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Abstract: The aim of this research is to adopt the Standardized Precipitation Evapotranspiration
Index (SPEI) with three-month timescale (SPEI-3) to analyze drought risk in Central Asia. Based on
SPEI-3, a drought event is defined through Run Theory. The multidimensional Copula function
based on drought risk is then comprehensively assessed through the multivariable joint probability
of drought duration, drought severity, and drought peak. Results indicate as follows: (1) the climate
conditions were relatively stable from 1961–1974 and 1979–1995, while they varied from 1974 to 1979
and from 1995 to 2017, during which the study areas experienced recurrent drought. (2) The drought
characteristics show noticeable spatial variability, and the severity of drought is larger in the west than
in the east in Central Asia; the duration of drought contrasts with the severity of drought spatially.
(3) The drought risk in the three-dimensional joint distribution is similar to the analysis using the
two-dimensional distributions, and the study area has gone through the process from moderate to
slight and then to severe drought risk from 1961 to 2017; the return period studied in this paper was
calculated to be 80% probability in about two years.

Keywords: SPEI; Run Theory; copulas; correlation metric; joint probability; Central Asian; drought
risk; return period

1. Introduction

Drought has disastrous impacts on individuals’ lives and the environment. It is caused by lack of
precipitation over a long period; thus, the probabilities of drought are higher in arid regions. Central
Asia (CA) has attracted wide interest in its aridification, and drought is a recurrent phenomenon in CA.
Under climate change, high dependence on irrigated agriculture, and increasing human disturbance,
this region is susceptible to drought due to irrational water distribution.

The five CA countries, Kazakhstan (KAZ), Kyrgyzstan (KGZ), Tajikistan (TJK), Turkmenistan
(TKM), and Uzbekistan (UZB), comprise the main parts of CA. This region is not only fragile in its
ecological environment, but also sensitive to climate change. After the disintegration of the Soviet
Union, due to the lack of unified management of water resources, drought and water resources have
become key problems restricting the development and regional stability in the five CA countries [1].
The World Bank’s annual report notes that drought occurred throughout southern CA in the autumn of
2000, except for northern Kazakhstan. At the same time, rainfall was 40% lower than the average level
in 2000 and 2001, and river runoff was 35–40% lower than the normal level. Although there are different
studies looking at drought in CA from various perspectives, which focus on the causes, characteristics
and trends of drought and try to reveal their long-term impact on agriculture and ecology in CA [2–4],
very few studies have systematically analyzed drought risk from a multivariate probabilistic perspective.
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Hence, it is eager to analyze drought risk using a reasonable and comprehensive method to decrease
the disadvantageous impacts of droughts in the CA.

In addition, the selection of drought index needs further consideration. The Palmer Drought
Severity Index (PDSI) and Standardized Precipitation Index (SPI) are the most commonly used indices
in CA for drought analysis. However, PDSI is affected by its own autoregression characteristics, and
SPI is according to precipitation only and does not consider evaporation. Therefore, the choice of
an appropriate drought index to analyze drought characterization is important to the research of
drought risk. The newly developed Standardized Precipitation Evapotranspiration Index (SPEI) [5]
provides a more accurate measure of drought that is relevant to climatic conditions, especially in arid
regions. The theory of Run [6] allows one to analyze the probabilistic structure of drought durations
and severities, together with the SPEI.

Drought events are characterized by many factors [7]. Independent analysis of drought factors
are not able to reflect the correlations between them [8]. The univariate parametric analysis of drought
events may result in over- and under-estimation of associated drought risks for water resource
management [9,10]. Thus, it is difficult to apply univariate parametric analysis to assess drought risk
objectively and accurately. In order to overcome this limitation, many scholars [11–14] are committed to
research drought risk at higher dimensional levels. Among these approaches, the Copula function has
been employed in multidimensional drought risk analysis due to its excellent characteristics [15–17].
Ning [18] used the two-dimensional (2D) Copula to compute the joint distribution probability of
drought to analyze the regional drought risk in the northwest arid area of China. However, at present,
there is less research on drought risk analysis in CA using the multidimensional Copula function.
Thus, this paper uses the joint distribution probability of drought duration, drought severity, and
drought peak value, which together reflect drought characteristics, to analyze drought risk in the five
CA countries and to provide a meaningful attempt at a comprehensive analysis of drought risk.

The target of this paper is to employ the two-dimensional (2D) and three-dimensional (3D) Copula
functions to construct multidimensional joint distributions in the five CA countries and to research
the drought risk characteristics based on joint probabilities and return periods. Specifically, through
SPEI and Run Theory, three drought variables can be defined. The joint distribution function will
be constructed by the suitable Copula function according to their applicability in drought analysis
in the region, then the multidimensional joint distribution probability of drought variables will be
calculated for the five CA countries from 1961 to 2017, and the drought risk will be revealed and
analyzed. An analysis of aridity changes in five CA countries will be provided in this region under
climate change, which provides valuable information for the administration of water in CA.

2. Materials and Data

2.1. Study Area

This study area includes KAZ, KGZ, TJK, TKM, and UZB of Central Asia, with a collective area
about 4.0 × 106 km2 (Figure 1) [19]. CA is home to many cross-border rivers, such as the Syr and Amu
Darya rivers, which also provide daily water for most of CA’s population. After the collapse of the
Soviet Union, the original integrated water management system in the region was eliminated, and
the upstream and downstream countries of the river frequently disagree on water resources issues.
This has a tremendous impact on the ecological environment, rational allocation of water resources,
water supply, and power supply. The special geographical location, extreme weather conditions,
highly concentrated population, insufficient finances, and widespread poverty also make CA extremely
vulnerable to the effects of drought.
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Figure 1. The geographical location and borders of the five countries. 

2.2. Data 

There is a lack of measured data in CA in general, especially in the five CA countries. This paper 
uses the CRU TS 4.2.1 grid data, including monthly data of precipitation and potential 
evapotranspiration (PET), developed by the University of East Anglia 
(https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.02/). There are three reasons we use CRU data. 
Firstly, the CRU dataset has good quality control and homogeneity testing. It is produced by different 
gauge datasets [20,21]. Secondly, the resolution and time series of CRU dataset are necessary for SPEI 
calculations and drought studies [22]. In addition, grid data have better spatial representation and 
continuous availability than traditional site observation data, playing a key role in the description of 
drought characteristics [23]. Lastly, the CRU dataset has been widely used in CA [4,24,25] and other 
regions [26–30]. Considering that the CRU dataset produced before 1960 is not good enough [31], the 
calculation of SPEI needs at least 30-year datasets and the amount of Copula function input data is 
significant. The time series selected in this paper covers January 1961 to December 2017. The PET 
data of CRU are computed by a variant of the Penman-Monteith equation 
(http://www.fao.org/docrep/X0490E/x0490e06.htm) using the gridded data.  

3. Methodology 

3.1. Calculation of SPEI and Drought Classification 

SPEI was developed in 2010. It not only reflects the influences of temperature fluctuations on 
drought events in global warming environments [32], but also detects whether droughts occur and 
reflects their duration over multiple time scales. The SPEI has been employed in many climatology 
and hydrology studies, including drought variability analysis [33], climate change [34], agriculture 
[35], ecological systems [36], and drought monitoring systems [37]. The two most widely used 
methods of PET calculation in the procedure to calculate the SPEI are those of Thornthwaite [38]and 
FAO-Penman-Monteith (PM) [39]. The PM equation considers the effects of temperature and other 
related factors, so it is more reasonable than the Thornthwaite equation, which only considers 
temperature [40]. In addition, the potential evapotranspiration calculated using the Thornthwaite 
method is temperature-based and often underestimated in arid and semi-arid areas [41]. The five 
regions of CA in the study area are arid and semi-arid regions. Therefore, the related R code [42], 
which calculates PET through the PM equation, is used in this research. (http://sac.csic.es/spei). 
However, specific meteorological data used by the five CA countries for the PM equation cannot be 
directly obtained. As the calculation of the PET data in the CRU dataset is on account of the PM 
method [43], this paper uses the PET and monthly precipitation data of CRU to calculate SPEI. SPEI 
has different time scales, which reflect different drought phenomena. SPEI-3 is usually used for water 
deficits caused by seasonal precipitation and temperature changes [32]. According to the data 
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2.2. Data

There is a lack of measured data in CA in general, especially in the five CA countries. This paper uses
the CRU TS 4.2.1 grid data, including monthly data of precipitation and potential evapotranspiration
(PET), developed by the University of East Anglia (https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.02/).
There are three reasons we use CRU data. Firstly, the CRU dataset has good quality control and
homogeneity testing. It is produced by different gauge datasets [20,21]. Secondly, the resolution and
time series of CRU dataset are necessary for SPEI calculations and drought studies [22]. In addition,
grid data have better spatial representation and continuous availability than traditional site observation
data, playing a key role in the description of drought characteristics [23]. Lastly, the CRU dataset
has been widely used in CA [4,24,25] and other regions [26–30]. Considering that the CRU dataset
produced before 1960 is not good enough [31], the calculation of SPEI needs at least 30-year datasets
and the amount of Copula function input data is significant. The time series selected in this paper
covers January 1961 to December 2017. The PET data of CRU are computed by a variant of the
Penman-Monteith equation (http://www.fao.org/docrep/X0490E/x0490e06.htm) using the gridded data.

3. Methodology

3.1. Calculation of SPEI and Drought Classification

SPEI was developed in 2010. It not only reflects the influences of temperature fluctuations on
drought events in global warming environments [32], but also detects whether droughts occur
and reflects their duration over multiple time scales. The SPEI has been employed in many
climatology and hydrology studies, including drought variability analysis [33], climate change [34],
agriculture [35], ecological systems [36], and drought monitoring systems [37]. The two most widely
used methods of PET calculation in the procedure to calculate the SPEI are those of Thornthwaite [38]
and FAO-Penman-Monteith (PM) [39]. The PM equation considers the effects of temperature and
other related factors, so it is more reasonable than the Thornthwaite equation, which only considers
temperature [40]. In addition, the potential evapotranspiration calculated using the Thornthwaite
method is temperature-based and often underestimated in arid and semi-arid areas [41]. The five
regions of CA in the study area are arid and semi-arid regions. Therefore, the related R code [42], which
calculates PET through the PM equation, is used in this research. (http://sac.csic.es/spei). However,
specific meteorological data used by the five CA countries for the PM equation cannot be directly
obtained. As the calculation of the PET data in the CRU dataset is on account of the PM method [43],
this paper uses the PET and monthly precipitation data of CRU to calculate SPEI. SPEI has different
time scales, which reflect different drought phenomena. SPEI-3 is usually used for water deficits

https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.02/
http://www.fao.org/docrep/X0490E/x0490e06.htm
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caused by seasonal precipitation and temperature changes [32]. According to the data characteristics
and research objectives, this paper adopts the SPEI-3 time-scale for drought risk analysis in the five CA
countries. Based on the geographical characteristics of CA and relevant research, drought conditions
are divided into five levels in the region according to SPEI (Table 1).

Table 1. The classification of SPEI.

Level SPEI Category

0 −0.5 to 0.5 Near Normal
1 −0.99 to −0.5 Slight Drought
2 −1.0 to −1.49 Moderate Drought
3 −1.5 to −1.99 Severe Drought
4 <−2.0 Extreme Drought

3.2. The Identification of Drought Variables

Run Theory is extensively employed in the identification of drought events. In this study, drought
duration (Dd), drought severity (Ds), and drought peak (Dp) were selected as the drought characteristics
factors for drought risk analysis. In accordance with Run Theory (Figure 2), each factor is identified as
follows:

(i) Dd represents the duration of a drought event: the count of continuous months at which the
value of SPEI is below the threshold X0.

(ii) Ds represents the intensity of a drought event: the absolute sum of all SPEIs during the
drought period.

(iii) Dp represents the peak value of a drought event: the minimum value of SPEI during the
drought period.

(iv) Using the above definitions, drought identification is carried out by calculating the SPEI value in
the 3-month scale. The threshold is set to be −1, and drought events with drought duration less
than 2 months are eliminated.
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3.3. Drought Risk Probability Model

The most important step before the drought risk assessment is to carry out drought identification.
In this paper, based on Run Theory, the drought event’s characteristics, including Dd, Ds, and Dp are
identified. In addition, the marginal distributions of three variables are fitted. In the end, the Copula
function is adopted to build the drought risk probability model.
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3.4. The Theory of Copula

The Copula function was initially used by Sklar [44]. The Copula function models can construct
the multidimensional joint distribution using marginal distributions and correlation framework [45].
A variety of Copula functions can be used to set up multidimensional joint distribution of drought
variables. The Archimedean Copula function is one of the most commonly used Copula functions in
hydrology [46] and it includes Gumbel-Hougaard (GH), Clayton, and Frank functions [47]. The three
forms of Copula have been common selections for correlation models owing to their performances.
The correlation coefficient of the Gumbel Copula is 2− 21/θ, and the correlation coefficient of the lower
tail is zero, which gives it a strong characterization ability when describing the variation law of two
random variables with upper tail correlation. The Frank Copula is a symmetry correlation function in
the Archimedean Copula family. The correlation coefficients of the upper and lower tails are equal and
all zero. Lower tail coefficient of the Clayton Copula is 21/θ, and the upper tail correlation coefficient
is zero [48]. Therefore, the characteristics of these three Copula functions are representative and can
explain the problem from different aspects.

(1) Parameter Estimation

The nonparametric estimation method is adopted to compute the parameters of the Copula [49] in
this study. This technique is primarily related to the Copula parameter (θ) (Table 2). The relationship
betweenθand τ(Kendall correlation coefficient) is represented in the following equation. After calculating
τfrom the measured data, the parameters of the joint distribution can be obtained accordingly:

τ = 1−
1
θ

(1)

(2) Verification and Evaluation

In this paper, in order to evaluate the fitting error quantitatively and select the appropriate Copula
function, the Root Mean Square Error (RMSE) [17], Nash–Sutcliffe Efficiency (NSE) coefficient, and the
Akaike information criterion (AIC) were used [50]:

AIC : MSE =
1

n− 1

n∑
i=1

(Pei − Pi)
2; AIC = n log(MSE) + 2m (2)

where m is the number of model parameters, n is the number of samples, Pi represents the Copula
value of consecutive observation samples, and Pei represents the corresponding multivariate empirical
probability. AIC is a measure of the quality of the statistical model fit. For a particular Copula function,
the smaller the AIC value of the objective function value, the better the Copula function simulation
effect. We define:

RMSE =

√∑n
i=1[ỹi − yi(θ)]

2

n
(3)

NSE = 1−

∑n
i=1[ỹi − yi(θ)]

2∑n
i=1

[
ỹi − ỹi

]2 (4)

where yi(θ) is the simulated two-variable joint probability value, ỹi represents the empirical observation,
i is the serial number of the variable, and n is the total number of variables. The range of RMSE is
[0,∞), the range of Nash–Sutcliffe Efficiency coefficient (NSE) is (−∞, 1], and when RMSE is equal to 0,
NSE is equal to 1 for the perfect model.
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Table 2. Symmetric Archimedean Copula functions.

Copula Equation

Gumbel Copula C(u1, u2, u3) = exp
{
−

[
(−lnu1)

θ + (−lnu2)
θ + (−lnu3)

θ
]1/θ

}
, θ ≥ 1

Clayton Copula C(u1, u2, u3) =
(
u1−θ + u2−θ + u3−θ − 3

)−1/θ

Frank Copula C(u1, u2, u3) = − 1
θ ln

[
1 +

(e−θu1
−1)(e−θu2

−1)(e−θu3
−1)

(e−θ−1)2

]

3.5. Correlation Analysis and Establishment of Marginal Distribution Function

In this paper, in order to determine whether the drought variables are correlated and felicitous for
establishing the joint distribution function, the correlation between drought variables was analyzed
using Kendall rank, Spearman’s rank-order, and Pearson product-moment correlation coefficients.

The MvCAT (Multivariate Copula Analysis Toolbox) is a generalized software package which
employs Markov Chain Monte Carlo simulations to estimate copula parameters [51]. It is used in this
study to research the dependence structure and select the optimal marginal distribution function of the
drought variable. The Exponential, Generalized Pareto, Generalized Extreme Value, Gamma, Weibull,
and Gaussian distribution are used to fit the parameters of Dd, Ds, and Dp using the MVCAT tool, and
the parameters are estimated by the maximum likelihood approach.

3.6. Joint Probability Distribution and Drought Risk Assessment

In combination with the definition of drought event in this paper, the drought risk probability is
defined as the joint probability of Dd, Ds, and Dp. Based on the MVCAT, this paper calculates the
marginal distribution for each drought variable and obtains the specific parameters of the function.
The fitting effect of the function and the actual data is compared using the Quantile-Quantile (Q-Q)
plot. The construction of the two-dimensional Copula function is based on the univariate marginal
function by using the MVCAT calculation function. Then, comparing the RMSE, NSE and AIC values
of different Copula functions, the most suitable Copula function for each set of variables is selected.
The construction of the 3D Copula function is also based on the previously obtained univariate marginal
distribution function [52]. However, unlike the two-dimensional case, the three-dimensional Copula
function first calculates the parameter p by the inverse Kendall parameter method, and selects the
most suitable Copula function with the principle of minimizing the parameter p. At the same time,
according to the data characteristics, the symmetrical Copula function is suitable for constructing the
three-dimensional joint distribution function. The specific formula is in Table 2.

3.7. The Return Period of Drought Event

The return period refers to how long the value of a random variable occurs over a long period.
The calculation of the drought return period can provide valuable information for the rational utilize
of water [53]. The single-variable and univariate return period often leads to an overestimation
or underestimation of the risk rate for a given event, so this paper calculates the three-variable
return period:

T3 =
E(Ld)

P
{
Xi ≥ xi ∨ X j ≥ x j ∨ Xk ≥ xk

} =
E(Ld)

1− F
(
F(xi), F

(
x j

)
, F(xk)

) (5)

where E(Ld) represents the mathematical expectation of the drought interval, F(xi), F
(
x j

)
and F(xk)

represent the three univariate marginal distributions, and F
(
F(xi), F

(
x j

)
, F(xk)

)
represents the joint

probability of a three-dimensional variable group.
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4. Results

4.1. Changing Trend of the SPEI

In order to reflect the characteristics of multi-scale droughts, this paper calculates the SPEI for
CA on various time scales (Figure 3). Certain regularities can be found from the SPEI variation in
different time scales: from 1961 to 1974 and from 1979 to 1995, the SPEI value was mostly positive, and
the SPEI value was mainly negative in the other periods. This indicates that the climate in CA was
more stable from 1961 to 1974 and from 1979 to 1995, while from 1974 to 1979 and from 1995 to 2017,
the five CA countries experienced recurrent drought. With increasing time scale, the frequency and
severity of drought events begins to decrease, but the drought duration gradually becomes prolonged.
For example, the drought durations identified by SPEI-9 and SPEI-12 are longer than those of SPEI-1,
SPEI-3 and SPEI-6. There is frequent alternation of positive and negative values in SPEI-1, which may
lead to misestimation of the occurrence of drought events. However, the SPEI values of medium-
and long-term time scales such as SPEI-9 and SPEI-12 were too rough, which ignores changes within
the particular time periods. Therefore, considering the actual situation in CA, the drought risk is
subsequently analyzed using SPEI-3 in this study.
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Figure 3. The 1-, 3-, 6-, 9-, and 12-month SPEI based on monthly averages in CA from 1961 to 2017.

Furthermore, in accordance with the classification criteria of drought (Table 1), the spatial
distribution of drought occurrence frequency for different degrees of severity is counted (Figure 4).
When the color is closer to blue, the frequency of drought occurring in the area is lower; when the
color is closer to red, the frequency of drought occurs more frequently in the area. First, the drought
frequency ranged as follows: slight > moderate > severe > extreme drought. Second, there was spatial
heterogeneity in the drought characteristics of the study area. The occurrence of slight drought was
higher in frequency in the eastern part of Kazakhstan, and lower in frequency in Uzbekistan and
Turkmenistan (Figure 4a). The frequency of moderate droughts was evenly distributed in most parts of
CA, but higher in northern Kazakhstan and lower in northern Kyrgyzstan (Figure 4b). The incidence of
severe drought was generally low in CA, and the spatial distribution of frequency of extreme drought
varied greatly (Figure 4c). The high values of extreme drought frequency were mainly distributed in
south-central Kazakhstan, Uzbekistan, and Kyrgyzstan, while the low values mainly occurred in the
north and west of Kazakhstan (Figure 4d). These results show that there are differences in drought
characteristics among the countries of CA, which needs to be further studied.
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4.2. The Characteristics of Drought Variables

According to the calculated SPEI-3, this paper aims to analyze the degree of drought risk; thus, the
threshold for Run Theory was set at −1 and drought duration was defined to be more than 2 months, so
that slight and short-duration droughts were excluded. The drought variables’ spatial distribution is
displayed in Figure 5. As can be seen in Figure 6, when the color is closer to blue, the value corresponding
to the variable is lower; when the color is closer to red, the value corresponding to the variable is higher.
Therefore, it shows that the values of Ds varied from 3.969 to 6.625 in this area, and the distribution of
Ds in the whole study area mainly ranged between 4 and 5.5. The low Ds values were distributed in the
eastern area and high values were mostly in the western area, indicating that the drought severity was
greater in the western areas than in the eastern areas in CA (Figure 5a). The value of Dd varied from
2.667 to 4.286 months, with the low values in the eastern area, and the middle-to-high values in the
western region, which demonstrates that the duration of drought events in CA is longer in the west
and shorter in the east (Figure 5b). Meanwhile, it turns out that the Ds and Dd have spatial contrasts.
Specifically, the Ds in the western region is high, and the duration of drought events is also longer,
which indicates that the drought situation in western CA is more serious. The value of Dp in CA was
between −1.589 and 1.992; moderate drought was less frequent, but severe drought happened more
frequently in CA. Extreme drought occurred in central Kazakhstan (Figure 5c).
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4.3. Correlation Analysis

After the three drought variables of the five countries in Central Asia were extracted, the Kendall
rank, Spearman’s rank-order, and Pearson product-moment correlation coefficients were used to
measure the correlation between drought variables in each country (Table 3). Coefficients closer
to 1 indicate stronger correlation between the two variables. The results show that the correlation
coefficients among the three groups of variables in the five countries are all close to 1, which indicates
that the variables in each group show strong positive correlation among the five Central Asian countries.
Thus, these three drought variables are capable of establishing the joint distribution function using the
Copula function, using which the drought characteristics of Central Asia will be analyzed.

Table 3. Correlation coefficients for drought events (SPEI < −1, Dd > 2).

Country Variable Kendall Spearman Pearson

KAZ
Ds_Dd 0.8446 0.9461 0.9635
Ds_Dp 0.7073 0.8685 0.7714
Dd_Dp 0.5799 0.7292 0.6244

KGZ
Ds_Dd 0.8476 0.952 0.9321
Ds_Dp 0.6144 0.7971 0.7821
Dd_Dp 0.4881 0.6343 0.6104

TJK
Ds_Dd 0.7797 0.8949 0.9177
Ds_Dp 0.6684 0.852 0.7398
Dd_Dp 0.4774 0.6195 0.5345

TKM
Ds_Dd 0.8214 0.9348 0.9463
Ds_Dp 0.7515 0.9092 0.8637
Dd_Dp 0.6009 0.7465 0.7396

UZB
Ds_Dd 0.8307 0.9428 0.9392
Ds_Dp 0.6589 0.8411 0.8223
Dd_Dp 0.5081 0.6691 0.663

4.4. Selection of the Suitable Marginal Distribution

Selecting a suitable marginal distribution function for each variable is required to effectively
construct the Copula joint distribution function. In this study, the MVCAT toolbox is used to fit the
drought variables, and the optimal marginal distribution functions are selected according to their
ranking. The corresponding parameter values of each drought variables in each country are also
obtained (Table 4). The Generalized Pareto function shows the highest frequency of occurrence,
and most of the drought variables’ marginal distribution in five CA countries can be fitted by the
Generalized Pareto function. Figure 6 shows the fitting map and Quantile-Quantile (Q-Q) plots of
drought variables’ marginal distribution in Tajikistan in 1961–2017 as an example.

Water 2020, 12, 421 9 of 20 

 

4.3. Correlation Analysis 

After the three drought variables of the five countries in Central Asia were extracted, the Kendall 
rank, Spearman’s rank-order, and Pearson product-moment correlation coefficients were used to 
measure the correlation between drought variables in each country (Table 3). Coefficients closer to 1 
indicate stronger correlation between the two variables. The results show that the correlation 
coefficients among the three groups of variables in the five countries are all close to 1, which indicates 
that the variables in each group show strong positive correlation among the five Central Asian 
countries. Thus, these three drought variables are capable of establishing the joint distribution 
function using the Copula function, using which the drought characteristics of Central Asia will be 
analyzed. 

Table 3. Correlation coefficients for drought events (SPEI < −1, Dd > 2). 

Country Variable Kendall Spearman Pearson 

KAZ 
Ds_Dd 0.8446 0.9461 0.9635 
Ds_Dp 0.7073 0.8685 0.7714 
Dd_Dp 0.5799 0.7292 0.6244 

KGZ 
Ds_Dd 0.8476 0.952 0.9321 
Ds_Dp 0.6144 0.7971 0.7821 
Dd_Dp 0.4881 0.6343 0.6104 

TJK 
Ds_Dd 0.7797 0.8949 0.9177 
Ds_Dp 0.6684 0.852 0.7398 
Dd_Dp 0.4774 0.6195 0.5345 

TKM 
Ds_Dd 0.8214 0.9348 0.9463 
Ds_Dp 0.7515 0.9092 0.8637 
Dd_Dp 0.6009 0.7465 0.7396 

UZB 
Ds_Dd 0.8307 0.9428 0.9392 
Ds_Dp 0.6589 0.8411 0.8223 
Dd_Dp 0.5081 0.6691 0.663 

4.4. Selection of the Suitable Marginal Distribution 

Selecting a suitable marginal distribution function for each variable is required to effectively 
construct the Copula joint distribution function. In this study, the MVCAT toolbox is used to fit the 
drought variables, and the optimal marginal distribution functions are selected according to their 
ranking. The corresponding parameter values of each drought variables in each country are also 
obtained (Table 4). The Generalized Pareto function shows the highest frequency of occurrence, and 
most of the drought variables’ marginal distribution in five CA countries can be fitted by the 
Generalized Pareto function. Figure 6 shows the fitting map and Quantile-Quantile (Q-Q) plots of 
drought variables’ marginal distribution in Tajikistan in 1961–2017 as an example. 

 
Figure 6. Cont.



Water 2020, 12, 421 10 of 20
Water 2020, 12, 421 10 of 20 

 

 

 
Figure 6. The marginal distribution fitting map and Quantile-Quantile(Q-Q) plot of Tajikistan 
drought variables from 1961 to 2017. 

Table 4. Variables corresponding to the parameter of the distribution function. 

Country Variable Function Parameter Value 

KAZ 

Ds Generalized Pareto 
k −0.0224 

sigma 2.4403 
theta 1.0840 

Dd Generalized Extreme Value 
k 3.9801 

sigma 0.0447 
mu 2.0112 

Dp Generalized Pareto 
k −0.6429 

sigma 0.9199 
theta 0.5469 

KGZ 

Ds Generalized Pareto 
k −0.5616 

sigma 5.9238 
theta 1.0529 

Dd Generalized Pareto 
k −0.3638 

sigma 3.0777 
theta 2.0000 

Dp Weibull 
A 1.5963 
B 3.7680 

TJK 

Ds Inverse Gaussian 
mu 4.0423 

lambda 10.1465 

Dd Generalized Pareto 
k −0.0343 

sigma 1.8532 
theta 2.0000 

Dp Weibull 
A 1.4730 
B 3.4742 

TKM 
Ds Generalized Pareto 

k −0.3614 
sigma 4.6482 
theta 1.1508 

Dd Generalized Pareto k −0.3613 
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variables from 1961 to 2017.

Table 4. Variables corresponding to the parameter of the distribution function.

Country Variable Function Parameter Value

KAZ

Ds Generalized Pareto
k −0.0224

sigma 2.4403
theta 1.0840

Dd Generalized
Extreme Value

k 3.9801
sigma 0.0447

mu 2.0112

Dp Generalized Pareto
k −0.6429

sigma 0.9199
theta 0.5469

KGZ

Ds Generalized Pareto
k −0.5616

sigma 5.9238
theta 1.0529

Dd Generalized Pareto
k −0.3638

sigma 3.0777
theta 2.0000

Dp Weibull
A 1.5963
B 3.7680

TJK

Ds Inverse Gaussian
mu 4.0423

lambda 10.1465

Dd Generalized Pareto
k −0.0343

sigma 1.8532
theta 2.0000

Dp Weibull
A 1.4730
B 3.4742
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Table 4. Cont.

Country Variable Function Parameter Value

TKM

Ds Generalized Pareto
k −0.3614

sigma 4.6482
theta 1.1508

Dd Generalized Pareto
k −0.3613

sigma 3.0205
theta 2.0000

Dp Generalized Pareto
k −1.0268

sigma 1.5666
theta 0.5915

UZB

Ds Generalized Pareto
k −0.5339

sigma 4.9857
theta 1.3198

Dd Generalized Pareto
k −1.0902

sigma 5.4511
theta 2.0000

Dp Generalized Pareto
k −1.1119

sigma 1.3984
theta 0.7025

4.5. Selection of the Suitable Copula

The Gumbel, Frank and Clayton Copula functions are chosen to make up the pairwise 2D joint
distribution of Ds, Dd, and Dp; RMSE, NSE, and AIC values for each group of joint distribution are
calculated as well. The RMSE, NSE, and AIC values of the Copulas are expressed in Table 5. For a
particular Copula function, the smaller the AIC value of the objective function value, the closer of the
RMSE value is to 0, and the closer of the NSE value is to 1, the better the Copula function simulates.
According to this criterion, the suitable Copula functions for each group of variables in the five CA
countries are selected and highlighted in bold form (Table 5). This table shows that the Frank and
Gumbel Copulas are the most suitable Copula functions of the 2D joint distribution in most cases.

Table 5. The selection of 2D Copula function.

Country Variable Copula RMSE NSE AIC

KAZ

Ds_Dd
Clayton 0.9298 0.7366 −156.2280
Frank 0.7457 0.8306 −174.3191

Gumbel 0.7351 0.8354 −175.4919

Ds_Dp
Clayton 0.2717 0.9741 −257.0927
Frank 0.2663 0.9751 −258.7414

Gumbel 0.2743 0.9736 −256.3116

Dd_Dp
Clayton 0.7951 0.7665 −169.0555
Frank 0.7236 0.8066 −176.7816

Gumbel 0.7117 0.8129 −178.1461

KGZ

Ds_Dd
Clayton 1.2267 0.5461 −137.8186
Frank 0.5826 0.8976 −200.3612

Gumbel 0.8258 0.7943 −171.0600

Ds_Dp
Clayton 0.7382 0.8227 −180.4771
Frank 0.2641 0.9773 −266.8354

Gumbel 0.3603 0.9578 −240.7421

Dd_Dp
Clayton 0.8359 0.7642 −170.0342

Frank 0.5547 0.8962 −204.4800
Gumbel 0.6748 0.8464 −188.0256
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Table 5. Cont.

Country Variable Copula RMSE NSE AIC

TJK

Ds_Dd
Clayton 1.1952 0.6482 −166.6986
Frank 0.5054 0.9371 −249.3316

Gumbel 0.7851 0.8482 −207.0471

Ds_Dp
Clayton 0.2545 0.9811 −315.2014
Frank 0.2214 0.9857 −328.5633

Gumbel 0.2754 0.9778 −307.6053

Dd_Dp
Clayton 0.8561 0.7886 −198.7347
Frank 0.5341 0.9177 −244.0251

Gumbel 0.6778 0.8675 −221.1546

TKM

Ds_Dd
Clayton 1.1895 0.5898 −153.6809
Frank 0.5849 0.9008 −217.5698

Gumbel 0.7816 0.8229 −191.4803

Ds_Dp
Clayton 0.4255 0.9499 −246.2095
Frank 0.2889 0.9769 −281.0619

Gumbel 0.5783 0.9074 −218.5873

Dd_Dp
Clayton 0.9722 0.7158 −171.8403
Frank 0.6091 0.8884 −213.9126

Gumbel 0.8070 0.8042 −188.6022

UZB

Ds_Dd
Clayton 1.5078 0.3384 −124.4172
Frank 0.9986 0.7098 −159.8492

Gumbel 1.4814 0.3613 −125.9320

Ds_Dp
Clayton 0.3246 0.9664 −256.5018
Frank 0.2912 0.9729 −265.8340

Gumbel 0.4650 0.9310 −225.5920

Dd_Dp
Clayton 1.1280 0.5810 −149.3705
Frank 0.9410 0.7084 −164.9586

Gumbel 1.1206 0.5865 −149.9416

The 2D joint distribution probability can only represent the relationship and probability of two
drought variables. However, in order to describe and analyze the drought risk more comprehensively,
it is essential to set up the multi-dimensional joint distribution of the drought variables. Therefore,
the three-dimensional (3D) symmetric Copula is selected to construct the correlation structure of
3D drought variables. The parameters are calculated using the inverse Kendall parameter method
and listed in Table 6. Since the smaller the parameter value, the better the fit of the model, all
the drought variables in the five countries use the Gumble symmetry function to construct the 3D
correlation structure.

Table 6. The selection of 3D Copula function.

Parameter Gumble Frank Clayton

KAZ 4.078 14.38 6.155
KGZ 3.702 12.78 5.404
TJK 3.156 10.59 4.312

TKM 4.043 14.27 6.085
UZB 3.624 12.49 5.248

4.6. Drought Risk Probability Assessment

The joint probability of the Copula function is used as the evaluation index of drought risk and is
analyzed using the 2D and 3D joint distribution probabilities of the drought variables as follows:

(1) 2D Joint Distribution Functions
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Firstly, in order to more clearly depict the probability distribution for each drought-variable group,
the detailed probability distribution structure of the drought variables (Ds-Dd, Ds-Dp, Dd-Dp) in
Tajikistan, which is located in the upstream CA territory, were taken as the example to be displayed
in Figure 7. As shown in Figure 7, the 2D joint probability (drought risk) of the drought variables in
three groups were different from each other. Specifically, the Ds-Dd joint probability was distributed
centrally above 0.1, the Ds-Dp joint probability was distributed between 0.01 and 0.2, and the Dd-Dp
joint probability was evenly distributed between 0.01 and 0.9.
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Furthermore, the comparison results of the 2D joint distribution probability of the three groups
of drought variables in the five CA countries are shown in Figure 8. It reveals that the 2D joint
distribution probability of Ds-Dd, Ds−Dp, and Dd-Dp in the five countries showed similar changing
trends. They decreased first and increased again, indicating that the drought risk of the five countries
in CA was low in the period from 1980 to 1989 and increased significantly from 1990 to 2017. The joint
distribution probability value increased significantly from the mid-1980s to the end of the 1990s, and
the value was much higher after 2000 compared to that in the previous period. It indicates that the
drought risk in CA became larger in recent decades. Particularly, in the period from 1980–1989 to
the period 1990–1999, the drought risk in Kazakhstan increased dramatically in all three 2D joint
distribution probability groups, and the probability in the joint distribution of Ds and Dd reached
0.748, which was much higher than that of other countries.
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(2) 3D Joint Distribution Functions

In order to obtain comprehensive drought risk information, the 3D joint distribution probability
is set up with the three drought variables. Based on Ds, Dd, and Dp, the correlation structure of
drought variables in the five countries is constructed using the Gumbel symmetry Copula function
(Table 2), and the drought risk (3D joint probability) value is obtained (Figure 9). Further drought risk
assessment is discussed as follows.Water 2020, 12, 421 15 of 20 
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The average trend shows that the drought risk probability of the five countries declined significantly
from the mid-1970s to the mid-1980s, and then increased dramatically until around 2005. The change
of drought risk is also consistent with the analyses in the 2D joint distribution: the five CA countries
have proceeded from moderate drought risk to slight drought risk and then to severe drought risk
during the period from 1961 to 2017. From 2000–2009 to 2010–2017, the probability of drought risk
in Turkmenistan changed from the highest to the lowest in the five countries, but five countries did
not change much on average. It indicates that, although the drought risk in some parts of CA has
increased since the 21st Century, the overall drought risk trend is relatively stable. Particularly, the
drought risk probability in Kazakhstan fluctuated greatly, with the highest value of 0.649 in the 1990s
and the lowest value of 0.155 in the 1980s.

4.7. Drought Event Return Period

The drought event return period is a significant component of drought risk analysis. This paper
calculates the return period of all drought events as defined by three-dimensional drought variables
for all four types of drought (slight, moderate, severe, and extreme) those last more than two months.
The results are displayed in Figure 10. Specifically, the return period of all types of drought events
defined by three-dimensional Ds, Dd, and Dp was about 80% probability in 2 years, 15% in 2–10 years,
and 5% in more than 10 years.
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5. Discussion

5.1. The Application of Copula Function

Many studies have studied the characteristics of drought in CA [1–4], but no one has analyzed
the risk of drought in CA from the perspective of probability. This study first assessed drought risk
based on the joint distribution of multiple drought variables using MVCAT, which is an applicable and
useful tool to construct the 2D Copula [51,54]. This study therefore provides a meaningful reference on
MVCAT for actual drought risk analysis. Using the Copula function to compute the joint distribution
probability of drought variables as a regional drought risk index has been proposed in previous
research [55]. In this paper, we choose three common functions of symmetrical Archimedes functions,
which are used in many studies [11–17], but no such attempt has been applied in CA. Therefore, this
paper has provided a useful attempt for the application of a Copula function to drought risk analysis
in CA for risk mitigation and water resource management. In addition, we selected other Copula
functions, including asymmetric Copula functions, and compared the results to explore the different
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expressions for joint distribution probability of drought variables, and to establish higher dimensional
Copula functions to respond to the drought risk from different levels.

5.2. The SPEI and Run Theory

In this paper, based on the CRU data, three drought variables (drought duration, drought severity,
and drought peak) were defined based on SPEI-3 and Run Theory. It is clear that different time scales
of the SPEI lead to different drought event definitions [34,56]. SPEI−3, used here, reflects seasonal
changes and can extract sufficient drought variable series to meet the requirement of Copula data size;
thus, it is recommended to use SPEI−3 for joint distribution analysis by Copulas in CA. In addition,
applications of different time scales of the SPEI [34] and the integration of other drought variables
(such as drought interval) for the purpose of drought risk analysis can also be further studied in future
work. Many studies have used Run Theory to identify the variables of drought events [6,8,57,58],
but the determination of the relevant thresholds and its duration are not the same [8,59]. Long-term
and low-intensity drought events can cause serious damage [60]; however, most related studies do
not focus on this issue. This paper performed a preliminary optimization of Run Theory, but a more
precise definition needs to be further studied.

5.3. The Comparison between our Findings and Previous Studies

Firstly, the spatial distribution of drought frequency is consistent with the results of Guo [3] and
Rumer [61] in this study. On top of that, the analytical findings of this research revealed that the drought
risk in Kazakhstan from 1990 to 1999 is relatively high. On the one hand, this phenomenon may be due
to meteorological and socio-political conditions [1,3,19,24]. The collapse of the Soviet Union occurred
in 1991, within that period. After their disintegration, the CA countries underwent great political and
economic changes, and the water resources once managed and dispatched begun to compete in various
countries; in addition, the problem of cross-border water broke out strongly during that time [4].
On the other hand, this phenomenon may have been influenced by the country’s boundary [62] since
Kazakhstan is the largest of the five CA countries. In addition, in the selection of the marginal fitting
function of the drought variable, our findings were similar to the fitting function used in the arid
region of Northwest China [63]. Since the arid region of Northwest China and the study area of this
article belong to central Asia, the climate and environmental conditions are very close. Therefore, this
reflects that the results of this article are more reasonable. Finally, in the selection of Copula functions,
the three functions we have selected have also been used in arid regions [14]. The drought risk in the
three-dimensional joint distribution is similar to the analysis using the two-dimensional distributions,
which also verified the rationality of the selection of the 3D Copula function in this study.

6. Conclusions

In this paper, based on CRU data, three drought variables (Ds, Dd and Dp) were defined based
on SPEI-3 and Run Theory. Their joint probability was constructed using the Copula function as the
evaluation index of drought risk in the five CA countries. The drought risk in CA in the past half
century is analyzed, and the findings are as follows:

(1) By calculating the 1, 3, 6, 9, and 12-month scale of SPEI, it is found that climatic conditions were
relatively stable during 1961–1974 and 1979–1995, while they varied more from 1974 to 1979 and
from 1995 to 2017, during which the five CA countries experienced recurrent drought. With the
increase of the time scale, the frequency and severity of drought events began to decrease, but the
drought duration gradually became prolonged.

(2) The severity of drought in CA is greater in the west than in the east, and the duration of drought
is spatially contrasted with the severity of drought. In areas with high (low) drought severity,
the drought duration is also high (low). The drought events in CA are mainly severe; moderate
droughts are less common, and extreme droughts mainly occurred in central Kazakhstan.
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(3) For drought risk analysis based on multi-dimensional joint probability of drought variables, the
drought risk in the three-dimensional joint distribution is similar with the analyses using the
two-dimensional joint distribution. The five CA countries have gone from moderate drought risk
to slight drought risk and then to severe drought risk from 1961 to 2017. Furthermore, the return
period of drought events, defined by three-dimensional Ds, Dd, and Dp, was calculated at about
80% probability in 2 years, 15% of 2–10 years, and 5% for more than 10 years.
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