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Abstract: In this study, we utilized simulated icing experiments to investigate the effect of icing
thickness, freezing temperature and initial concentration on the migration of iron in the ice–water
system during water icing. The distribution coefficient “K” (the ratio of the average concentration of
iron in the ice to that in the under-ice water) was used to describe the effect. The results indicated that
iron partitioned stronger to under-ice water than to ice during the process of water icing, resulting
in the concentration of iron in ice–water system before and after freezing being expressed as: ice
< pre-freezing water < under-ice water. K decreased with the increase in icing thickness, freezing
temperature and initial concentration. The temperature change in the solution will change the
solubility of the solvent, so we explained the migration of iron during the process of water icing from
the perspective of solid–liquid equilibrium theory. Too high or too low iron concentration may inhibit
the growth of algae, thus affecting the underwater ecological environment. We expect that our study
will arouse researcher’s attention to the change in iron concentration in shallow lakes and ponds at
high latitudes during the icebound period.

Keywords: simulated icing; migration law; distribution coefficient “K”; solid–liquid equilibrium
theory; iron

1. Introduction

The icebound period is an important hydrological feature of surface water bodies in high-latitude
regions. Within a >150-day icebound period, >50 million lakes are frozen every year [1,2]. The snow
covering the surface of the ice reduces the light penetration rate [3,4], and when the snow cover on the
surface reaches 10 cm, the light penetration will be reduced to a level insufficient for photosynthesis [5].
The ice cover is an obstacle to the volatilization and diffusion of the pollutants in the under-ice
water [6]. As well as this, the re-oxygenation process is hindered, which lowers the dissolved oxygen
concentration [7–10], inhibiting photolysis and biodegradation [11–13]. Therefore, the efficiency of
the water body’s self-purification declines, and the under-ice water environment has its particularity
during the icebound period [14,15].

At present, some researches mainly focus on the under-ice ecology of natural water body, indicating
that under-ice ecology is dynamic, and could affect the plankton dynamics in spring and summer [16,17].
Other research focuses on the effects of the freezing process on under-ice biological properties (e.g.,
chlorophyll a, plankton density) [18,19], chemical properties (e.g., nitrogen, phosphorus, and dissolved
organic carbon contents) [20–22], and the monitoring of physical properties (e.g., water temperature,
ice thickness, freezing rate) [23,24]. There are relatively few indoor simulation studies on the icing
process [25]. The few studies that exist mainly focus on the migration of organic pollutants and
seawater desalination [26–31], and aim at the removal of pollutants. In addition, some studies utilize
the first principle to explain the migration of various heavy metal ions (Fe, Cu, Mn, Zn, Pb, Cd,

Water 2020, 12, 441; doi:10.3390/w12020441 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
http://www.mdpi.com/2073-4441/12/2/441?type=check_update&version=1
http://dx.doi.org/10.3390/w12020441
http://www.mdpi.com/journal/water


Water 2020, 12, 441 2 of 12

Hg) from the perspective of energy change in the freezing process, which indicate that the ability
of different kinds of heavy metals to migrate from ice to water is related to their binding energy in
ice [32]. However, there are relatively few studies on the migration mechanism and influencing factors
of pollutants during icing.

Iron is one of the most typical pollutants in China’s surface water environment [33]. Statistics
show that 331 million people live in areas of China where iron levels exceed drinking water quality
standards, and high concentrations of iron may cause various diseases. Related studies have shown
that the body absorbs iron more than 10–20 times and may cause chronic poisoning [34,35], even
leading to coma, convulsion, respiratory failure, cardiac arrest or cancer [36,37]. Where the iron
content in water increases significantly due to icing, it may harm aquatic organisms and even human
health [33]. Therefore, it is of necessity to clarify the migration law and mechanism of iron in the water
icing process. In our research, the distribution of iron in ice and under-ice water during the water icing
process was studied through simulated icing experiments. We explained the migration mechanism of
iron during water icing using solid–liquid equilibrium theory. In addition, we investigated the effects
of freezing temperature, icing thickness and initial concentration on iron migration.

2. Materials and Methods

2.1. Icing Simulation Device

Our study utilized an open unidirectional downward icing simulator in order to simulate the
top-down icing process of natural water bodies (Figure 1). A glass cylindrical barrel (diameter 20 cm,
height 37.5 cm, and volume 11,775 cm3) was wrapped with Expanded Polystyrene (EPS) insulation to
block the transfer of heat between the barrel and the outdoors. A temperature-controlled heating sheet
was placed between the outer part of the barrel and the thermal insulation to facilitate the removal
of the ice sample. A resistance wire (nickel–chromium alloy) was placed in the barrel to measure ice
thickness. The distance between node ‘a’ and node ‘b’ was measured in advance as L1. A 12 V battery
was used to electrify the resistance wire for 3 s. The resistance wire was raised to node ‘b’ to contact the
ice bottom, and the distance between ‘a’ and the ice surface was measured as L2, L1-L2 is ice thickness.
This device was then placed in a low-temperature testing box. During the experiment, the temperature
deviation from the target temperature did not exceed ±0.5 ◦C, which is caused by the operation of the
refrigerator compressor.
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2.2. Experimental Design

(1) To study the effect of icing thickness on the migration law of iron during water icing, we prepared
the iron standard solution with the concentration of 0.6 mg/L in five icing simulation devices.
Subsequently, we placed 8 L water sample (about 4/5 of the volume of the device) in each
icing simulation device and placed the devices in the low-temperature testing box at −15 ◦C.
The samples were removed when the thickness of ice reached 4 cm, 8 cm, 12 cm, 16 cm and 20 cm;

(2) To study the effect of freezing temperature on the migration law of iron during water icing, we
prepared the iron standard solution with a concentration of 0.6 mg/L in five icing simulation
devices. Subsequently, we placed 8 L water sample in each icing simulation device and placed
the devices in the low-temperature testing box at −5 ◦C, −10 ◦C, −15 ◦C, −20 ◦C and −25 ◦C.
The samples were removed when the thickness of the ice reached 12 cm;

(3) To study the effect of initial concentration on the migration law of iron during water icing,
according to ‘Chinese standards for drinking water quality’ [38], wherein the concentration of
iron in drinking water should not exceed 0.3 mg/L, the iron standard solution concentrations
were set to 0.3 mg/L, 0.6 mg/L, 0.9 mg/L, 1.2 mg/L, and 1.5 mg/L. Iron standard solutions with the
above concentrations were respectively placed in five icing simulators. A total of 8 L of water
sample was put in each simulator device placed in the low-temperature testing box at −15 ◦C.
The samples were removed when the thickness of the ice reached 12 cm.

The ice samples that were obtained from the simulated icing experiments were cut per 4 cm with a
cutting device heated by a resistance wire (nickel–chromium alloy). Then, the ice samples were divided
into several sections from the top to the bottom: 0–4 cm, 4–8 cm, 8–12 cm, 12–16 cm and 16–20 cm,
which melted in a beaker at room temperature. At the same time, the under-ice water was evenly
mixed and then removed and placed in beakers.

2.3. Detection Method

Iron standard stock solution (100 mg/L): accurately weigh 0.7020 g of ferrous ammonium sulfate
((NH4)2Fe(SO4)2·6H2O), dissolve in 50 mL of sulfuric acid (1:1), transfer to a 1000 mL volumetric
flask, and add water to the standard Line, shake well. The iron standard solution in the simulated
freezing experiment was obtained by diluting the iron standard stock solution (100 mg/L) with fresh
deionized water (conductivity less than 0.3 µs/cm).

In this study, the total iron content in water samples and the ice-melt water samples was measured.
The water samples were not filtered, and 50 mL of well-mixed water samples were placed in a 150 mL
conical flask. We added 1 mL of hydrochloric acid (1:3) and 1 mL of 10% hydroxylamine hydrochloride
solution. Then, we heated and boiled until the volume was reduced to about 15 mL, cooled it to room
temperature, and transferred it to a 50 mL colorimetric tube. Next, we added a small piece of Congo
red test paper and dropped the saturated sodium acetate solution until the test paper just turns red.
We added 5 mL of buffer solution (40 g of ammonium acetate and 50 mL of glacial acetic acid diluted to
100 mL with water), added 2 mL of 0.5% phenanthroline solution, added water to the mark, and shook
well. After standing for 15 min., the absorbance was measured with a 10 mm cuvette at a wavelength
of 510 nm while using water as a reference. Based on the obtained absorbance and calibration curve,
the total iron content was calculated in the water samples.

The content of total iron in ice water samples and ice melt water samples was determined without
filtration. Following the ‘Water and Wastewater monitoring analysis method’ [39], each experimental
product was analyzed three times and the standard deviations of these triplicates were within 5% of
their arithmetic means. The experiment was carried out in the water analysis laboratory, college of
civil engineering, Yantai University.



Water 2020, 12, 441 4 of 12

2.4. Data Analysis

The distribution coefficient (K) was the ratio of the average concentration of iron in the ice to that
of iron in the under-ice water. It reflected the ability of iron to migrate into under-ice water in the water
freezing process.

K = Ci/Cw (1)

where Ci is the average concentration of iron in the ice, and Cw is the average concentration of iron in
the under-ice water.

3. Results and Discussion

3.1. Migration Law of Iron in Ice–Water System during the Icing Process

The distribution of iron in the ice–water system before and after water freezing was expressed
as: ice body < pre-freezing water body < under-ice water body (Figure 2). The results indicated
that iron partitioned stronger to under-ice water than to ice during the process of water icing.
We explained the migration of iron during the process of water icing from the perspective of solid–liquid
equilibrium theory.
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Figure 2. Distribution of iron in ice–water system during water icing. (Error bar: Mean ± S.D., K: the
ratio of the average concentration of iron in the ice to that in the under-ice water).

Usually, the temperature–concentration phase equilibrium diagram of the solution is drawn by
the solubility method (Figure 3). The T-C diagram is composed of temperature as the ordinate and
concentration as the abscissa. As shown in the phase diagram, there are three curves. The DE line is
the freezing point curve of H2O. It can be seen from the figure that the increase in the concentration
of iron makes the freezing point of H2O continuously drop. The EF line is the saturation solubility
curve of iron in water, which ends at the boiling temperature of the solution and cannot be arbitrarily
extended. TEEE0 is a three-phase equilibrium coexistence line of H2O(s), iron(s) and iron solution (l).
There are four phase zones. Above the DEF curve is the single-phase zone (L1) of iron-unsaturated
solution (l). The range of the DETE curve is the two-phase equilibrium region (A + L2) of H2O(s) and
iron solution (l). To the right of the EF line and above the EE0 line are two-phase equilibrium regions
(B + L3) of iron (s) and iron-saturated solution (l). Below the TEEE0 line is the two-phase coexistence
zone (A + B) of H2O(s) and iron(s). The iron-unsaturated solution begins to cool down from the initial
temperature T0. When the temperature drops to T1, the concentration of the solution will increase
from C0 to C1. At this point, the solution begins to freeze. As the temperature continuously drops to
T2, the ice crystals continue to form, grow and precipitate in the solution. Meanwhile, it becomes the
mixture of H2O(s) and iron solution. Point E is the low eutectic point of the solid–liquid equilibrium
system, and eutectic transformation will occur when the temperature drops below TE. For example,
when the temperature drops to T3, H2O(s) and iron(s) will be precipitated out of the iron solution at
the same time [40].
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Ice is composed of a crystal arrangement of water molecules, and the structure of the ice crystal
depends on the interaction force between its molecules. The interaction force is determined by the
electronic structure of these water molecules [41]. The electrostatic attraction between the charges is
very obvious, resulting in a strong interaction between the molecules, which also gives the ice a strong
mechanical strength [42]. Near the solid–liquid interface, the water molecules were precipitated by
hydrogen bonding and adhered to the bottom of the ice. At the same time, iron was squeezed out and
escaped to the water body under the ice [43]. That is, iron migrated from the ice body to the water
body in the process of water icing. Therefore, the concentration of iron in the ice body was lower than
that in the under-ice water body.

However, the inside of ice still contains a certain amount of pollutants, which can be explained by
the growth process of the ice body. Firstly, the direct contact between the water body and the cold
source during the initial icing period resulted in a rapid icing rate, which caused some pollutants to be
trapped in the upper ice [44]. After the formation of surface ice bodies, the newborn ice bodies can
only grow vertically downwards due to the limitation of the surrounding ice crystals (Figure 4). Most
of the ice crystals grow in a dendritic structure, so some pollutants are captured in the ice body [45].
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3.2. Effects of Ice Thickness on the Migration of Iron

In the five experiments (Figure 5), iron captured in the ice body continuously moved to the lower
ice body through the pore channel at the beginning of freezing [46], so the concentration of iron in the
upper ice layer decreased with the increase in ice thickness, such as the concentration of iron: 4 cm ice
body (0–4 cm) > 8 cm ice body (0–4 cm) > 12 cm ice body (0–4 cm) > 16 cm ice body (0–4 cm) > 20 cm
ice body (0–4 cm). When the ice thickness was 12 cm, 16 cm and 20 cm, the iron concentration in the
continuous ice layer decreased at first and then increased, because the ice body formed a dendritic
structure pollutant-transport channel in the freezing process (Figure 4). At the beginning of icing,
the icing rate is faster, increasing the pore channel density and iron content in the upper ice body.
In the middle phase of icing, as the thickness of the ice increased, and the heat exchange between the
under-ice water and the outside was weakened. The rate of growth of ice was reduced [47], resulting
in the decrease in the amount of iron trapped in the newly formed ice body, so the concentration of
iron was relatively low in middle ice bodies. In the later phase, with the obvious increase in iron
concentration in the under-ice water, the concentration of iron captured in the ice cell and pore channel
per unit volume were very high. In addition, iron captured in the ice body continuously migrates to the
lower ice body through the pore channel, resulting in a large concentration of iron in the lower ice body.
Therefore, when the ice thickness is 12 cm, 16 cm and 20 cm, the distribution of iron concentration in
the continuous ice decreases first and then increases.
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Figure 5. Distribution of iron at varying icing thicknesses in the ice body. (Error bar: Mean ± S.D., K:
the ratio of the average concentration of iron in the ice to that in the under-ice water).

When the ice thickness was 4 cm, 8 cm, 12 cm, 16 cm and 20 cm, K was 0.077, 0.057, 0.040, 0.036
and 0.032 (Figure 6), respectively. With the increase in ice thickness, the K decreased, and the ability of
iron to migrate into the under-ice water increased. This was because, in the early phase of icing, iron
trapped in the ice body continued to migrate to the under-ice water through the pore channels, [46].
In the middle phase of icing, the newly-formed ice crystals became larger and the ability to capture
iron decreased. There were also fewer channels for discharging iron in the ice-per-unit area, which
were converted into a series of iron cells and air cells [48]. The average concentration of iron in the ice
body gradually decreased as the thickness of the ice increased. In the three experiments, K reached
a minimum when the ice thickness was 20 cm. Because the experimental device is relatively small,
the iron concentrations in under-ice water might also be affected by the volumetric ratio of ice to water,
and not only by the absolute ice thickness. Our study should thus be most relevant for shallow lakes
and small ponds, with relatively thick ice cover compared to the under-ice water.
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Figure 6. Distribution of iron of varying icing thicknesses in the ice–water system. (Error bar: Mean ±
S.D., K: the ratio of the average concentration of iron in the ice to that in the under-ice water).

3.3. Effects of Freezing Temperatures on the Migration of Iron

The distribution of iron in continuous ice bodies also showed a tendency to decrease first and then
increase (Figure 7). When the temperature was −5 ◦C, −10 ◦C, −15 ◦C, −20 ◦C and −25 ◦C, K was 0.019,
0.030, 0.040, 0.050 and 0.058 (Figure 8), respectively. K increased with the decrease in temperature,
which means that the lower the freezing temperature, the weaker the ability of iron to migrate into the
under-ice water, and the more iron was trapped in the ice.
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Figure 7. Distribution of iron at varying freezing temperatures in the ice body. (Error bar: Mean ± S.D.,
K: the ratio of the average concentration of iron in the ice to that in the under-ice water).

In fact, the direct factor affecting the K is the growth rate of ice, which increases with the decrease
in freezing temperature. As the growth rate of ice increases, the ice crystals formed finer and denser
branches, capturing more iron in the ice body, and the water molecules, meanwhile, moved faster
toward the solid–liquid interface. Once that speed exceeded the speed at which iron moved toward the
interface, iron was trapped by the ice crystals, [49]. Schmidt et al. also showed that the concentration
of pollutants (organic nitrogen, organic phosphorus, etc.) was higher in the under-ice water of the lake
when the icing was slow [50,51]. Waller and Terwilliger [52,53] studied the effect of the freezing rate
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on the discharge of salt from the ice body, and they found that lower icing temperatures resulted in
more saltwater inclusions in the ice.
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Figure 8. Distribution of iron at varying freezing temperatures in the ice–water system. (Error bar:
Mean ± S.D., K: the ratio of the average concentration of iron in the ice to that in the under-ice water).

3.4. Effects of Initial Concentrations on the Migration of Iron

The distribution of iron in continuous ice bodies also showed a tendency to decrease first and
then increase (Figure 9). When the initial concentration was 0.3 mg L, 0.6 mg/L, 0.9 mg/L, 1.2 mg/L and
1.5 mg/L, K was 0.081, 0.040, 0.032, 0.028 and 0.027 (Figure 10), respectively. That is, the greater the
initial concentration of iron was in the non-freezing period, the greater the concentration of iron was in
the ice after icing (Figure 9), and the decrease in K with the initial concentration. This was consistent
with the experimental results of W. Gao [54].
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Figure 9. Distribution of iron with varying initial concentrations in the ice body. (Error bar: Mean ±
S.D., K: the ratio of the average concentration of iron in the ice to that in the under-ice water).
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Figure 10. Distribution of iron with varying initial concentrations in the ice-water system. (Error bar:
Mean ± S.D., K: the ratio of the average concentration of iron in the ice to that in the under-ice water).

As the initial concentration (Figure 10) of iron increased, the viscosity increased, and the diffusion
decreased. The probability of a collision of ice crystals increased, and the iron was more likely to be
trapped when the ice grew, so that more iron remained in the ice [55,56]. As the initial concentration of
iron increased (Figure 10), more iron was trapped in the ice during the initial icing period. However,
with the increase in ice thickness, the total amount of iron that migrated from the ice to the under-ice
water increased. The increase in iron in the ice is much smaller than that in the under-ice water, which
resulted in the decrease in K.

4. Conclusions

Based on the results of the natural icing simulations, the following conclusions were drawn:

(1) During icing, iron partitions more strongly to under-ice water than to ice, which may deteriorate
the under-ice water environment in shallow lakes in high latitudes. In addition, iron affects the
growth of phytoplankton. Too high or too low iron concentrations may inhibit the growth of
algae. Thus, iron pollution caused by the icebound period should be further studied in the future;

(2) In the simulated icing experiment, the concentration of iron in the ice body showed a tendency
to decrease first and then increase. K (the ratio of the average concentration of iron in the ice to
that in the under-ice water) decreased with the increase in icing temperature, icing thickness,
and initial concentration. That is, a higher icing temperature, larger icing thickness, and higher
initial concentration are favorable for the migration of iron to under-ice water bodies. For shallow
lakes, the volume ratio of ice water may be an important factor which causes the increase in iron
concentration in under-ice water, too. It is hoped that this study can provide a theoretical basis for
the change in iron concentration in the icing process of surface water, and provide data support
for the treatment of iron-containing wastewater by using the freezing concentration effect;

(3) The distribution of iron in natural waters was affected by various factors, such as organic ligands,
pH, and dissolved oxygen. In the simulated icing experiment, this study only considered the effects
of icing thickness, freezing temperature and initial concentration on the migration distribution of
iron. Other factors that may affect the migration of iron remain to be further explored.
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