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Abstract: This work compares three forcing schemes for a recently introduced cascaded lattice
Boltzmann shallow water model: a basic scheme, a second-order scheme, and a centred scheme.
Although the force is applied in the streaming step of the lattice Boltzmann model, the acceleration is
also considered in the transformation to central moments. The model performance is tested for one
and two dimensional benchmarks.
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1. Introduction

We present a multi-relaxation times (MRT) lattice Boltzmann cascaded collision operator (CO),
based on central moments, and its application to shallow water flows. The method used here is the
cascaded lattice Boltzmann shallow water model, partially described in [1], where the link between
central moments and cumulants is underlined in the implementation procedure of the cumulant
collision operator. Our focus is on the inclusion of forcing schemes for the modeling of gravity in
an environment of non-flat seabeds. The shallow water equations (SWE) allow to simulate flows in
water bodies where the horizontal length scale is much larger than the fluid depth. The SWE are
derived from the three dimensional incompressible Navier–Stokes equations using an integration over
the depth to obtain vertically averaged quantities. They are valid for problems in which the vertical
dynamics of the fluid can be neglected [2]. The pressure distribution in the vertical direction z, p(z), is
supposed to be hydrostatic. A system of 2D shallow water equations can be written in the following
form [3] :

∂h
∂t

+
∂(huj)

∂xj
= 0 (1)

uj =
1
h

∫ zb+h

zb

udz (2)

∂(hui)

∂t
+

∂(hu iu j)

∂xj
= −g

∂

∂xi

(
h2

2

)
+ ν

∂2(hu i)

∂xj∂xj
+ Fi (3)

where i and j indicate the coordinate axis direction in 2D space, h is the water depth, u is the velocity, ν

is the kinematic viscosity, zb is the bed elevation, and Fi is the external force in the i direction. If vertical
variations must be taken into account, these can be separated from the horizontal ones using a set of
shallow water equations for each horizontal fluid layers (multilayer SWE) [4]. The SWE is used in ocean
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engineering [5], hydraulic engineering [6,7], and coastal engineering [8]. They allow to study a wide
range of physical problems such as storm surges, tidal flows and fluctuations in estuary and coastal
water regions, tsunami, stationary hydraulic jumps, off-shore structures, and open channel flows.
Moreover, the SWE can also be coupled to transport equations to model the conveyance of several
quantities such as temperature, pollutants, salinity, and sediments. Various traditional numerical
methods (finite difference, finite volume, and finite element methods) have been used to simulate the
SWE [9–12]. In most of these methods it is observed that the simulation of the bed slope and friction
forces can lead to inaccurate solutions due to numerical errors [13]. In addition, the extension of these
schemes to complex geometries is not trivial [14] and some of these approaches are very computational
expensive if applied to real flows [15]. One of the advantages of LBM is its better computational
efficiency when compared to continuous models. In [16], the required time for processing a single
lattice node is 3 orders of magnitude less than in one of a continuous shallow water models. Moreover,
one of the most appealing features of the LBM is the straightforward implementation of the parallel
computation thanks to the use of Cartesian lattices and due to the simplicity of the nodes interaction
based on particles movement towards next nearest neighbors [17]. The aim of this work is to develop a
simple and accurate representation of the source term to simulate realistic shallow water flows retaining
the necessary stability and accuracy. Different approaches can be considered to include the force term
in LBM. Some authors suggested that the force term can be introduced into the collision term [18,19].
In [20], the force term is added in the collision process by shifting the velocity field proportional to
the external force. On the other hand, Zhou included the external forces in the streaming process [3].
In this work, the force term is inserted in the streaming process but it is also taken into account in the
transformation from particle distribution functions to central moments and vice versa. The paper is
organized as follows. Section 2 describes the main features of the lattice Boltzmann shallow water
method with special attention to the cascaded CO and its implementation procedure (Section 2.1).
The inclusion of the force term in the CaLB model is presented in Section 2.2. Model validation and
results are reported in Section 3. Finally, Section 4 presents conclusions.

2. Methods

The lattice Boltzmann method (LBM) is a mesoscopic method for the numerical solution of non
linear partial differential equations. It has been extensively applied in different fields, such as turbulent
flow, multiphase flow [21], flow in complex geometries [22], in porous media [23], and thermal
flows [24]. However, it is not so common to use the LBM approach to simulate large scale hydraulic
problems, such as flooding events [25], dam breaks [26], and propagation of tsunamis. The LBM
applies an algorithm in which particles move on a Cartesian lattice and collide at lattice nodes. Fluid
motion is described by the evolution of the particle distribution functions (PDF), fα (x, t), through the
discrete Lattice Boltzmann equation:

fα (x + e α∆t, t + ∆t) = fα ( x, t) + Ωα + Fα α = 1, ..., n (4)

where x represents the position of the particle in the discretized space at time t, and fα ( x, t) and
e α are the particle distribution functions and the set of discrete speeds along the n allowed lattice
directions, respectively. Ωα is the collision operator and Fα represents the external force. In lattice
Boltzmann models, the characteristic speed, generally identified with the speed of sound cs, is set to a
constant in order to maximize isotropy. In shallow water models, the speed of surface waves replaces
the characteristic speed of the original LBM [1] and becomes a function of fluid elevation h and gravity
acceleration g:

c2
s =

gh
2

(5)

as a consequence of the equation of state P = 1
2 gh2 [27], where P is the macroscopic value of

the pressure. The effects of a no longer constant characteristic speed on the errors of third-order
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moments discretization is discussed in [28]. In our SWLB (shallow water lattice Boltzmann) model, the
characteristic speed influences the definition of viscosity. The kinematic viscosity (transport coefficient)
of the fluid ν is linked to the relaxation rate ω and to the relaxation time τ = 1

ω by means of cs:

ν = c2
s

(
1
ω
− 1

2

)
(6)

The macroscopic properties (water height h and velocity field ui) of the flow are computed,
respectively, from the zero order moment m00 and first-order raw moments m10 and m01 of the
probability distribution function (PDF):

h =
n

∑
α=1

fα ui =
1
h

n

∑
α=1

eαi fα α = 1, ..., n (7)

In a D2Q9 (two dimensions-nine discrete velocities) model, n = 9 and the velocity vector in 2D
becomes u = (u, v). During the collision, update rules are applied at each node. The rules depend
only on the state of the PDF on the local node. The collision observes the conservation laws for mass
and momentum. The moments m00, m10, and m01 do not change under collision.

Once an appropriate lattice or velocity set has been chosen, the physics have to be implemented
in the collision operator (CO). The most common CO based on a single relaxation time (SRT) approach
is the BGK method [29]: the particle distribution relaxes towards an equilibrium function with a
rate chosen to match the viscosity of the modeled fluid. To maximize the number of adjustable
parameters and to increase both stability and accuracy, multiple relaxation times (MRT) CO were
proposed [30]. However, compared to the BGK, an additional Galilean invariance violation and
hyper-viscosity are introduced [31]. By applying the collision in terms of central moments, the cascaded
LBM [32] overcomes the violation of Galilean invariance of the model. Compared to previous lattice
Boltzmann-based shallow water models, the proposed method uses a consistent characteristic speed
in the pressure term and in the viscosity.

2.1. Cascaded Model

The cascaded model (CaLB) is based on a collision operator (CO) in which central moments are
relaxed, differing from standard MRT models where raw moments are used [31]. The central moments
can be defined as

καβ = ∑
i,j

(i− u)α(j− v)β fij i, j = −1, 0, 1 (8)

where the subscripts i and j indicate the corresponding components of the speed vectors of the
PDF. Before the collision, the PDF are transformed into central moments; after the collision step,
the post-collision central moments are transformed back to PDF. The collision is performed by relaxing
central moments to their local equilibrium values following the equations:

κ
pc
αβ = καβ −ωαβ

(
καβ − κ

eq
αβ

)
(9)

where κ
eq
αβ is the equilibrium central moment and κ

pc
αβ is the post-collision central moment.

Equilibrium central moments are deducible from the continuum form of the local Maxwell–Boltzmann
distribution [33]. They are given by
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

κ00 = h

κ10 = 0

κ01 = 0

κ20 = c2
s h

κ02 = c2
s h

κ11 = 0

κ12 = 0

κ21 = 0

κ22 = c4
s h

(10)

The CaLB method is implemented by transforming the distributions to central moments before
the collision using the following equations:



κ00 = f7 + f3 + f6 + f4 + f0 + f2 + f8 + f1 + f5

κ10 = 0

κ01 = 0

κ20 = (−1− u)2 f7 + (−1− u)2 f3 + (−1− u)2 f6 + u2 f4 + u2 f0 + u2 f2 + (1− u)2 f8 + (1− u)2 f1 + (1− u)2 f5

κ02 = (−1− v)2 f7 + v2 f3 + (1− v)2 f6 + (−1− v)2 f4 + v2 f0 + (1− v)2 f2 + (−1− v)2 f8 + v2 f1 + (1− v)2 f5

κ11 = (−1− u)(−1− v) f7 − (−1− u)v f3 + (−1− u)(1− v) f6 +−u(−1− v) f4 + uv f0 − u(1− v) f2

+(1− u)(−1− v) f8 +−(1− u)v f1 + (1− u)(1− v) f5

κ21 = (−1− u)2(−1− v) f7 − (−1− u)2v f3 + (−1− u)2(1− v) f6 ++u2(−1− v) f4 − u2v f0 + u2(1− v) f2

+(1− u)2(−1− v) f8 − (1− u)2v f1 + (1− u)2(1− v) f5

κ12 = (−1− u)(−1− v)2 f7 + (−1− u)v2 f3 + (−1− u)(1− v)2 f6 − u(−1− v)2 f4 − uv2 f0 − u(1− v)2 f2

+(1− u)(−1− v)2 f8 + (1− u)v2 f1 + (1− u)(1− v)2 f5

κ22 = (−1− u)2(−1− v)2 f7 + (−1− u)2v2 f3 + (−1− u)2(1− v)2 f6 + u2(−1− v)2 f4 + u2v2 f0

+u2(1− v)2 f2 + (1− u)2(−1− v)2 f8 + (1− u)2v2 f1 + (1− u)2(1− v)2 f5

(11)

where u and v represent the velocity components in a D2Q9 model. Post-collision central moments are
then transformed to distributions following the equations:
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

f0 = −κ20 + κ22 + 2κ12u + κ02(−1 + u2) + 2κ21v + 4κ11uv + κ20v2 + κ00
(
−1 + u2) (−1 + v2)

f1 = 1
2 (κ20 − κ22 + κ00u− κ02u + κ00u2 − κ02u2 − κ12(1 + 2u)− 2κ11v− 2κ21v− 4κ11uv

−κ20v2 − κ00uv2 − κ00u2v2)

f2 = 1
2 (κ02 − κ22 − 2κ11u− 2κ12u− κ02u2 + κ00v− κ20v− 4κ11uv− κ00u2v + κ00v2

−κ20v2 − κ00u2v2 − κ21(1 + 2v))

f3 = 1
2 (κ12 + κ20 − κ22 − κ00u + κ02u− 2κ12u + κ00u2 − κ02u2 + 2κ11v− 2κ21v− 4κ11uv

−κ20v2 + κ00uv2 − κ00u2v2)

f4 = 1
2 (κ02 + k21 − κ22 + 2κ11u− 2κ12u− κ02u2 − κ00v + κ20v− 2κ21v− 4κ11uv + κ00u2v

+κ00v2 − κ20v2 − κ00u2v2)

f5 = 1
4
(
κ12 + κ21 + κ22 + κ02u + 2κ12u + κ02u2 + κ20v + 2κ21v+ +κ00uv + κ00u2v + κ20v2 + κ00uv2

+κ00u2v2 + κ11 (1 + 2u) (1 + 2v)
)

f6 = 1
4
(
κ21 + κ22 − κ02u + κ02u2 + κ12(−1 + 2u) + κ20v + 2κ21v+ −κ00uv + κ00u2v + κ20v2 − κ00uv2

+κ00u2v2 + κ11 (−1 + 2u) (1 + 2v)
)

f7 = 1
4
(
−κ21 + κ22 − κ02u + κ02u2 + κ12 (−1 + 2u)− κ20v+ +2κ21v + κ00uv− κ00u2v + κ20v2 − κ00uv2

+κ00u2v2 + κ11 (−1 + 2u) (−1 + 2v)
)

f8 = 1
4
(
κ12 − κ21 + κ22 + κ02u + 2κ12u + κ02u2 − κ20v + 2κ21v+ −κ00uv− κ00u2v + κ20v2 + κ00uv2

+κ00u2v2 + κ11 (1 + 2u) (−1 + 2v)
)

(12)

The moment related to the definition of the value of the transport coefficient ν is κ11, whereas the
corresponding central moments obtained from the rotational invariance constraint [32] are κ20 and κ02.
To conserve the isotropy of the model, the latter moments are relaxed together:κ

pc
20+02 = κ20+02 −ω20+02

(
κ20 − κ

eq
20 + κ02 − κ

eq
02

)
κ

pc
20−02 = κ20−02 (1−ω20−02)

(13)

where κ20+02 is equal to κ20 + κ02 and κ20−02 equal to κ20 − κ02.

2.2. Evaluation of the Force Term

Different approaches can be used for the inclusion of the force term in LBM. Here, we consider
the case where they are added in the streaming process. Zhou [3] has successfully demonstrated that,
in BGK LBM, this approach is a simple and general method, which represents the underlying physics
and produces accurate solutions for many flows.

In our model, the presence of the external force has been taken into account in the streaming step
and also in the transformation from distributions to central moments. The macroscopic variables, h, u,
and v, for the transformation from PDF into central moments and vice versa are modified using the
following equations [31]:

h =
n

∑
α=1

fα ui =
∑n

α=1 eαi fα

h
+

Fi
2h

α = 1, ..., n (14)

The external force in the i direction can be expressed as

Fi = wα (Feαi) (15)

where F represents the absolute value of the force and wα the weights in Equations (17). The weights
define how the force is distributed over the distributions. They can be obtained from the equilibrium
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distribution function from central moments imposing the velocities (u, v) equal to zero (absolute
equilibrium):

fα =


1
9 (h− 3)2h α = 0

− 1
18 (h− 3)h2 α = 1, 2, 3, 4

h3

36 α = 5, 6, 7, 8

(16)

The above equations are normalized in order to have the sum along the x-direction or y-direction
equal to 1. The weights become:

wα =


1

3h (−3 + h)2 α = 0

− 1
6 (−3 + h) α = 1, 2, 3, 4

h
12 α = 5, 6, 7, 8

(17)

In the cascaded model with external force, before the collision, the PDF are transformed into
central moments using equations that differ from (11) and (12) only for the moments κ10 and κ01:

κ10 = − f0u + f1(1− u)− f2u + f3(−u− 1)− f4u + f5(1− u)

+ f6(−u− 1) + f7(−u− 1) + f8(1− u)
(18)

κ01 = − f0v− f1v + f2(1− v)− f3v + f4(−v− 1) + f5(1− v)

+ f6(1− v) + f7(−v− 1) + f8(−v− 1)
(19)

After the collision, the PDF are found from central moments following the equations:

f0 = κ00
(
u2 − 1

) (
v2 − 1

)
+ 2κ01u2v− 2κ01v + κ02

(
u2 − 1

)
+2κ10uv2 − 2κ10u + 4κ11uv + 2κ12u + κ20v2 − κ20 + 2κ21v + κ22

f1 = 1
2
(
−κ00u2v2 + κ00u2 − κ00uv2)+ 1

2
(
κ00u− 2κ01u2v− 2κ01uv− κ02u2 − κ02u

)
+ 1

2 (−κ10(2u + 1)
(
v2 − 1

)
− 4κ11uv− 2κ11v) + 1

2
(
−κ12(2u + 1)− κ20v2 + κ20 − 2κ21v− κ22

)
f2 = 1

2
(
−κ00u2v2 − κ00u2v + κ00v2)+ 1

2
(
κ00v− κ01

(
u2 − 1

)
(2v + 1)− κ02u2 + κ02 − 2κ10uv2)

+ 1
2 (−2κ10uv− 4κ11uv− 2κ11u− 2κ12u) + 1

2
(
−κ20v2 − κ20v− 2κ21v− κ21 − κ22

)
f3 = 1

2
(
−κ00u2v2 + κ00u2 + κ00uv2 − κ00u− 2κ01u2v

)
+ 1

2
(
2κ01uv− κ02u2 + κ02u− κ10(2u− 1)

(
v2 − 1

))
+ 1

2
(
−4κ11uv + 2κ11v− 2κ12u + κ12 − κ20v2 + κ20 − 2κ21v− κ22

)
f4 = 1

2
(
−κ00u2v2 + κ00u2v + κ00v2 − κ00v− κ01

(
u2 − 1

)
(2v− 1)

)
+ 1

2
(
−κ02u2 + κ02 − 2κ10uv2 + 2κ10uv− 4κ11uv

)
+ 1

2
(
2κ11u− 2κ12u− κ20v2 + κ20v− 2κ21v + κ21 − κ22

)
f5 = ( 1

2
(
κ00u2v2 + κ00u2v + κ00uv2 + κ00uv + 2κ01u2v + κ01u2 + 2κ01uv

)
+ 1

2
(
κ01u + κ02u2 + κ02u + 2κ10uv2 + 2κ10uv

)
+ 1

2
(
κ10v2 + κ10v + κ11 (2u + 1) (2v + 1)

)
+ 1

2
(
2κ12u + κ12 + κ20v2 + κ20v + 2κ21v + κ21 + κ22

)
f6 = 1

4
(
κ00u2v2 + κ00u2v− κ00uv2 − κ00uv + 2κ01u2v + κ01u2)

+ 1
4
(
−2κ01uv− κ01u + κ02u2 − κ02u + 2κ10uv2 + 2κ10uv− κ10v2 − κ10v

)
+ 1

4
(
κ11(2u− 1)(2v + 1) + κ12(2u− 1) + κ20v2 + κ20v + 2κ21v + κ21 + κ22

)
f7 = 1

4
(
κ00u2v2 − κ00u2v− κ00uv2 + κ00uv + 2κ01u2v− κ01u2 − 2κ01uv

)
+ 1

4
(
κ01u + κ02u2 − κ02u + 2κ10uv2 − 2κ10uv− κ10v2 + κ10v

)
+ 1

4
(
κ11(2u− 1)(2v− 1) + κ12(2u− 1) + κ20v2 − κ20v + 2κ21v− κ21 + κ22

)
f8 = 1

4
(
κ00u2v2 − κ00u2v + κ00uv2 − κ00uv + 2κ01u2v− κ01u2)

+ 1
4
(
2κ01uv− κ01u + κ02u2 + κ02u + 2κ10uv2 − 2κ10uv + κ10v2 − κ10v

)
+ 1

4
(
κ11(2u + 1)(2v− 1) + 2κ12u + κ12 + κ20v2 − κ20v + 2κ21v− κ21 + κ22

)

(20)
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To effectively apply the force, the central moments κ10 and κ01 have to change the sign. In fact,
half of the force is applied before the collision and half after the collision. The method is symmetric in
time and therefore second-order accurate in time [31].

2.3. Schemes for the Force Term Implementation

The force term is implemented using three different methods, as proposed by Zhou [3]: the basic
scheme, the centred scheme, and the second-order scheme. The use of a suitable form for the
force term could make the lattice Boltzmann equation second-order accurate in the recovery of the
macroscopic continuity and momentum equations. In the basic scheme, the force term is evaluated at
the lattice point:

Fi = Fi(x, t) (21)

The use of this scheme leads to a LB equation which is only first-order accurate. In the
second-order scheme, the force term assumes the averaged value of the two values at the lattice
point and its neighboring lattice point, respectively:

Fi =
1
2
(Fi(x, t) + Fi(x + eα∆t, t)) (22)

Finally, in the centred scheme, the force term is evaluated at the mid point between the lattice
point and its neighboring lattice point:

Fi = Fi(x +
1
2

eα∆t, t). (23)

The three schemes coincide for constant forces: for a linear force term, the centred and
the second-order schemes are equivalent, but they become different for a non linear force (i.e.,
the gravity force).

3. Results

In this section, the cascaded collision operator (CaLB) with force term is used and validated
against classical 1D and 2D benchmark test cases. To compare the performance of the developed model
and the standard BGK, the results of a convergence analysis are briefly summarized in Section 3.1.
The complete study on the convergence of the CaLB model can be found in [34]: by means of the
test cases of the shear wave and Taylor Green Vortex, it has been shown that the model is at least
characterized by a second-order accuracy and stability properties that allow to simulate the SWE
considering a wide range of water depth. Then, in Section 3.2, the water surface (WS) and velocities in
the 1D bump test are measured once the steady state is reached (stationary solution) and compared to
analytical solutions. Later, the implementation of the external force in the cascaded model is tested in
comparison with the steady solution of a flow between two flat plates (Section 3.3) and in a domain
with a 2D bump (Section 3.4).

3.1. Convergence and Stability of the CaLB Model

The results of the convergence study in [34], measuring the error in diffusive scaling, is
summarized below. In the solution of the SWE, the CaLB and BGK models differ in the way of
imposing an isotropic viscosity. The asymptotic behavior of the measured viscosity ν is determined by
fitting the logarithm of the amplitude of a decaying wave to a linear function. The phase lag, measured
when the wave should have come back to its original position, is an indicator of the models violation
of Galilean invariance. The Taylor Green Vortex test case allows to compare the behavior of CaLB
and BGK models for various values of viscosities (ν) and water depths (h) and two different velocity
configurations, namely, “slow set” and “fast set” (Appendix A, Figures A1–A4).
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It is possible to observe that the two models, when stable, show a second-order convergence
in viscosity error and in phase error. The h characterized by the most stable behavior is 0.5.
Here, the simulations are stable for all the value of the viscosities taken into consideration. If the
value of the depth moves towards lower or higher values, the stability properties change. The CaLB
model is characterized by a wider stability range than the BGK model. In particular, it exhibits
instability for h = 1.0 and low viscosities (ν = 0.01, ν = 0.001 and ν = 0.0001). It starts to become stable
only for viscosities ν > 0.1. It is clarified that all the quantities are in lattice units.

3.2. Flow over a Bump

The first test case for the forcing schemes is the one-dimensional problem of a resting fluid in a
channel. The numerical method is considered well balanced if the stationary solution on an uneven
bed is perfectly reproduced [3]. The set-up of the simulation is the same as in [35]. The channel is
1 m long and the boundary conditions (BC) are periodic at the east and west boundaries. On the
south/north boundaries the bounce-back BC is imposed. The parameters of the numerical simulation
are ∆x = 0.01 m, ∆t = 0.026 s, and τ = 0.85. The bed topography equation is

zb (x) =

0.25
(

cos π(x−0.5)
0.1 + 1

)
|x− 0.5| ≤ 0.1

0 otherwise
(24)

Initially, the water is at rest (u = 0) with the water surface (WS) level, h + zb, equal to 1 m where h
is the water depth. The exact solution for this case is a zero velocity and WS = h + zb = 1 m. The force
term related to the bed topography is expressed by the Equation (15). The continuous form of the
gravity force:

Fi = −gh
∂zb
∂xi

(25)

has been discretized using basic, second-order, and centred scheme. Figure 1 shows the WS in the
CaLB model that uses the basic scheme to simulate the force. The steady state is reached after 5000
time steps. The WS shows an irregular trend over the bump and the simulation becomes unstable at
9000 time steps. The artificial velocity created along the x-axis increases, leading to the instability of
the numerical simulation.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

z b
(m

) 
  W

S(
m

)

x(m)

zb WS analytic solution (m) WS basic scheme (m)

Figure 1. Basic-scheme: WS after 5000 time steps.

In Figure 2 the steady-state solution for the centred scheme of the force is shown. It is reached
after 1000 time steps and corresponds to the analytical solution. In this scheme, the value of the
velocity remains very low (<= 10−3 m/s). Moreover, the simulation runs until 10,000 time steps
and continues to be stable. In contrast, as it has been already shown in [3], the second-order scheme
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leads to a profile of the WS with a relative error as large as ~20%. Reaching steady state takes much
longer for the second-order scheme than for the centred scheme (∼=5000 time steps) and the spurious
velocities are much higher (∼=0.06 m/s). According to results obtained by Zhou for the BGK collision
operator [3], it is found that only the centred scheme can produce accurate results in agreement with
the analytical solution.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

z b
(m

) 
  W

S(
m

)

x(m)

zb WS centred scheme (m) WS analytic solution (m)

Figure 2. Centred-scheme: WS after 1000 time steps.

3.3. Poiseuille Flow with External Force

One of the known solutions for nonlinear kinetic equations is the steady plane Poiseuille flow in a
channel of 2L width and with constant water depth [36]. For this case, the shallow water equations
simplify to an ordinary differential equation of the flow velocity in the x direction u: ν ∂2u

∂y2 + Fx = 0,

where Fx is the source term in the x direction. If a no-slip boundary condition is applied at y = ±L (L is
the lateral distance from the middle of the channel width), i.e., u(y) = 0 when y = ±L, the analytical
solution is a parabola:

u (y) =
Fx

2ν

(
L2 − y2

)
(26)

In this test case, the water depth is h = 1 m, the channel is 400 m long and 40 m wide; ∆x = 1 m and
∆t = 1 s. To test the decrease in accuracy with the viscosity, different relaxation times τ are considered:
0.95, 0.85, 0.75, and 0.65, which are correspondent, respectively, to the viscosities ν (Equation (6)): 0.15,
0.117, 0.083, and 0.05 in lattice units (l.u.). The value of Fx is equal to 0.001 in lattice unit.

In Figure 3, the profile of the velocities of the numerical model perfectly corresponds to the
analytical solution, for different viscosities. The L2 norm (Table 1) increases very slightly with the
reduction of the viscosity. For the given set of parameters and resolution, it is O

(
10−4

)
. The L2 norm

is preferred here over the L∞ and L1 norms. An advantage of this norm is that local errors cannot
cancel each other and the error remains conditioned by any deviation from the analytical solution [37].



Water 2020, 12, 439 10 of 16

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 5 10 15 20 25 30 35 40

u
 (

l.u
.)

N - number of nodes

n= 0.05 n= 0.083 n= 0.117 n= 0.15

Figure 3. Velocity profiles for different relaxation times τ = 0.95, 0.85, 0.75, 0.65.

Table 1. L2 norm for different viscosities. L2 =

√
∑x ‖un(x,t)−ua(x,t)‖2√

∑x ‖un(x,t)‖2
where un and ua are, respectively,

the numerical and the analytical value.

τ L2 Norm

0.95 0.00017
0.85 0.00020
0.75 0.00029
0.65 0.00052

In Figure 4, it can be observed that the profile of the velocities of the numerical model,
for increasing values of the force, perfectly corresponds to the analytical solution. The reason for the
slight increase of the L2 norm with increasing forcing (Table 2) was not investigated in detail, but it is
most probably linked to the higher velocity associated with larger forces. Equation (15) distributes
the force over the lattice directions with weights taken for a resting fluid. Determining the weights
dynamically, according to the local velocity, could improve the results but might also introduce errors
as the velocity at the lattice links would have to be interpolated from the lattice nodes.



Water 2020, 12, 439 11 of 16

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

0 5 10 15 20 25 30 35 40

u
 (

l.u
.)

N - number of nodes

Fx= 0.0001 Fx= 0.0002 Fx= 0.0003

Figure 4. Velocity profiles for different values of the x component of the force Fx—transversal section
of the channel.

Table 2. L2 norm for different value of the force Fx—Forces expressed in l.u.

Force Fx L2 Norm

0.0001 0.00053
0.0002 0.00058
0.0003 0.00070

3.4. Flow Over a Two-Dimensional Bump

The simple two-dimensional case of resting water over a variable bottom is investigated next.
The domain is a 10 m long and 10 m wide basin and the initial water level is 0.6 m. The equation that
describes the bed is

zb (x, y) =

0.5 e−2
[
(x−5)2+(y−5)2

]
(x− 5)2 + (y− 5)2 ≤ 4

0 otherwise

where zb, x, and y are expressed in meters. In the numerical model we considered a relaxation
time τ = 0.505, a spatial and temporal resolution of ∆x = 0.05 m and ∆t = 0.01 s, respectively.
Periodic conditions are applied at all the boundaries. The steady state is reached after 15 s for both
schemes. It is observed that, in this test, the basic scheme is stable, but leads to a profile of the water
surface not in agreement with the analytical solution showing a flat water surface. After 15 s, the basic
model shows spurious velocities with values higher than the centred model by ~17% (Figure 5).
To test the accuracy of the CaLB model with a centred-scheme force the error (L2) for different space
resolutions was calculated and is shown in the following Table 3: the error norm L2 decreases with the
space resolution, with a trend slightly higher than second order.
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Table 3. WS L2 norms—correspondence of numerical results with analytical solution.

∆x (m) L2

0.05 0.0000691
0.025 0.00000743

0.0125 0.00000138

3 3.5 4 4.5 5 5.5 6 6.5 7

0.5995

0.6005

0.6015

0.6025

0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4
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0.6

0.7

x (m)

u
 (

m
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)

WS centred scheme (m) abs. value velocity u centred scheme (m/s)

WS basic scheme (m) abs. value velocity u basic scheme (m/s)

zb (m)

x (m)

W
S 

(m
)

W
S 

(m
)

Figure 5. Comparison of basic scheme and centred scheme. zb bottom level (m), WS (m), and spurious
velocities (m/s).

4. Conclusions

The present work examines a lattice Boltzmann approach based on the use of a non conventional
MRT collision operator, the cascaded CO, co-moving with the fluid. The model maintains
good accuracy and stability even after the introduction of the treatment of the external forces.
Model validation is performed through comparison with literature case studies (one-dimensional and
two-dimensional bump, Poiseuille flow between two plan plates), highlighting a good correspondence
between simulated and literature data. Specifically, different implementation schemes of the force
are considered in 1D bump test case, and the best results are achieved using the centred scheme.
Our results (water depth and velocity value) are in accordance with the ones in literature using the
BGK model. The Poiseuille test case allows to demonstrate the good behavior of the model for
decreasing of the viscosity and increasing of the force value. Finally, the 2D bump test case puts in
evidence the positive results of the CaLB that uses the centred scheme to model the force. Considering
a low viscosity value, close to the water viscosity, the CaLB model remains stable with a second-order
accuracy. The presentation of the convergence study of the cascaded model in comparison with the
standard BGK model exhibits the advantages of the novel model, in particular, from the stability
point of view.

The first results of the CaLB show that the proposed methodology represents a promising tool for
simulation of shallow water flows.
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Appendix A. Convergence Study of CaLB Model

The normalized error in viscosity (Figures A1 and A2) and the phase lag (Figures A3 and A4) are
shown, for different depths and viscosities.
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Figure A1. Taylor Green Vortex test. Slow velocity set—comparison of normalized error in viscosity
ERν, for the three depths: h = 1.0 , 0.5 , and 0.1 and three viscosities: ν = 0.01, 0.001, and 0.0001.
The label shows the different values of the domain width L.
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Figure A2. Taylor Green Vortex test. Fast velocity set—comparison of normalized error in viscosity
ERν, for the three depths: h = 1, 0.5, and 0.1 and three viscosities: ν = 0.01, 0.001, and 0.0001. The label
shows the different values of the domain width L.
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Figure A3. Taylor Green Vortex test. Slow velocity set—phase lag ERΦ, for the three depths: h = 1.0,
h = 0.5, and h = 0.1 and three viscosities: ν = 0.01, 0.001, and 0.0001. The label shows the different
values of the domain width L.
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Figure A4. Taylor Green Vortex test. Fast velocity set—phase lag ERΦ, for the three depths: h = 1.0,
h = 0.5, and h = 0.1 and three viscosities: ν = 0.01, 0.001, and 0.0001. The label shows the different
values of the domain width L.
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