the wave reaches the crest of the barrier with a very shallow water depth. Figure 7a
shows the wave run-up over the offshore side of the barrier; as in the test T1, is to be noted that
the run-up is well predicted and that numerical and experimental results have a good agreement.
Figure 7b,c shows that the proposed wet—dry technique allows the numerical model to reproduce well
the wave propagating over the crest of the structure. In Figure 7d, the wave is shown propagating over
the inshore side of the barrier crest; numerical and experimental results are in a good agreement, even
if is to be noted that experimental results show that the offshore side of the crest is dry. In Figure 7e,
the run-down over the offshore side of the barrier is shown, in which numerical and experimental
results both well predict the phenomenon.
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Figure 7. Test T2. Phase-averaged free-surface elevation. (a) t/T = 0.0; (b) t/T = 0.2; (¢) t/T = 0.4;
(d) t/T = 0.6; (e) t/T = 0.8. Circles: experimental results. Red line: numerical results.

4.3.3. Test T3

Figure 8 shows the comparison between numerical results and experimental measurements for
test T3. In this test, the barrier is completely submerged. Figure 8a,b shows the wave crest propagating
over the offshore side of the barrier, with good agreement between numerical and experimental results.
In Figure 8c,d, the wave-front propagation over the structure is well reproduced; in the experimental
prediction the free surface is slightly higher than in the numerical one. Figure 8e shows the wave crest
passing the barrier; is to be noted that in the numerical simulation the wave front has a slightly higher

celerity than the predicted experimental celerity.
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Figure 8. Test T3. Phase-averaged free-surface elevation. (a) t/T = 0.0; (b) t/T = 0.2; (¢) /T = 0.4;
(d) t/T = 0.6; (e) t/T = 0.8. Circles: experimental results. Red line: numerical results.
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4.4. Random Wave Overtopping Test

In this subsection, we show the results of several validation tests (described in Table 2), initially
proposed by [39], for the proposed numerical model, in the context of wave overtopping by random
waves. This is of great practical interest, because, in contrast to regular waves, random waves better
represent the complexity of the phenomena found in nature.

Table 2. Random waves overtopping test configurations.

Test  Freeboard (m)  Significant Wave Height (m) = Mean Wave Period (s)  Peak Wave Period (s)

R1 1.0 0.78 3.53 3.07
R2 1.0 1.22 4.38 3.81
R3 1.0 1.70 5.19 4.51
R4 1.5 1.26 4.38 3.81
RS 1.5 1.75 5.16 4.49
R6 1.5 2.35 6.03 524

The channel is 80 m long, with a flat bottom in the first 40 m of the channel, and a seawall next to
the flat bottom, with a slope angle of 1 : 4. The freeboard is Rc = 1 m in the first set of three tests and
Rc = 1.5 m in the second set of three tests. The still water depth is Hgw = 8 m. Random waves are
generated by means of the Jonswap spectrum, with a spectral enhancement factor of y = 3.3. According
to [39], the input random wave parameters are shown in Table 2. For the numerical simulations, a
fixed time step At = 0.0002 s, a horizontal spatial step of Ax = 0.2 m and five layers in the vertical
direction are used. The simulations ran for approximately 16 h.

The results obtained by the proposed model, in terms of mean overtopping rate, are compared
against the numerical results obtained previously [39,40], and against the results obtained with the
wave overtopping formula of [2] (see Figure 9). According to [40], who reproduced the experiment
with a Smoothed-Particle Hydrodynamics (SPH) numerical model, the wave overtopping rate becomes
stable at approximately t = 50 s. Thus, the mean overtopping rate is calculated in the time interval
50-180 s. The comparison shows that the wave overtopping rate is generally well predicted by the
numerical models. The proposed model generally gives a slightly lower prediction than the model
proposed by [39]. In the comparison against the prediction formula of [2], the proposed model slightly
underestimates the wave overtopping rate in the tests with small wave overtopping, while giving a
better prediction in the other tests. In Figure 10, the free-surface elevation and velocity field are shown
for test R2 at different instants. The overall shape transformation features of the wave propagating
over a slope are shown to be qualitatively well captured.

0.16
W Van der Meer and Janssen

M Soliman

0.12 M Shao et al.

Proposed model

Run No.

Figure 9. Wave overtopping rate. Red: calculated by the Van der Meer and Janssen laboratory
formula [2]; green: computed by Soliman [39]; blue: computed by Shao et al. [40]; yellow: computed
with the proposed model.
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Figure 10. Free-surface elevation and velocity field for test R2. (a) t = 36.75s; (b) t = 42.00s; (c)
t=4725s;(d)t =5250s; (e) t =57.75s; (f) t = 63.00 s.

5. Conclusions

In this work, we presented a numerical and experimental study about the waves overtopping
over structures. The numerical model for the simulation of nonhydrostatic free-surface flows proposed
by [26] was used and improved, in order to predict the wave overtopping phenomenon. In particular,
novel wet-dry technique was implemented in the model, in order to properly calculate the advancement
of the wave front over a dry bottom.

The numerical model was validated against several numerical and experimental test cases. Several
laboratory tests were carried out, reproducing regular waves overtopping structure, by means of a
nonintrusive and continuous-in-space image-analysis technique. Furthermore, in order to evaluate the
capacity of the model to simulate phenomena that can be found in nature, the ability to predict the
wave and current development over complex structure geometries and the random wave overtopping
of structures, were tested. From the numerical tests, it can be assumed that the numerical model
is able to reproduce the wave overtopping and wave-front propagation over emerged barriers, for
different wave, water-depth and bottom-slope conditions, thanks to the implementation of the proposed
wet—dry technique.
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