
water

Article

Improving Pearl Millet (Pennisetum glaucum)
Productivity through Adaptive Management of Water
and Nitrogen

Ausiku P. Ausiku *, John G. Annandale , J. Martin Steyn and Andrew J. Sanewe
Department of Plant and Soil Sciences, University of Pretoria, Private Bag X21, Pretoria 0002, South Africa;
john.annandale@up.ac.za (J.G.A.); martin.steyn@up.ac.za (J.M.S.); andrew.sanewe@gmail.com (A.J.S.)
* Correspondence: pausiku@gmail.com or pausiku@unam.na

Received: 11 December 2019; Accepted: 25 January 2020; Published: 5 February 2020
����������
�������

Abstract: Management of nitrogen and water plays a significant role in increasing crop productivity.
A large amount of nitrogen (N) may be lost through leaching if these resources are not well managed.
Wetting front detectors (WFDs) and Chameleon soil water sensors were used to adapt water and
nitrogen applications with the goal of increasing millet yields, as well as nitrogen and water use
efficiency. The trials were laid out as a randomized complete block design with factorial combinations
of water and N, and included the following treatments: irrigation to field capacity (fortnightly and
weekly), adaptive-water application based on sensor response or rainfed, and N treatments included
either fixed nitrogen levels (0, 45, 90 kg N ha−1) or an adaptive-N rate, depending on N content of
the soil solution extracted from WFDs. Adaptive management aims to steer water and nitrogen
applications towards optimum crop requirements. Treatments that received both high water and
nitrogen outperformed other treatments by 11% to 68% in terms of biomass production and 16% to
54% in grain yield, while water use efficiency and irrigation use efficiency values were also higher,
ranging from 1.58 to 7.94 kg m−3 and 1.43 to 8.30 kg m−3. Results suggest that integrated adaptive
water and nitrogen management should be considered to reduce high N losses and cost of crop
production, without a meaningful yield penalty, relative to high production input management.
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1. Introduction

Pearl millet (Pennisetum glaucum) is the sixth most important cereal crop globally and ranks fourth
amongst important tropical cereals [1,2]. It is largely cultivated in arid and semi-arid regions of Africa
and India as grain for human consumption and forage for livestock [3]. Most pearl millet growing
regions are characterized by low-input, rainfed agriculture, with an annual rainfall of 150–800 mm [4].
Most farmers in semi-arid regions of Africa cultivate pearl millet on infertile soils without external
nutrient inputs. In drought prone areas of Africa, grain yields are as low as 150 kg ha−1, with just over
half a ton per hectare obtained during average rainfall years [5]. In these regions, low soil nitrogen and
limited water are principal factors reducing productivity [5,6].

Numerous studies have revealed that pearl millet yields in Africa are low due to traditional
farming practices, including low populations of about 5000–20,000 plants ha−1 [4,7–10]. Higher plant
densities may commonly range between 90,000–1,750,000 plants ha−1 in semi-arid regions of India [9,11].
Apart from increasing planting densities, irrigation and nitrogen fertilizer could help small-scale
farmers to produce more grain and fodder for their families and livestock in areas where households
engage in subsistence agriculture.

Grain and biomass yields of pearl millet that are constrained by low plant population densities [5,12],
as well as nutrient and water stress, in turn reduce radiation and water use efficiencies [13]. Management
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of nitrogen and soil water, along with other essential nutrients, play a significant role in increasing crop
productivity. The potential yields of fodder and grains produced under irrigation are considerably
higher than in rainfed settings. Increases in crop yields are largely aligned with the timing of irrigation
events [14]. Large N losses from applied fertilizers often occur due to leaching [15], and this increases
the cost of crop production due to the high cost of N fertilizer [16]. Accurate estimates of the amount
of N required by millet are challenging, because optimum N depends on conditions that are localized
and dynamic.

Many devices have been developed over the years to measure nutrients or monitor soil water
status. FullStopTM wetting front detectors (WFDs) are low cost, funnel-shaped devices, that act as
passive lysimeters which are buried in the soil at a specified depth and can be used for nitrogen
management [17–19]. Following rainfall or irrigation, when the soil around a WFD wets to above
a matric potential of −2 kPa, free water is captured and stored at the base of the funnel [20]. A soil
solution sample can then be extracted from the funnel with a syringe for in-field nitrate analysis using
a simple nitrate test strip.

Adaptive management is about designing and carrying out management actions as experiments
from which lessons can be learned [21,22]. Therefore, thresholds for adaptive management treatments
are purposely chosen so that productivity could be improved with minimum loss of input.

Chameleon sensors are soil water resistance sensors that monitor soil tension. They are made of
highly absorbent porous media that amplifies the tension signal in the desired range [23]. It consists of
an array of three sensors, with typically one buried in each of the upper, middle and lower portions of
the root zone. The Chameleon reader gives an output via colour diodes as blue (wet and draining
<20 kPa suction), green (intermediate 20–50 kPa) and red (dry >50 kPa), depending on the soil water
potential at a specific depth. Due to the dynamic and site-specific nature of soil water and nitrogen
that make these two resources difficult to manage, the objective of this research was to determine
whether adaptive nitrogen and water management using simple tools could reduce nitrogen and water
application without compromising yield by minimizing nitrate leaching and improving water and
nitrogen use efficiency.

2. Materials and Methods

2.1. Site Description

The experiments were conducted over two seasons in an open field and rainout shelter at the
Hatfield Experimental Farm (25◦45′ S, 28◦16′ E, 1327 m above sea level) of the University of Pretoria,
South Africa. Daily mean minimum and maximum temperatures, and daily precipitation recorded
from a weather station during the study period are shown in Figure 1. Prior to planting of the trial,
composite soil core samples were collected to a depth of 0.6 m for determination of basic soil physical
and chemical properties (Table 1). The soils in both the open field and the rainout shelter experimental
sites were sandy clay loam in texture. The open field trial was prepared for planting by incorporating
superphosphate (14% P) and potassium chloride (50% K) at rates of 40 kg P ha−1 and 50 kg K ha−1.
Three levels of N, (0, 45, and 90 kg N ha−1), as well as an adaptive-N level in the second season were
applied in the form of limestone ammonium nitrate (LAN, 28% N). The plots receiving N were given
45 kg N ha−1 two weeks after planting, and the 90 kg N ha−1 plots received a further top dressing of 45
kg N ha−1 two weeks after the first application. Irrigation was supplied through a high-density drip
system with drip lines spaced 0.45 m apart with an in-line dripper spacing of 0.30 m, and a delivery
rate of 8.9 mm h−1.
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Table 1. Soil physical and chemical properties of the experimental site.

Soil Properties Unit

Depth

2017 (Open Field) 2018 (Rainshelter)

0–0.4 m 0.4–0.6 m 0–0.4 m 0.4–0.6 m

Physical Properties

Clay % 22.4 (2.00) 28.0 (2.65) 16.3 (1.53)a 26.0 (2.00)
Silt % 21.3 (2.34) 23.6 (1.37) 20.5 (1.06) 17.3 (0.89)

Sand % 56.3 (4.86) 48.4 (1.78) 63.2 (2.15) 56.7 (2.87)
Texture Sandy clay loam Sandy clay loam Sandy clay loam Sandy clay loam

Bulk Density kg m−3 1506 (2.28) 1152 (6.22) 1712 (11.82) 1682 (13.91)
Field Capacity m3 m−3 0.303 (0.007) 0.339 (0.042) 0.301 (0.008) 0.325 (0.011)

Permanent
Wilting Point m3 m−3 0.129 (0.017) 0.149 (0.007) 0.138 (0.008) 0.191 (0.011)

Chemical Properties

pH (H2O 1:1) 6.50 (0.12) 6.36 (0.19) 7.08 (0.10) 7.13 (0.09)
Organic Matter % 1.18 (0.02) 0.94 (0.07) 0.83 (0.09) 0.67 (0.11)

NH4 mg kg−1 5.9 (0.7) 6.3 (0.8) 4.9 (0.50) 4.6 (0.5)
NO3 mg kg−1 5.0 (0.5) 7.6 (0.7) 4.4 (0.70) 3.2 (0.5)

P mg kg−1 85.3 (23.1) 13.5 (2.2) 51.3 (1.49) 5.9 (1.16)
K mg kg−1 444 (16.7) 456 (44.1) 394 (13.5) 570 (25.7)
Ca mg kg−1 1884 (37.1) 1928 (19.0) 1551 (32.10) 2602 (24.3)
Mg mg kg−1 473 (11.5) 504 (12.2) 409 (13.90) 494(11.9)
Fe mg kg−1 203(4.5) 141 (6.3) 175(10.74) 164(12.6)
Mn mg kg−1 38.4 (2.5) 49.6 (2.7) 45.8 (1.10) 45.9 (2.0)
Cu mg kg−1 3.47 (0.05) 3.04 (0.04) 3.17 (0.12) 3.17 (0.14)
Zn mg kg−1 4.1 (0.2) 3.1 (0.3) 3.8 (0.10) 5.1 (0.3)
S mg kg−1 10.3 (0.4) 10.1 (0.05) 9.9 (0.20) 13.0 (0.2)
B mg kg−1 0.49 (0.03) 0.51 (0.03) 0.41 (0.02) 0.70 (0.02)

Values in brackets are standard deviations.

Each plot had its own drip lines and was irrigated independently by determining the deficit to
field capacity using neutron probe readings to a depth of 1 m. Each of the irrigated plots was fitted
with water meter. A pressure gauge was utilized to control water pressure. WFDs were installed by
augering holes to place detectors at depths of 0.30 and 0.60 m in each plot for monitoring soil solution
N concentration.

2.2. Treatments

The trial was laid out as a randomized complete block design and treatments were randomly
assigned to blocks in both years of the experiment. The treatments were modified in the second
season because the rainout shelter allowed better control over water balances. Heavy rainfall events
experienced in 2017 resulted in nitrogen leaching, which necessitated the rainshelter experiment. The
same cultivar (Agrigreen) was planted for both trials. The size of each experimental plot and their
detailed description are explained below:

2.2.1. Open Field Treatments (2017)

In 2017 nine treatment combinations were set up with three replications. The experiment consisted
of three fixed N rates and three irrigation regimes (Table 2). The nitrogen application rates were a zero
N control (N0: 0 kg N ha−1), an intermediate N level (N45: 45 kg N ha−1) and a high N level (N90:
90 kg N ha−1). The irrigation regimes were well-watered (I1: irrigated every week to field capacity),
an intermediate irrigation level (I2: irrigated every second week to field capacity) and a zero-irrigation
control (I0: rainfed). Open field plots had an area of 45 m2 (5 × 9 m) with 1 m paths between plots.
Plots were demarcated with raised soil bunds between them to avoid the surface movement of water
between adjacent plots.
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Table 2. Treatments in 2017 and 2018: fixed N application rates (N0, N45, N90), N application based
on adaptive N management (Nsoil), fixed irrigation water irrigation regime (I0, I1, I2, I15, I30), and
adaptive water management (Adapt-W).

Fixed N Rate Fixed Irrigation Nsoil (2018) Adapt-W

2017/2018 N Rate
kg/ha 2017 Regime

Week 2018 Regime
mm

Soil NO3
mg/L N Rate kg/ha Chameleon

Sensor
Next

Irrigation

N0 0 I0 0 >50 0 Red Irrigated
N45 45 I1 1 I15 15 25 ≥ 50 25 Green Cancelled
N90 90 I2 2 I30 30 <25 50 Blue Cancelled

2.2.2. Rainout Shelter Treatments (2017/2018)

In 2018 twelve treatment combinations were applied, which were replicated four times. Rainout
shelter plots had an area of 3.0 m2 (1.5 × 2.0 m) with 0.5 m spacing between them. Plastic sheeting
was previously inserted vertically to a depth of 1.2 m between plots to limit lateral subsurface water
movement between plots. The treatments from the 2017 trial were improved on in 2018 by including
fixed irrigation treatments in terms of frequency and amounts, and adaptive water and nitrogen
treatments. Plots were irrigated once a week with either a predetermined fixed amount, or to field
capacity, after one or two chameleon sensors in that plot turned red. To avoid potential leaching of
nitrate, the trial was conducted under a rainout shelter. A detailed description of the 2018 treatments
follows and is summarized in Table 2.

2.2.3. Fixed N Application Rates

The fixed nitrogen levels were the same as for the previous season.

2.2.4. Fixed Irrigation Treatments

The treatments consisted of fixed irrigation amounts of 15 or 30 mm, applied every week.
Fixed irrigation treatments were initiated two weeks after sowing and then applied during the whole
growing period.

2.2.5. Adaptive N (Nsoil)

For the Adaptive-N treatment, soil solution nitrate (NO3-N) content was measured weekly with
nitrate test strips to determine soil fertility levels. A strip was briefly dipped into a soil solution
sample extracted from the WFDs and then allowed to develop color during a standard time interval
of 45 s (Figure 2). In order to replenish N extracted by the crop without compromising on yield,
an average soil solution nitrate concentration of the lower and upper WFDs in each replication of
50 mg L−1 was selected as the threshold for N fertilizer application. Limestone ammonium nitrate
was applied for a period of four weeks when average soil solution nitrate concentrations fell below
50 mg L−1. When average soil solution nitrate concentrations of lower and upper WFDs in each
replication exceeded 50 mg L−1, no N was applied. When average soil solution nitrate concentrations
dropped below 25 mg L−1, 50 kg N ha−1 was applied. When the concentration was above 25 mg L−1

but below 50 mg L−1, 25 kg N ha−1 was applied (Table 2).

2.2.6. Adaptive Water (Adapt-W)

Results from 2017 showed that soil solution nitrate decreased after heavy rainfall, even with a
high level of N fertilizer. Therefore, applying high N increases the probability of N leaching in the
event of heavy rainfall, especially if the soil is moist. For this reason, Adapt-W plots were only irrigated
to field capacity, with the deficit determined with the neutron probe, when any one of the Chameleon
sensors buried at depths of 30, 60, or 90 cm turned red (Figure 2). Weekly irrigations to field capacity
were suspended in response to Chameleon sensor feedback. If all of the Chameleon sensors in a plot
exhibited a blue or green color, the irrigation event was cancelled (Figure 2).
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2.3. Data Collection and Measurements

Weather data, including daily minimum and maximum air temperature, as well as humidity,
wind speed, incoming solar radiation, and precipitation, were recorded by a nearby automated weather
station. The automatic weather station consisted of an LI-200SA pyranometer (Li-Cor, Lincoln, NE,
USA) to measure solar radiation, a cup anemometer (R.M. Young, Traverse City, MI, USA) to measure
average wind speed, a tipping bucket rain gauge (Texas Electronics, Dallas, TX, USA), a HMP60 relative
humidity and temperature sensor (Vaisala, Tucson, AZ, USA), and a CR200X datalogger (Campbell
Scientific Inc., Logan, UT, USA). For monitoring the changes in soil water status, a neutron water meter
model 503 DR CPN Hydroprobe (Campbell Pacific Nuclear, Martinez, CA, USA) that was calibrated
for the experimental site was used to measure soil water contents at 0.2 m increments to a depth of
1.0 m. Chameleon soil water sensors (Chameleons) were also used to monitor soil electrical resistivity
at 30 cm increments to a depth of 90 cm. Root-zone soil water deficit calculations for irrigation were
made over an assumed rooting depth of 1.0 m.

The pearl millet crop in the experiment was sown at a density of 18 plants per m2. From the
14th day after emergence until maturity, destructive harvests (18 plants per plot per sampling event)
were executed every second week for each replicate. Plant parts were separated into leaves and stems,
whereafter the leaf area was measured with a leaf area meter model LI-3100 (LI-COR, Lincoln, NE, USA).
An electronic balance was used for weighing both fresh and oven-dried biomass. Crop parameters
such as plant height, number of tillers, number of leaves, leaf area index (LAI), and leaf/stem ratio were
recorded. Total dry matter (TDM) was calculated as the sum of the dry mass of all the above-ground
plant components. Tillers were divided into productive and non-productive tillers on the basis of
a fertile panicle. Final grain yield was determined at maturity, enabling the calculation of harvest
index (HI).

The 2017 experiment suffered from frost damage in the grain filling stage, and for this reason grain
yield was estimated from an assumed HI derived from the following season’s data [24]. The measured
grain yield from all treatments of the 2018 season was used to establish the following relationship
(Figure 3).

HI = −0.11ln(TDM) + 0.5849 (1)

Equation (1) was used to estimate grain yields from the measured biomass of the 2017 season.
sssCrop water use (evapotranspiration) of all treatments was predicted according to the soil water
balance equation [25] below:

ET = P + I −RO−DP + ∆Q (2)

where ET (evapotranspiration) is the total water use during a defined growing season, P is precipitation,
I is irrigation, RO (runoff) is surface water that leaves the field, DP (deep percolation) is infiltrated
water which moves below the root zone (1 m), and ∆Q represents the change in soil water storage.
All terms are expressed in mm. RO was considered negligible because the slope of the field was
relatively flat. Precipitation that exceeded soil water deficit to field capacity in the 1 m profile was
assumed to be lost as drainage. A positive ∆Q indicates a gain in soil water storage. The change in soil
water storage was estimated from soil water content measurements with the neutron probe over a
depth of 1 m between irrigations.

Water use efficiency (WUE) of grain and total dry matter production was calculated per unit
evapotranspiration. Irrigation water use efficiency (IUE) was expressed as [26]:

IUE =
Yi −Yd

Ii
(3)

where Yi is the yield for the irrigation level of the ith treatment, Yd is the yield for a rainfed plot
under exactly the same management as the ith treatment, and Ii is the amount of irrigation applied for
irrigation level i.
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Partial factor productivity (PFP) indicates the nitrogen use efficiency of applied N. For this
experiment, PFP was calculated as grain yield per unit of N applied to a specific treatment [27].

PFP =
Y
Ni

(4)

Agronomic nitrogen use efficiency (NUE), was calculated as the increase in grain yield from
applied nutrients relative to the control.

NUE =
Yi −Yc

Ni
(5)

where Yi, is the grain yield of the ith treatment, Yc, is grain yield of the control treatment that received
no N and was subjected to the same irrigation regime as Yi, and Ni is the amount of N applied to the
ith treatment. PFP and AE are expressed in kg grain kg−1 N.

2.4. Statistical Analysis

Data were subjected to analysis of variance (ANOVA) according to the methods described for the
analysis of a randomized complete block design [28,29]. This was carried out with SAS 9.4 software
(SAS Institute, Cary, NC, USA) [30]. When significant differences were apparent, multiple comparisons
of means were performed using the honestly significant difference (HSD) test of Tukey at a 5% level of
significance (p < 0.05).

3. Results and Discussion

3.1. Seasonal Weather Data

Mean daily minimum and maximum air temperatures during the growth period ranged between
1.2–33.4 ◦C in 2017 and 4.7–35.6 ◦C in the 2018 season (Figure 1). The highest rainfall event of 83.3 mm
was recorded in February 2017, while March 2018 had the highest total monthly rainfall. The optimum
temperature of 34 ◦C for developmental processes of pearl millet [31] was exceeded in February 2018
with maximum average daily temperature of 35.6 ◦C. The mean daily minimum air temperature was
lower in 2017 (1.2 ◦C) than in 2018 (4.7 ◦C) (Figure 1). In both growing seasons, the average daily
temperature decreased below the base temperature of 10 ◦C required for growth and development of
pearl millet [31]. The number of rainfall events and total rainfall received during the experiments that
influenced all aspects of growth are shown in Figure 1.
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∑
Precip) precipitation recorded during the 2017 (a) and 2017/2018 (b) growing seasons,

Hatfield, South Africa.

3.2. Water Use

It is evident from the data (Table 3) that during both seasons, well-watered treatments recorded
maximum seasonal water use whereas the minimum was observed under low water input. Higher
nitrogen fertilizer and irrigation levels increased total water use by 73 mm to 427 mm. The results
show that crop seasonal water use is increased by irrigation and N fertilization, which is supported by
other research [32]. Seasonal water used of the well-watered treatments was also similar to those (476
mm) reported by other authors [33].

Table 3. Seasonal water use (evapotranspiration—ET) and amount of irrigation water during both
growing seasons.

Treatment Seasonal ET (mm) Seasonal Irrigation (mm)

2018 2017 2018 2017 2018 2017

I15N0 I0N0 238 273 187
I30N0 I0N45 427 248 357
IAN0 I0N90 289 223 297
IAN45 I1N0 406 293 450 73
IAN90 I1N45 268 305 288 86
IANA I1N90 289 302 332 85
I15NA I2N0 238 291 187 85
I30NA I2N45 427 293 357 74
I15N45 I2N90 238 305 187 82
I15N90 238 187
I30N45 427 357
I30N90 427 357

Notes: N0—0 kg N ha−1, N45—45 kg N ha−1, N90—90 kg N ha−1, NA—adaptive kg N ha−1, I0—zero irrigation,
I1—irrigated every week, I2—irrigated every second week, I15—15 mm irrigation, I30—30 mm irrigation,
IA—adaptive irrigation.

3.3. Growth Parameters

3.3.1. Plant Height

For plant height, the ANOVA (Table 4) revealed that statistically significant differences were
present for nitrogen fertilizer levels in both growing seasons, but height was not significantly affected
by irrigation levels in 2018. Treatments that received the high nitrogen rate (90 kg ha−1) and were
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watered weekly to field capacity or were given 30 mm, recorded the tallest plants (2.23 m in 2017 and
2.66 m in 2018) (Table 5). The taller plants contributed to a higher LAI and intercepted more solar
radiation than the other treatments. The shortest crop (1.23 m) was the dryland treatment that also
received no nitrogen fertilizer in 2017. The increase in plant height with increasing nitrogen fertilizer
increments has been observed for other crops as well as for pearl millet [34,35].

Pearl millet that was subjected to both adaptive water and nitrogen management produced taller
plants (2.62 m), compared to plots that received only adapted water or nitrogen management. The
reduction in plant height was associated with a decline in fractional radiation interception. Water
stress suppresses cell development and cell growth due to low turgor pressure and osmotic regulation
mechanisms, which assist with survival under severe drought conditions [36]. Plant height is a vital
growth parameter contributing to dry matter yield, especially in fodder crops.

Table 4. Analysis of variance of plant height (PH), fractional radiation interception (FI), panicle number
(PN), tiller number (TN), flowering date (FD), stem diameter (SD), panicle length (PL), and panicle
diameter (PD).

Source
df Mean Squares 2017

PH FI PN TN FD SD PL PD

Replication 2 0.096 ns 00.00090 ** 2.09 ns 184.6 ns 3.0 ns

Irrigation 2 0.79 *** 0.0047 *** 6244.09 *** 7603.3 *** 30.8 ***
Nitrogen 2 0.16 ** 0.0046 *** 721.00 *** 303.8 * 3.11 ns

Irrigation ×Nitrogen 4 0.036ns 0.0036 *** 630.46 *** 408.8 *** 20.1 ***
Error 16 0.020 0.00010 8.61 54.6 1.6
Total 26

2018

Replication 3 0.0038 ns 0.000061 ns 4.92 ns 3.5 ns 0.8 ns 0.00000024 ns 0.000074 ns 0.000005 ns

Irrigation 2 0.0060ns 0.0016 ** 9.81 * 485.8 *** 1.0 ns 0.00000190 *** 0.00045 *** 0.000019 ***
Nitrogen 3 0.11 *** 0.011 *** 47.47 *** 920.3 *** 6.1 ns 0.00001924 *** 0.0011 *** 0.000076 **

Irrigation ×Nitrogen 6 0.03 *** 0.0056 *** 32.20 *** 512.5 *** 7.2 ns 0.00000495 *** 0.00072 *** 0.000017 ***
Error 33 0.0027 0.00019 2.83 6.9 15.3 0.00000021 0.0000455 0.0000012
Total 47

Note: Significant at 5% (*), 1% (**), 0.1% (***) and n.s.: non-significant.

3.3.2. Number of Tillers

The average number of tillers (per m2) was significantly higher with high nitrogen and irrigation
regimes than for lower nitrogen and water treatments (Table 4). These effects were observed in both the
2017 and 2018 growing seasons. Previous studies have also reported reduction of tiller number due to
water stress [37–39]. The reduction in number of tillers is a survival strategy that is induced in response
to dry spells. This reduces green leaf area index and therefore transpiration, and hence helps the crop
to survive water stress, but productivity is reduced [40]. The well-watered and fertilized treatment in
2017 (I1N90), produced the greatest number of tillers per m2 (165.46), followed by the well-fertilized
and partially watered treatment (I2N90) with a recorded value of 150.85 tillers per m2 (Table 5). It is
clear from the differences in the tiller number that adaptive water and nitrogen significantly increased
tiller formation.
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Table 5. Averages for plant height (PH), fractional radiation interception (FI) panicle number (PN),
tillers numbers (TN), flowering date (FD), stem diameter (SD), panicle length (PL), and panicle diameter
for irrigation and nitrogen levels.

PH FI PN TN FD SD PL PD
m m−2 m−2 DAP m m m

Treatment 2017

I0N0 1.23 d 0.74 c 44.81 g 82.63 g 79.00 ab
I0N45 1.40 cd 0.74 c 52.58 f 103.36 e 82.00 a
I0N90 1.53 bcd 0.84 bc 78.51 d 96.56 f 74.00 d
I1N0 1.77 bc 0.96 ab 95.49 cd 142.74 c 76.00 bcd
I1N45 1.90 ab 0.91 ab 100.88 bc 140.91 c 74.00 d
I1N90 2.23 a 0.97 a 127.01 a 165.46 a 74.67 cd
I2N0 1.80 b 0.93 ab 103.50 bc 139.94 cd 74.33 d
I2N45 1.73 bc 0.91 ab 105.00 b 134.58 d 74.00 d
I2N90 1.83 b 0.95 ab 90.35 d 150.85 b 78.00 bc
HSD 0.39 0.14 8.53 5.86 3.65

Treatment 2018

I15N0 2.45 cd 0.83 f 19.25 bc 88.75 bc 58.00 0.0170 efg 0.258 de 0.0263 e
I30N0 2.52 bc 0.90 de 18.00 c 82.75 c 61.25 0.0160 g 0.253 e 0.0284 e
IAN0 2.45 cd 0.90 de 18.00 c 72.50 d 59.75 0.0170 efg 0.275 abc 0.0283 e

I15N45 2.29 ef 0.94 abc 23.00 b 81.50 c 61.25 0.0180 cde 0.265 cde 0.0333 abc
I30N45 2.36 def 0.94 abc 19.25 bc 69.25 d 59.75 0.0168 fg 0.27 bcd 0.0308 d
IAN45 2.28 ef 0.87 ef 18.75 c 71.75 d 59.75 0.0170 efg 0.27 bcd 0.0311 cd
I15N90 2.56 abc 0.92 cde 19.25 bc 72.50 d 59.75 0.0193 b 0.275 bc 0.0335 ab
I30N90 2.66 a 0.95 abc 23.25 b 69.00 d 58.00 0.0190 bc 0.295 a 0.0347 a
IAN90 2.25 f 0.96 ab 27.25 a 92.25 ab 59.75 0.0183 bcd 0.275 bc 0.0316 bcd
I15NA 2.56 abc 0.93 c–e 18.00 c 88.75 bc 61.50 0.0178 edf 0.285 ab 0.0276 e
I30NA 2.37 de 0.91 de 21.75 bc 67.75 d 61.25 0.0190 bc 0.258 de 0.0337 ab
IANA 2.62 ab 0.97 a 21.75 bc 100.25 a 59.75 0.0213 a 0.295 a 0.0347 a
HSD 0.12 0.03 4.17 8.67 8.72 0.0011 0.0168 0.0023

Treatment means followed by the same letter(s) within the same column are not significantly different at P ≤ 0.05,
according to the Tukey-HSD test.

3.3.3. Stem Diameter

Stem diameter was affected significantly by both nitrogen and water application rate (Table 5). On
average, combining adapted nitrogen and water produced stems that were thicker than for the other
treatments (Table 5). The interaction between nitrogen application and irrigation regimes significantly
affected stem diameter. The maximum stem diameter (0.0213 m) was observed at the application of
56 kg N ha−1 (IANA Table 5). The minimum stem diameter (0.016 m) was recorded at nitrogen level
of 0 kg ha−1 under the I30 irrigation regime. Stem diameter increased with an increase in nitrogen
application rate, irrespective of irrigation levels. This finding confirms similar results obtained (0.092
m at high and 0.063 m at low N application rate) by others [41]. However, stem diameter showed a
decreasing trend with increasing water supply at higher fertilizer levels. These results suggest that the
decline may be due to nitrogen percolating beyond the root zone. The greater N leaching at higher
irrigation probably resulted in N deficiency, which resulted in thinner stems.

3.3.4. Leaf Area Index (LAI)

LAI was fairly high due to the high plant density (18 plants per m2) used in this study. However,
much higher (11.4 m2 m−2) pearl millet LAI values were reported with fodder production [42].
There were significant (P < 0.01) differences in LAI due to water and nitrogen management (Table 6) in
both 2017 and 2018. The interaction effect between water and nitrogen treatments was also significant.
This implies that water and fertilizer had different effects in interaction than they had independently.
LAI was largely affected by the amount of water applied in both seasons. The adaptive water and
nitrogen treatment had the highest LAI (6.28) of all treatments in 2018. Similarly, in 2017, the treatment
that was irrigated weekly with high nitrogen also recorded the highest LAI (Table 7) and it decreased
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as soil water tension increased to more than 50 kPa. Nitrogen and water deficit contributed to low
LAI values for I0N0 (1.86 m2 m−2) and I15N0 (3.99 m2 m−2). The relationship between water stress and
reduction in LAI and dry matter yield was also reported by other authors [43]. As soil water deficit
increased and Chameleon soil water sensors changed from blue and green to red, LAI decreased by
50.7% in 2017 and 7.9% in 2018 (Figure 2 and Table 7). The highest LAI was found for N90, and the
lowest for N0. The huge increase in LAI in N rich environments indicates a definite N limitation for
pearl millet under low N input conditions.Water 2020, 12, x FOR PEER REVIEW 13 of 26 
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Figure 2. Selected visualization of soil solution nitrate concentrations and soil water tension recorded
from rainfed (a), irrigated to field capacity every week (b), irrigated with 15 mm every week (c),
irrigated to field capacity when one or two of the soil water sensors turned green/red (d). The open
circles indicate nitrate concentrations from test strips (white circle = soil nitrate level below 10 mg/L,
purple circle = soil nitrate between 25–100 mg/L). The color pattern blue = wet, green = intermediate
and red = dry soil.

3.3.5. Panicle Number, Length and Diameter

Panicle numbers differed significantly due to nitrogen and water levels in both years (Table 4).
The interaction effect was also significant. Number of panicles per m2 increased significantly from
52.6 to 127.0 with increase in nitrogen and water levels in 2017. The panicle diameter of millet also
significantly increased for well-watered and well-fertilized treatments (Table 4). The panicles from
the combined adaptive water and nitrogen treatment produced significantly thicker panicles than the
other treatments.

A similar trend was observed in 2018, with the highest panicle number of 27.3 m−2 and a minimum
of 18 m−2. The number of panicles has been found to be positively correlated to grain yield [44,45].
There were significant differences in panicle length for the water and nitrogen levels (Table 4). However,
there was no difference in panicle length between I15 and I30 without N application. Although not
significant, an increase in nitrogen rate generally increased panicle length. Panicle length for all
treatments ranged between 0.25 and 0.30 m. Some authors have emphasized that panicle length is the
primary factor affecting pearl millet grain productivity [46]. The longer the panicle, the more grain per
panicle, which leads to higher yields.
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3.3.6. Flowering Date

Pearl millet flowering was significantly affected by low nitrogen input under rainfed conditions
(Table 5). Flowering was delayed by up to 5 days under dryland conditions, with low input (0–45 kg N ha−1)
compared to the irrigated treatments under both low and high nitrogen inputs. It was reported that
a minor delay in flowering improved grain yield in a water stressed environment due to increased
harvest index [47]. The data in Table 5 for both seasons show that flowering time was prolonged
with limited water and nitrogen, compared to well-irrigated and fertilized plots. These results are
in line with other studies that indicated that water stress in pearl millet during flowering decreased
productivity [48,49]. In this study, grain yield was the lowest with low N and water input (Table 7).
The lowest yield was achieved in the 2017 season. These results could be attributed to low average
daily temperature in 2017 when compared with the 2018 season (Figure 1).

3.3.7. Harvest Index

Harvest Index (HI) was significantly influenced by nitrogen and water management practices.
In 2018, interactions between nitrogen and water management were observed for harvest index
(Table 6).

The HI ranged from 0.17 to 0.48, with an average of 0.23 (Table 7). The results showed that
harvest index has a wide range, which may be caused by differences in water and nitrogen regimes.
The highest harvest index (0.48) was recorded with 90 kg N ha−1 and limited water applied per week
(15 mm) for the 2018 growing season. The higher harvest index could be attributed to high grain yield
under these treatments. Direct relationships between grain yield and harvest index have been reported
for pearl millet [50,51]. Increased harvest index contributed to increased grain yield under stress
environments. The lower harvest index for pearl millet under high water and nitrogen inputs was
due to the greater tillering capacity of pearl millet, which resulted in more vegetative biomass being
produced, without more panicles and higher grain yield. Under well-watered conditions, HI differed
between the four nitrogen levels, ranging from 0.17 to 0.35. The 30 mm, zero and 90 kg N ha−1

treatments had a similar HI, but it was 29% higher with 45 kg N ha−1. In 2017 grain yield was estimated
from the ratio of grain yield to dry matter yield, using the relationship between HI and dry matter
yield that was established with data from the 2018 growing season.
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Table 6. Analysis of variance of leaf dry matter (LDM), stem dry matter (SDM), leaf stem ratio (LSR),
leaf area index (LAI), fresh biomass (FBM), total dry matter (TDM), harvest index (HI), and grain yield.

Source
Df Mean Square 2017

FBM TDM Grain LDM SDM LSR HI LAI

Replication 2 71.0 * 0.44 ns 0.004 ns 0.010 ns 0.038 ns 0.00009 ns 0.0003 ns 0.02 ns

Irrigation 2 369.3 *** 3.66 *** 0.05 *** 0.075 *** 2.59 *** 0.007 *** 0.017 *** 16.4 ***
Nitrogen 2 190.5 *** 1.90 *** 0.1 *** 0.072 *** 1.41 *** 0.01 *** 0.004 ns 4.8 ***

Irrigation×Nitrogen 4 6.6 *** 0.58 ns 0.004 ns 0.0073 ns 0.25 *** 0.0009 ns 0.003 ns 1.1 ***
Error 16 16.00 0.30 0.0012 0.0079 0.035 0.0002 0.0017 0.025
Total 26

2018

Replication 3 0.1 ns 0.06 ns 0.0008 ns 0.001 ns 0.017 ns 0.007 * 0.0004 ns 0.6 ns

Irrigation 2 1.4 *** 0.5 * 0.01 * 0.01 *** 0.014 ns 0.009 * 0.02 *** 0.6 **
Nitrogen 3 11.8 *** 0.7 ** 0.1 *** 0.02 *** 0.19 *** 0.005 ns 0.02 *** 2.8 ***

Irrigation×Nitrogen 6 12.1 *** 1.5 *** 0.07 *** 0.02 *** 0.31 *** 0.007 * 0.03 *** 1.5 ***
Error 33 0.15 0.13 0.0022 0.0010 0.012 0.0026 0.00040 0.17
Total 47

Note: Significant at 5% (*), 1% (**), 0.1% (***), and n.s.: non-significant.

Table 7. The mean of fresh biomass (FBM), total dry matter (TDM), grain yield, harvest index (HI), leaf
area index (LAI), leaf dry matter (LDM), stem dry matter (SDM), and leaf stem ratio (LSR) as affected
by nitrogen fertilizer and water levels.

FBM TDM Grain LDM SDM LSR HI LAI
kg m−2 m2 m−2

Treatments 2017

I0N0 3.34 c 1.27 e 0.32 d 0.27 b 1.00 d 0.27 0.24 ab 1.86 e
I0N45 3.48 c 1.37 de 0.41 c 0.30 b 1.07 d 0.32 0.30 a 2.07 e
I0N90 5.61 bc 1.70 cde 0.51 bc 0.40 ab 1.30 cd 0.30 0.30 a 3.92 c
I1N0 8.79 bc 2.43 bc 0.43 c 0.48 ab 1.95 b 0.25 0.18 b 4.73 b
I1N45 7.36 bc 2.45 bc 0.58 b 0.44 ab 2.01 b 0.19 0.24 ab 5.04 b
I1N90 15.10 a 3.97 a 0.68 a 0.63 a 3.35 a 0.20 0.17 b 6.18 a
I2N0 6.72 bc 1.41 de 0.31 d 1.10 d 0.28 0.27 ab 3.42 d
I2N45 8.278 bc 2.17 bcd 0.54 b 0.37 b 1.80 bc 0.22 0.25 ab 4.72 b
I2N90 10.22 ab 2.66 b 0.56 b 0.52 ab 2.14 b 0.25 0.21 ab 4.27 c
LSD 5.80 0.82 0.10 0.26 0.65 0.15 0.12 0.46

Treatments 2018

I15N0 7.54 bc 2.25 bc 0.49 d 0.33 a 1.08 ab 0.31 ab 0.17 e 3.99 e
I30N0 3.63 h 1.58 c 0.53 cd 0.22 bc 0.62 c 0.35 ab 0.29 cd 4.30 ed
IAN0 5.57 ef 1.62 c 0.56 bcd 0.29 ab 0.71 c 0.42 a 0.32 bc 4.28 ed

I15N45 4.71 fg 1.77 c 0.85 a 0.25 abc 0.71 c 0.36 ab 0.44 a 5.21 bc
I30N45 4.09 gh 1.65 c 0.63 bc 0.16 c 0.65 c 0.26 b 0.35 b 5.24 b
IAN45 5.13 ef 2.11 bc 0.66 b 0.22 bc 0.78 c 0.35 ab 0.27 cd 4.38 cde
I15N90 4.87 fg 1.63 c 0.85 a 0.23 abc 0.67 c 0.35 ab 0.48 a 4.88 bcd
I30N90 8.56 a 3.16 a 0.79 a 0.27 abc 1.35 a 0.28 b 0.25 d 5.42 b
IAN90 5.49 ef 2.23 bc 0.62 bc 0.24 abc 0.86 bc 0.31 ab 0.27 cd 5.43 b
I15NA 6.75 cd 1.71 c 0.55 bcd 0.30 ab 0.89 bc 0.33 ab 0.31 bc 4.69 c–e
I30NA 5.88 de 1.84 c 0.61 bcd 0.25 abc 0.80 bc 0.34 ab 0.28 cd 4.60 c–e
IANA 8.25 ab 2.80 ab 0.85 a 0.27 abc 1.21 a 0.32 ab 0.29 cd 6.28 a
LSD 0.97 0.91 0.12 0.12 0.28 0.13 0.050 0.85

Treatment means followed by the same letter(s) within the same column are not significantly different at P ≤ 0.05,
according to the Tukey-HSD test.
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3.4. Final Yields

3.4.1. Grain Yield

Grain yields were significantly lower at low water and nitrogen input than for well-watered and
high nitrogen environments. Grain yield was positively affected by adaptive management of water
and nitrogen fertilizer (P < 0.01) in 2018 (Table 6). Well-watered pearl millet with 90 kg N ha−1 gave a
high grain yield, while rainfed conditions with low N input (I0N0) produced 53% less grain (Table 7).
The well-fertilized and well-watered crop (I30N90) had a similar grain yield to that of the adaptive
management of water and N treatment (IANA), while the non-fertilized treatment (I15N0) produced
42.4% less (Table 7).

Grain yield under stressed conditions decreased due to reduced panicle number per m2 (65% in
2017 and 34% in 2018), panicle length (10%) and panicle diameter (11%) and a reduced fraction of
intercepted radiation. Similar results were reported by other authors [52]. It was reported that water
stress reduces grain yield through reduction of tiller number per m2, grain number per panicle and grain
mass [53]. The reduction in panicle number and size is a regulatory mechanism to maintain productivity
of pearl millet. It regulates physiological sink size to assimilate production [40]. The highest yield
(0.85 kg per m2) was recorded for treatments IANA, 115N90 and I15N45. The possible reason for high
yield in the adaptive water and nitrogen treatment (IANA) is due to applied N and water when deficits
reached prescribed limits. The average adapted nitrogen rate was 56 kg N ha−1, 37% lower than the
higher N rates, which produced the highest yields. The high yield recorded from limited water input
is attributed to high nitrate content in the soil, as compared to high irrigation level, which probably
leached nitrogen below the root zone.

3.4.2. Biomass Yields

Above-ground biomass production under dryland conditions with no N applied was, as expected,
less than that of well-watered and well-fertilized crops in both seasons. Irrigation and nitrogen
additions increased fresh biomass (FBM) and total dry mass yields (TDM) in both years (Table 7).
Treatments irrigated fortnightly to field capacity produced less biomass, compared with the weekly
irrigation treatments in 2017. The greatest fresh biomass yield produced was 15.10 kg m−2 for the
I1 treatment at 90 kg N ha−1 (Table 7). A comparable maximum green forage yield of 14.43 kg·m−2

was reported by other researchers [42]. A significant decline in FBM was found for each regime of
water supply cutback. A similar trend was observed in TDM with 3.5 kg m−2 reported by other
researchers [42]. Dry matter yield improved steadily when applying additional water and the greatest
TDM was achieved at 5.9 kg TDM m−2 with higher irrigation level (I1 treatment). Dry spells under
rainfed conditions reduced TDM at any nitrogen level, compared to the I1 and I2 treatments. However,
the decrease in above-ground dry matter yield was relatively lower compared to the I2 (19.3%) and I0

(60.3%) irrigation regimes in 2017. Similarly, the trend of reduction in dry matter yield with less water
was higher for the treatment that was irrigated 15 mm per week (16%) in 2018.

3.4.3. Leaf to Stem Ratio

Leaf to stem ratio was significantly influenced by nitrogen and water levels during the 2017
growing seasons. In 2018, however, leaf to stem ratio was not significantly affected by different
nitrogen levels (Table 6). Leaf to stem ratio is a very important determinant of chemical composition
and digestibility of fodder in some crop species [54]. Generally, leaves have higher nutritive value
compared to stems and are more acceptable to animals because leaves are easier to chew and digest.
Well-irrigated and fertilized treatments in both years produced the lowest leaf:stem ratio compared
to nitrogen and water limited treatments. This finding is perhaps due to increased growth of pearl
millet stems, relative to leaves, under high nitrogen and irrigation levels. It was reported that leaf: stem
ratio falls as crops mature due to the growth and development of stem size as a result of increased cell
wall content [55]. The distribution of TDM between leaf dry matter (LDM) and stem dry matter (SDM)
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differed according to water management practice (Table 7). Rainfed plots with no nitrogen applied
allocated more biomass to stems than leaves, when compared to the irrigated plots with or without
N applied. The mean leaf to stem ratio in rainfed treatments reached a maximum of 0.48 kg kg−1

compared to a well-watered of 0.24 kg kg−1.
Nitrogen fertilizer caused a substantial increase in FBM and TDM in the 2017 season, and a similar

trend was observed in 2018. Plots receiving N at a rate of less than 45 kg ha−1, produced less FBM and
TDM than well-fertilized plots, and those supplied with no nitrogen gave the lowest yields (Table 7).
A similar trend was observed in LDM and SDM. Increase in SDM and LDM was more evident in plots
which received higher N. For instance, from N0 to N45, the increment in LDM was 5% and 19% for
SDM in the 2017 season. The loss in yield seems to be caused by fewer leaves in rainfed and water
limited treatments.

3.5. Water Use Efficiency (WUE)

Water use efficiency was significantly influenced by different irrigation and nitrogen regimes,
and by nitrogen x irrigation interactions, in both years (Table 8). Rainfed pearl millet had lower
WUEgrain and WUEbiomass than irrigated treatments. Pearl millet WUEgrain of the rainfed treatment
was 16% lower than that of the well-watered crops, but WUEbiomass was 38% as efficient as that for the
well-watered treatment in 2017. WUE was higher than other treatments for both the adaptive water
and well-watered treatments receiving 56 kg N ha−1 (adapted-N) and 90 kg N ha−1 in 2018. Water use
efficiencies were influenced by both water and nitrogen regime in both seasons. Dryland treatments
had similar biomass WUE but lower grain WUE than well-irrigated treatments (Figure 4). Pearl millet
at the N0 (zero N) treatment had lower grain WUE and greater biomass WUE, demonstrating that
nitrogen application helped increase the proportion of grain relative to total biomass yield.

Well-watered and fertilized treatments had a greater change in WUEbiomass compared to WUEgrain

ratio between seasons than water and nitrogen stressed treatments, with a change from 3.8 in 2017
to 2.7 in 2018, while for stressed treatments, this ratio changed from 2.5 in 2017 to 3.4 in 2018.
The combined adaptive water and nitrogen management recorded a WUEbiomass to WUEgrain ratio
of 2.9. These findings are similar to what was reported by other studies [33]. The WUE value obtained
for I0 was almost equivalent to that obtained for I2 in 2017 for both TDM and grain yields. Similarly,
the value achieved for I15 was comparable with that achieved for IA in 2018. The I1 treatment had
the highest WUE of 9.15 kg TDM m−3 and 2.01 kg grain m−3 (Figure 4) in 2017, whereas I15 had the
highest WUE value of 4.55 kg TDM m−3 and 2.93 kg grain m−3. Improved WUE in plots which received
N fertilizer was very obvious in both seasons. As an increasing trend was noticed from N0 to N90,
a greater application of N could possibly have increased WUE even further. With regards to water and
nitrogen relations, the differences in WUE of all water management treatments were positively related
with increment in N application.

The results shown in Figure 4 indicate that for I0 and I15, increasing N fertilizer did not improve
WUE while for I1, Ia, and I30 applying adapted-N and 90 kg N ha−1 increased WUE in both seasons.
As water deficit increased under rainfed conditions I0, using 90 kg N ha−1 produced maximum WUE,
although adding less N did not decrease it significantly from the 90 kg N ha−1 treatment. However, for
I1 the maximum WUE value of 30.20 kg TDM m−3 was achieved at a rate of 90 kg N ha−1.

Applying more fertilizer to rainfed and limited water treatments decreased WUE, perhaps due
to limited availability of water and high concentrations of nitrogen. Small amounts of nitrogen were
applied to plots that were irrigated with 15 mm per week under adaptive N management. Nitrogen
is a dynamic part of the soil system, and its availability depends on soil water. Water use efficiency
for the 15 mm treatment and 90 kg N ha−1 was 1.63 kg m−3 compared with 3.16 kg ha−1 mm−1

for the 30 mm treatment with 90 kg N ha−1. There was 100% variation in WUEs for a given crop
water use. The maximum grain yield was obtained with 90 kg N ha−1 at fixed irrigation frequency and
amount, and the optimum N rate for pearl millet was 56 kg N ha−1 in all adaptive water and nitrogen
management treatments.
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Table 8. Analysis of variance of water use efficiency (WUE), irrigation use efficiency (IUE), partial
factor productivity (PFP), and nitrogen use efficiency (NUE) of total dry matter (TDM) and grain yield
at harvest.

Source
WUE IUE PFP NUE

df(a) TDM Grain TDM Grain TDM Grain TDM Grain

Replication 2 0.15 ns 0.008 ns 7.4 ns 0.15 ns 263.0 ns 12.49 ns 4447.2 ns 268.6 ns

Irrigation 2 29.1 *** 0.3 *** 131.5 *** 1.3 *** 48229.9 *** 1215.9 *** 18799.0 * 383.7 *
Nitrogen 2 49.8 *** 1.2 *** 440.7 *** 8.5 *** 51892.5 *** 6697.9 *** 176.9 ns 90.2 ns

Irrigation ×Nitrogen 4 4.4 *** 0.2 *** 263.7 *** 5.3 *** 2577.4 * 186.6 *** 25236.6 * 529.7 *
Error 16(10) 0.071 0.003 2.6 0.04 398.6 8.27 4327.2 77.6
Total 26(17)

Replication 3 0.29 ns 0.02 ns 0.4 ns 0.09 ns 918.6 ns 28.9 ns 132.5 ns 51.5 **
Irrigation 2 39.8 *** 8.8 *** 106.1 *** 14.5 *** 57433.4 *** 4782.4 *** 20240.6 *** 1744.5 ***

Nitrogen 3 15.8 *** 1.6 *** 9.1 *** 2.4 *** 246693.1
*** 33642.7 *** 12296.3 *** 1482.5 ***

Irrigation ×Nitrogen 6 5.6 ** 1.0 *** 4.4 *** 1.2 *** 37002.8 *** 872.8 *** 8460.6 *** 2592.9 ***
Error 33(24) 1.14 0.04 0.34 0.10 825.7 55.2 112.5 10.7
Total 47

Note: Significant at 5% (*), 1% (**), 0.1% (***) and n.s.: non-significant. (a) df. is degree of freedom of IUE, PFP
and NUE.Water 2020, 12, x FOR PEER REVIEW 20 of 26 
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from the first experiment (open field) were similar to those reported by others [55,56]. In the second 
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for I15, applying 45 kg N ha−1 was sufficient for maximum IUE and adding more did not increase it 
statistically (Figure 5). 

Figure 4. Water use efficiency (WUE) in the first season (A) TDM (total dry matter) kg m−3, (B) grain
kg m−3) and second season, (C) TDM (total dry matter) kg m−3, and (D) grain kg m−3) as affected by
water and nitrogen treatments. Different letters indicate significant differences (p < 0.05) according to
the Tukey-HSD test. Note: I0—zero irrigation, I1—irrigated every week, I2—irrigated every second
week, I15—15 mm irrigation, I30—30 mm irrigation, IA—adaptive irrigation.

3.6. Irrigation Water Use Efficiency (IUE)

Irrigation water use efficiency (IUE) for pearl millet was significantly affected by irrigation regimes
and nitrogen rates during both growing seasons. For all treatments, irrigation water supply ranged
from 73–450 mm (Table 3). The greatest yield per unit of water applied was achieved in a well-watered
treatment at 90 kg N ha−1 in 2017 for both TDM and grain yield. The values obtained from the
first experiment (open field) were similar to those reported by others [55,56]. In the second year,
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the IUE with adaptive water was not significantly different from those obtained with the 30 mm
treatment, but statistically different from that obtained for the 15 mm treatment. For both experiments,
the irrigation IUE for grain was the lowest under 30 mm (I30) treatment with no nitrogen applied,
and the highest with 15 mm (I15) at both 45 and 90 kg N ha−1 level. As water stress increased for I15,
applying 45 kg N ha−1 was sufficient for maximum IUE and adding more did not increase it statistically
(Figure 5).Water 2020, 12, x FOR PEER REVIEW 21 of 26 
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Figure 5. Irrigation water use efficiency (IUE) in the first season (A) TDM (total dry matter) kg m−3,
(C) grain kg m−3) and second season (B) TDM (total dry matter) kg m−3, (D) grain kg m−3), as affected
by water and nitrogen treatments. Different letters indicate significant differences (p < 0.05) according
to the Tukey-HSD test.

Applying more N to the I15 treatment decreased IUE, probably due to limited availability of water
and toxicity of high nitrogen concentrations (Figure 2c). The results shown in Figure 5 reveal that IUE
ranged from 6.8 kg TDM m−3 in well-irrigated and fertilized treatments to 11.9 kg TDM m−3 under
water limited conditions (I15) in 2018. These values are similar to the IUE range (0.13 to 4.36) reported
by other researchers [43,56]. The response to N fertilizer got stronger as water stress increased (I15).

3.7. Agronomic Nitrogen Use Efficiency (NUE)

Nitrogen use efficiencies varied significantly between water and nitrogen regimes in 2018, but not
significantly with nitrogen levels in 2017. However, interactions for N use efficiencies were significant
in both years (Table 8). In all well-watered and highly nitrogen fertilized plots, grain and biomass
NUE decreased with increasing N rate (Figure 6).

The reduction in NUE with applied N is consistent with other studies on NUE [57,58]. The mean
NUEgrain of pearl millet decreased from 53.8 to 29.7 in 2017 and from 88.8 to 51.4 kg grain kg−1

N in 2018, when N application increased from 45 to 90 kg N ha−1 under limited water treatments.
Both NUEgrain and NUETDM were greater in the water stressed environments (Figure 5). Across all
water and N levels, I2 and I15 were generally better than I1 and I30 for the calculated NUE. According
to previous studies, NUE can be improved largely by various management options such as planting
density, planting method, site specific fertilizer application, optimum weather conditions and adequate
irrigation [59–61]. Fertilizers and irrigation factors affected NUE, both individually and interactively.
Fertilizer NUE increased only marginally under different irrigation treatments in both years. Significant
interactions occurred between water treatment and fertilizer N rate and affected pearl millet NUE.
Water stress largely reduced NUETDM, because of insufficient water, which resulted in increased nitrate
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concentration in the rainfed treatment. Comparison of NUE response to TDM and grain production
under three water levels in both years indicated significant increases in NUE at 45 kg N ha−1. The I2

and I15 regimes produced the highest NUEs in pearl millet in both years, at an N rate of 45 kg ha−1.Water 2020, 12, x FOR PEER REVIEW 22 of 26 
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Irrigation and nitrogen levels significantly influenced the PFP (Table 8). A significant interaction 
(nitrogen × water) also occurred for PFP in both years. Nitrogen at 45 kg N ha−1 resulted in higher 
PFP of 478.56 kg TDM kg−1 N and 118.14 kg grain kg−1 N in 2017 (Figure 7). PFP decreased with 
increasing N application rates due to less efficiency in the utilization of absorbed nitrogen [62–64]. 
The lowest PFP of 215.74 kg TDM kg−1 N and 55.77 kg grain kg−1 N was recorded at the 90 kg ha−1 N 
rate for the non-irrigated treatment in 2017. Similarly, PFP was lower (194.70 kg TDM kg−1 N and 
74.21 kg grain kg−1 N) for the adaptive water treatment in 2018. The adaptive water and N treatment 
contributed significantly to reducing the N load in the soil, with increased PFP through enhanced soil 
water and nitrogen management practices. The high PFP under the adaptive application of N (Figure 
7) could be attributed to higher N uptake, leading to higher yield, as reported by others [64]. 

At the highest rate of N, TDM and grain yield resulted in a strong decrease in PFP in both years, 
compared to lowest N treatment. The decrease in PFP was little influenced by limited and well-
watered situation at the highest fertilizer application rate. These results are in line with other studies 
that revealed that PFP decreased with increasing rates of N [65]. Plots where no nitrogen fertilizer 
was applied yielded less than fertilized plots with both adapted and fixed amounts of water. 

Figure 6. Nitrogen use efficiency (NUE) of pearl millet in the first season (A) TDM (total dry matter) kg
TDM kg−1 N, (C) grain yield kg grain kg−1 N) and second season (B) TDM (total dry matter) kg TDM
kg−1 N, (D) grain yield kg grain kg−1 N), as affected by different water and N application regimes.
Different letters indicate significant differences (p < 0.05) according to Tukey-HSD test.

3.8. Partial Factor of Productivity (PFP)

Irrigation and nitrogen levels significantly influenced the PFP (Table 8). A significant interaction
(nitrogen × water) also occurred for PFP in both years. Nitrogen at 45 kg N ha−1 resulted in higher
PFP of 478.56 kg TDM kg−1 N and 118.14 kg grain kg−1 N in 2017 (Figure 7). PFP decreased with
increasing N application rates due to less efficiency in the utilization of absorbed nitrogen [62–64].
The lowest PFP of 215.74 kg TDM kg−1 N and 55.77 kg grain kg−1 N was recorded at the 90 kg ha−1 N
rate for the non-irrigated treatment in 2017. Similarly, PFP was lower (194.70 kg TDM kg−1 N and
74.21 kg grain kg−1 N) for the adaptive water treatment in 2018. The adaptive water and N treatment
contributed significantly to reducing the N load in the soil, with increased PFP through enhanced
soil water and nitrogen management practices. The high PFP under the adaptive application of N
(Figure 7) could be attributed to higher N uptake, leading to higher yield, as reported by others [64].

At the highest rate of N, TDM and grain yield resulted in a strong decrease in PFP in both years,
compared to lowest N treatment. The decrease in PFP was little influenced by limited and well-watered
situation at the highest fertilizer application rate. These results are in line with other studies that
revealed that PFP decreased with increasing rates of N [65]. Plots where no nitrogen fertilizer was
applied yielded less than fertilized plots with both adapted and fixed amounts of water.



Water 2020, 12, 422 18 of 21

Water 2020, 12, x FOR PEER REVIEW 23 of 26 

 

 
Figure 7. Partial factor productivity (PFP) in the first season (A) TDM (total dry matter) kg TDM kg−1 
N, (C) grain yield kg grain kg−1 N) and in the second season (B) TDM (total dry matter) kg TDM kg−1 
N, (D) grain yield kg grain kg−1 N, as affected by irrigation and nitrogen levels in 2017 and 2018. 
Different letters indicate significant differences (P < 0.05) according to Tukey-HSD test. 

4. Conclusions 

Pearl millet grain and TDM yield, WUE and LAI increased with increasing N rate under well-
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biomass and grain yield. In a nutshell, soil water sensors and WFDs can be adopted to facilitate 
adaptive practices to save water and reduce the loss of nitrogen fertilizer, without a yield penalty. 
Since adapting nitrogen alone did not increase yield significantly, it is recommended to adapt both 
water and nitrogen, which can be expected to use less irrigation water and nitrogen to increase WUE, 
grain yield and total biomass, rather than to use pre-determined high irrigation and nitrogen rates. 
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Figure 7. Partial factor productivity (PFP) in the first season (A) TDM (total dry matter) kg TDM kg−1 N,
(C) grain yield kg grain kg−1 N) and in the second season (B) TDM (total dry matter) kg TDM kg−1 N,
(D) grain yield kg grain kg−1 N, as affected by irrigation and nitrogen levels in 2017 and 2018. Different
letters indicate significant differences (p < 0.05) according to Tukey-HSD test.

4. Conclusions

Pearl millet grain and TDM yield, WUE and LAI increased with increasing N rate under
well-irrigated conditions. Rainfed pearl millet produced the lowest TDM and grain yield, LAI,
plant height, tiller numbers, smaller stem diameters and panicle numbers, due to prolonged dry
spells. Most of the rainfall incidence in 2017 were heavy and leached nitrogen beyond the root zone.
Therefore, adaptive management of nitrogen and water was needed to increase pearl millet productivity.
This study reveals the interaction of water and nitrogen on pearl millet grain yield, biomass yield,
WUE, IWUE, NUE, and PFP. The results of this study clearly indicated that grain and biomass yields
responded to adaptive irrigation and nitrogen management. Combined adaptive water and nitrogen
management reduced nitrogen application rate by 38% without decreasing biomass and grain yield.
In a nutshell, soil water sensors and WFDs can be adopted to facilitate adaptive practices to save water
and reduce the loss of nitrogen fertilizer, without a yield penalty. Since adapting nitrogen alone did
not increase yield significantly, it is recommended to adapt both water and nitrogen, which can be
expected to use less irrigation water and nitrogen to increase WUE, grain yield and total biomass,
rather than to use pre-determined high irrigation and nitrogen rates.
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authors contributed to the paper and read the final draft before submission to the journal. All authors have read
and agreed to the published version of the manuscript.
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