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Abstract: Although river water quality monitoring (WQM) networks play an important role in
water management, their effectiveness is rarely evaluated. This study aims to evaluate and optimize
water quality variables and monitoring sites to explain the spatial and temporal variation of water
quality in rivers, using principal component analysis (PCA). A complex water quality dataset from
the Freiberger Mulde (FM) river basin in Saxony, Germany was analyzed that included 23 water
quality (WQ) parameters monitored at 151 monitoring sites from 2006 to 2016. The subsequent results
showed that the water quality of the FM river basin is mainly impacted by weathering processes,
historical mining and industrial activities, agriculture, and municipal discharges. The monitoring
of 14 critical parameters including boron, calcium, chloride, potassium, sulphate, total inorganic
carbon, fluoride, arsenic, zinc, nickel, temperature, oxygen, total organic carbon, and manganese
could explain 75.1% of water quality variability. Both sampling locations and time periods were
observed, with the resulting mineral contents varying between locations and the organic and oxygen
content differing depending on the time period that was monitored. The monitoring sites that were
deemed particularly critical were located in the vicinity of the city of Freiberg; the results for the
individual months of July and September were determined to be the most significant. In terms of
cost-effectiveness, monitoring more parameters at fewer sites would be a more economical approach
than the opposite practice. This study illustrates a simple yet reliable approach to support water
managers in identifying the optimum monitoring strategies based on the existing monitoring data,
when there is a need to reduce the monitoring costs.

Keywords: cost-effectiveness; optimization; spatial and temporal variations; water quality monitoring
network design; monitoring costs

1. Introduction

Rivers are the main inland freshwater source for domestic, industrial, and agricultural purposes [1].
As a result of the deleterious effects of human activities and population growth, about one-third of the
river stretches in Latin America, Africa, and Asia have been affected by severe pathogen contamination,
and one-seventh by organic pollution [2]. Additionally, natural processes such as precipitation, erosion,
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and weathering of crustal materials can also contribute to the impairment of water quality in rivers [1,3].
In European water bodies, the emphasis on chemical water quality assessment has shifted to trace
contaminants [4]. As a result, over 50% of all European Union rivers, including all rivers in some
countries, fail to achieve a good chemical state [5]. To protect and properly manage the rivers, the
monitoring of water quality is critical [6,7]. Water quality monitoring (WQM) is defined as the effort to
obtain quantitative information on the physical, chemical, and biological characteristics of water bodies
via representative sampling [6]. In view of the spatial and temporal variations in hydrochemistry
of rivers, regular monitoring programs are required for reliable estimates of the water quality [1].
This often results in complex datasets of various physicochemical variables, which do not always
easily convey meaningful information [8,9]. Researchers have highlighted two main reasons for this
“data-rich, but information-poor” syndrome: (a) unclear defined monitoring objectives [8,10,11] and
(b) lack of specific methods to design WQM networks [10,12].

Previous studies used a variety of methods to assess and optimize the water quality monitoring
networks in rivers, including artificial neural networks [13,14], genetic algorithm [15,16], and
simple descriptive statistical analysis [17]. These methods seek to identify the water quality
parameters, monitoring frequencies, number of samples and location of monitoring sites. According
to Nguyen et al. [18], among the available methods, multivariate statistics are the most widely-used
techniques to assess the variability of water quality and the efficiency of water quality monitoring
networks worldwide. Principal component analysis (PCA) has been a particularly popular method to
extract important information from the complicated datasets, with studies dating back to the 1930s [19].
In the field of water quality research, PCA and factor analysis (FA) were usually applied together
to identify critical water quality parameters that are responsible for temporal and spatial variations
of river water quality [20–27]. However, the application of PCA to identify principal water quality
monitoring stations was rarely reported in the literature. Some studies that used PCA for this purpose
include Ouyang [28], who used PCA to evaluate the effectiveness of ambient monitoring stations on
St. Johns River in Florida, USA, and Wang et al. [29] who combined PCA/FA with cluster analysis
to implement the selection of the principal monitoring sites for Tamsui river in Taiwan. Although
both these studies indicated the potential of improving the efficiency and economy of the monitoring
network [28] through the reduction of monitored parameters and stations, the cost-effectiveness of the
proposed monitoring network has not been specifically quantified and deciding upon an optimum
option for the monitoring network remains a challenge.

In this study, we aim to identify the relevant water quality parameters and monitoring stations
that are responsible for the spatial and temporal variations of basin-wide river water quality. For this
purpose, a thorough analysis of the complex water quality data collected from the Freiberger Mulde
river basin in eastern Germany was conducted using PCA. Based on this analysis, we propose a
different and simple approach to quantify the “information” of the monitoring network, alongside the
visualization and interpretation of the PCA outcomes. This study also intends to provide an adoptable
approach to evaluate the trade-offs between information provided by the monitoring network and the
expenses of the monitoring activities.

2. Materials and Methods

2.1. Study Area

Freiberger Mulde (FM) is a 124-km long siliceous river with a catchment area of 2985 km2 [30]. It is
the headstream of the three main tributaries of the Mulde River, which is one of the important western
tributaries of the Elbe River in Germany. Running northwest and rising from the Ore Mountains in
Czech Republic, the FM river has been historically polluted with heavy metals due to both geogenic
and human activities, especially by ore mining [31]. Even now, the river basin is still considered a
major source of heavy metals to the Elbe River [30].
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The monitoring program for surface water of the FM river basin is under the context of Water
Framework Directive (WFD) and aims at collecting the data for a status assessment of biological,
chemical, and physicochemical water quality elements. A total of 463 water quality parameters
have been monitored in the FM river basin since 1999, including general physiochemical parameters,
industrial pollutants, pesticides, herbicides, and pharmaceuticals. The monitoring network in the FM
river basin is comprised of 364 measuring points, 27 measuring points of which are on the mainstream
of the FM River and an additional 337 measuring points are on the tributaries of its river network
(Figure 1).
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Figure 1. Location map of the study area with number of sampling events per water quality monitoring
(WQM) site during the monitoring period of 2006 to 2016 on the Freiberger Mulde river basin in
eastern Germany.

2.2. Data Selection and Preparation

The monitoring data for the FM river basin, which have been collected by the Free State of Saxony
since 1999 and which are freely accessible on their water quality database platform, were used for
this research [32]. The process of preparing the dataset for the application of multivariate statistical
analysis consisted of selecting water quality variables and monitoring stations, while minimizing
the missing values. The water quality parameters that were considered for current analysis include
chemical and physiochemical elements that explain the catchment processes, such as the influence
of both the drainage basin and local environmental conditions. For this reason, long-term and
frequently-monitored parameters were prioritized. Parameters with data availability of less than 30%
or with censored data comprising more than 15% (concentrations below the detection limits and/or
below the quantitation limits of the analytical methods) were excluded. The records under the censor
limits were replaced by half of the detection limits and/or quantitation limits. According to the United
States Environmental Protection Agency [33], this percentage of censored data is acceptable for a
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substitution method. The soluble concentrations in total water samples were used for the analysis.
Maps of the river basin and monitoring stations were also obtained via Saxony’s open access on
geodata portal [34].

The selection of monitoring stations was based on the availability of monitoring data. In this
study, we considered the monitoring stations that had at least three years of monitoring data and
12 sampling events (Figure 1). The continuity of the monitoring years was not necessarily required,
because the variables were assumed to be independent and identically distributed.

2.3. Principal Component Analysis

Principal component analysis (PCA) is a popular multivariate statistical technique used for
dimension reduction [35]. PCA provides information on the most meaningful variables, thus describing
the whole dataset and rendering data reduction with a minimum loss of the original information [1].
PCA transforms the original variables into new, uncorrelated variables called the principal components
(PCs) [36]. The calculation to obtain PCs is given in Abdi and Williams [19]. In this study, PCA is
implemented based on the correlation matrix. In instances where the variables are highly correlated, the
first few principal components may be sufficient to describe most of the variability of the dataset [37].
The importance of a component is reflected by its eigenvalue. PCs with eigenvalues less than one
are commonly recommended to be ignored [1,22,38]. To strengthen the interpretation, PCs with
eigenvalues more than one are subjected to the varimax rotation, which generates rotated components
(RCs). RCs further simplify the data structure coming from PCA [1,22]. The varimax rotation technique
prevents multiple variables from being loaded to a single component, allowing for easy interpretation
of significant variables [24]. Because these rotations are performed in a subspace, the new rotated
components explain less variance than the original principal components, but the total variance remains
the same after rotation [19].

In PCA, the correlations between a variable and a component are loadings, which estimate the
information that they share. For interpretation, variables that have absolute values of loadings greater
than or equal to 0.7 are strongly correlated, from 0.5 to 0.7 are moderately correlated, and less than 0.5
are weakly correlated to the component [1,22]. In other words, the larger the loading values, the more
important that variable is to explain the component. The length of the projection of the observations on
the components are factor scores. The importance of an observation for a component can be obtained
by the ratio of the squared factor score of this observation to the sum of squared factor scores of
all observations in the component [19]. This ratio is called contribution of the observation to the
component. Details of the equations to calculate loadings, factor scores, and observation contributions
can be found in Abdi and Williams [19]. For a given component, the sum of the contributions of all
observations is equal to 1. Thus, the larger the value of the contribution, the more the observation
contributes to explaining the component [19]. In this study, the observation contributions in percentage
are used to calculate the importance of the monitoring sites in explaining the spatial variability and
importance of the monitoring months in explaining temporal variability of the water quality. On each
component, the contribution of a monitoring site is calculated as the sum of the contributions of
all observations on that site during the whole monitoring period. Similarly, the contribution per
monitoring month is calculated as the sum of contributions of all observations of all sites on that
month. The variance explained by a monitoring site at any component is quantified by the product of
its contribution and the variance explained by the selected component.

PCA is carried out in R software, and varimax rotation is implemented on R package psych [39].
The factor scores, loadings, and contribution of observation can be directly extracted using R package
FactoMineR [40]. Map visualizations of PCA’s results are implemented on QGIS (version 2.18.16)
software [41].
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3. Results and Discussion

3.1. Data Screening and Descriptive Statistics

A thorough review of the existing dataset revealed that the timing of the sample collection was
routine and not intended to capture any specific event. Of the monitoring sites of small tributaries,
some were dismissed in 2006 and some were added after 2007. Only the main river and big tributaries
such as Zschopau, Flöha, Gimlitz, Pockau, and Hüttenbach have been monitored long enough to
obtain continuous data series from 1999 to 2016. This could be a result of the WFD implementation in
Germany, where one of the WFD-mandated deadlines for “setting up networks and putting them into
operation” was December 2006 [42]. For this reason, the monitoring period considered in this study is
restricted to 2006–2016.

Although more than 80 water quality parameters were screened, only 23 parameters were selected
based on the criteria mentioned in Section 2.2. After the initial screening, the selected database included
7541 sampling events covering 23 parameters at 151 monitoring sites, for a period of 11 years (2006 to
2016). A descriptive statistics summary with the percentages of censored data is presented in Table 1.
The monitoring sites cover the large streams of Freiberger Mulde, Zschopau, Große Striegis, Flöha,
Bobritzsch, Aschbach, and 75 other smaller tributaries. It is noted that most of the parameters do not
follow normal distribution with high standard deviation and skewness, with the exceptions of oxygen
and temperature (Table 1). For principal component analysis, non-normal data is log-transformed and
then standardized to zero mean and unit of variance to avoid misclassification arising from different
scales and units of the monitored variables.

Table 1. Statistical summary of 23 analyzed water quality parameters in the Freiberger Mulde river
basin from 2006 to 2016.

Parameter Unit Mean SD Median Min Max Skew Kurtosis Censor
Data (%)

Arsenic µg/L 7.69 26.62 2 0.21 480 9.84 117.64 3

Barium µg/L 50.76 25.46 46 3 480 6.22 82.29 0

Bicarbonate (HCO3
−) mg/L 55.34 52.23 39 0 560 2.67 9.98 3.1

Boron µg/L 32.87 46.36 22 2.83 1000 7.81 91.14 0.4

Calcium (Ca2+) mg/L 30.62 22.37 25 2.1 180 2.13 5.75 0

Chloride (Cl−) mg/L 31.21 33.53 23 1.1 1500 13.24 497.14 0

Dissolved organic carbon
(DOC) mg/L 3.74 3.02 3.1 0.35 65 6.32 68.79 0.5

Fluoride mg/L 0.26 0.36 0.2 0.04 10 9.1 140.36 1.09

Magnesium (Mg2+) mg/L 7.8 5.23 6.2 0.8 50 2.14 5.41 0

Manganese µg/L 98.85 523.2 20 0.71 8400 9.62 101.35 0.5

Nickel µg/L 3.56 6.23 2.2 0.35 95 6.12 44.76 6.1

Nitrate (NO3
−) mg/L 20.12 12.63 18.5 0.49 100 0.68 0.23 0

Oxygen mg/L 10.86 1.51 10.7 2.3 16.9 −0.08 0.71 0

pH (-) 7.36 0.5 7.4 4.3 9.8 −1.7 6.9 0

Potassium (K+) mg/L 4.53 6.59 3.4 0.4 360 24.15 1146.83 0

Sodium (Na+) mg/L 20.65 26.67 15 1.2 1000 10.67 268.96 0

Sulphate (SO4
2−) mg/L 51.5 40.49 39 7 550 3.81 21.85 0

Temperature ◦C 9.36 4.99 9.4 −1.1 26.4 0.14 -0.75 0

Total inorganic carbon (TIC) mg/L 9.62 9.92 6.45 0.35 100 2.72 10.37 1.2

Total organic carbon (TOC) mg/L 4.63 4.66 3.7 0.35 120 9.12 149.02 0.3

Total organic nitrogen (TON) mg/L 0.9 0.87 0.6 0.07 15 2.73 17.05 9.3

Turbidity TE/F 7.87 25.45 3.4 0 1100 22.91 781.86 0.6

Zinc µg/L 187.9 1203.27 13 2.12 21000 11.05 140.11 6.4
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3.2. Characterized Water Quality Parameters and Sources Identification Based on Factor Loadings

The results of the principal component analysis for the data matrix of (7541 observations ×
23 variables) in the FM river basin are shown in Table 2. There are five principal components (PCs)
with the eigenvalue more than one, explaining 75.1% of the water quality variability (Figure 2). PC1 is
strongly and positively correlated to HCO3

−, Ca2+, Cl−, Mg2+, K+, Na+, SO4
2−, Boron and TIC and

moderately correlated to NO3
− and TON. The sources of these ionic concentrations may have multiple

origins: rainfall, weathering of silicate and carbonate minerals, dissolved minerals contained in some
sedimentary rocks, or leaching from the soil surface during rainstorms [43]. The first PC represents
the weathering process and explains 37.6% of the total water quality variability in the river basin.
The second component accounts for 12.9% of the observed data variability and has strong negative
loadings on zinc and moderate loadings on nickel, fluoride, and arsenic. These trace metals and
anions appear naturally in river waters through the weathering of minerals and also anthropogenically
through the mixing of industrial effluents into the river streams and non-point pollution sources [44].
Taking into account the historical mining activities in the FM river basin [30], the major sources of PC2
are likely related to abandoned mines in the Ore Mountains. The third component explains 11.9%
of the total variance and has negative strong loadings on dissolved organic carbon and total organic
carbon and positive moderate loadings on turbidity and NO3

−. PC3 represents organic matter, which
could originate from the natural decomposition of organic material, as well as anthropogenic activities
including agriculture and domestic wastewater discharges [45]. PC4 shows the inverse relationship
between temperature and oxygen, representing the seasonal effects and explaining 7.4% of the variance.
PC5 accounts for only 5.3% of the data variability and does not show strong or moderate correlation to
any variable.
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Figure 2. Eigenvalues and cumulative variance explained for 23 principal components from principal
component analysis (PCA).

To strengthen the interpretation, varimax rotation was applied for the first five principal
components and resulted in a new set of loadings (Table 2). For the first four components, PCA and
varimax-rotated PCA gives the same interpretation of the hidden factors that affect the water quality
variability of the FM river basin. The first rotated component (RC) links to the major ions and total
inorganic carbon but only explains 34.9% instead of 37.6% of the data variability. RC2 also relates
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to mining activities and weathering processes, but with strong loadings on arsenic and fluoride and
moderate loading on zinc, it explains only 11.2% of the total variance. RC3 conveys the same strong
correlation to organic carbon and turbidity and accounts for 11.4% of the observed variability. RC4
shows the seasonal effects with strong positive loading on temperature and negative loading on oxygen,
which explains 9% of the total variance. It is only on the fifth component that the varimax rotation
shows a strong loading of manganese and moderate loadings of nickel and zinc and this explains
8.7% of the total variance. Therefore, the sources of RC5 could also be the weathering processes and
the historic mining activities. In combining the results from PCA and varimax rotation, the major
sources of surface water quality variation in FM river include weathering process, mining activities,
agriculture, seasonality, and wastewater effluents. For the first five components, 75.1% of the variance
can be explained by 18 parameters: HCO3

−, Ca2+, Cl−, Mg2+, K+, Na+, SO4
2−, Boron, TIC, Arsenic,

Zinc, Nickel, Fluoride, DOC, TOC, Temperature, Oxygen, and Manganese. Notably, PCA does not
give a substantial data reduction with more than 78% of the parameters (18 out of 23) to explain 75.1%
of the data variation.

Table 2. Loadings of the variables on the first five components according to PCA and
varimax-rotated PCA.

Parameters
PCA Varimax-Rotated PCA

PC1 PC2 PC3 PC4 PC5 RC1 RC3 RC2 RC5 RC4

Arsenic 0.31 −0.52 −0.27 0.37 0.35 0.09 0.01 0.8 0.03 0.23
Barium 0.34 0.03 0.23 0.17 0.36 0.35 −0.12 0.26 −0.34 −0.07

Bicarbonate 0.88 0.34 0.03 0.02 −0.01 0.88 0.2 −0.03 −0.17 0.19
Boron 0.81 −0.17 −0.12 0.04 0.1 0.7 0.16 0.4 0.1 0.15

Calcium 0.91 0.03 0.25 −0.06 −0.19 0.95 −0.08 0.01 0.13 0.08
Chloride 0.9 −0.17 0.12 −0.06 0.06 0.87 0.01 0.32 0.12 −0.01

DOC 0.11 0.38 −0.77 −0.31 0.15 −0.02 0.92 −0.06 −0.05 0.09
Fluoride 0.35 −0.63 −0.2 0.23 0.33 0.14 −0.03 0.82 0.15 0.09

Magnesium 0.83 0.02 0.28 −0.08 −0.36 0.89 −0.15 −0.12 0.24 0.11
Manganese 0.22 −0.55 −0.32 −0.44 −0.34 0.13 0.22 0.18 0.81 −0.09

Nickel 0.19 −0.67 −0.11 −0.1 −0.2 0.08 −0.1 0.38 0.62 0.00
Nitrate 0.58 0.1 0.5 −0.09 0.13 0.69 −0.23 0.00 −0.18 −0.23
Oxygen −0.29 −0.12 0.48 −0.66 0.36 −0.12 −0.11 −0.07 −0.02 −0.93

pH 0.6 0.47 0.17 0.02 0.29 0.66 0.16 −0.04 −0.49 −0.02
Potassium 0.89 0.03 −0.09 0.00 0.13 0.82 0.24 0.29 −0.03 0.12

Sodium 0.89 −0.09 −0.03 −0.07 0.15 0.82 0.18 0.35 0.05 0.02
Sulphate 0.84 −0.11 0.11 −0.12 −0.35 0.84 −0.03 0.01 0.36 0.13

Temperature 0.33 0.14 −0.47 0.69 −0.22 0.15 0.14 0.15 −0.1 0.9
TIC 0.88 0.3 0.08 0.05 −0.02 0.89 0.13 −0.01 −0.16 0.19
TOC 0.12 0.36 −0.81 −0.34 0.15 −0.02 0.96 −0.04 −0.02 0.09
TON 0.55 0.1 −0.17 −0.14 0.12 0.5 0.33 0.13 −0.02 0.01

Turbidity 0.38 0.09 −0.5 −0.29 −0.07 0.28 0.6 0.01 0.23 0.1
Zinc 0.18 −0.84 −0.11 −0.1 0.14 0.03 −0.09 0.69 0.51 −0.17

Eigenvalue 8.646 2.973 2.743 1.703 1.214 8.027 2.632 2.565 2.062 1.993
Variance 0.376 0.129 0.119 0.074 0.053 0.349 0.114 0.112 0.09 0.087

Cumulative Variance 0.376 0.505 0.624 0.698 0.751 0.349 0.463 0.575 0.665 0.751

Values in bold are strong loadings, values in italic are moderate loadings.

PCA does not explicitly account for the redundancy of correlated variables. To further reduce
the number of monitoring parameters, Pearson’s correlation coefficients for all 23 parameters were
computed for the entire monitoring period (Figure 3). If the correlation coefficient is between 0.9
and 1 (or −0.9 and −1), the two variables are highly correlated and can be represented by a linear
relationship. Thus, for the paired variables that have correlation coefficients of more than 0.9, one of
them could be discarded to reduce the redundancy of the information, e.g., Cl− − Na+ (0.92), HCO3

−

− TIC (0.96), Ca2+
−Mg2+ (0.92), and DOC − TOC (0.94), with the variable of higher loading on the

principal component being kept. Consequently, combining the PCA results and Pearson correlation
analysis, four parameters (Na+, HCO3

−, Mg2+, DOC) can be further discarded. As a result, 14 variables
(Boron, Calcium, Chloride, Potassium, Sulphate, TIC, Fluoride, Arsenic, Zinc, Nickel, Temperature,
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Oxygen, TOC, and Manganese) now explain 75% of the total variance, and therefore, should remain
under observation.
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3.3. Spatial and Temporal Variability of Water Quality Based on the Contribution of Observations

Variation of water quality is captured and represented by sampling points (geographical or
pollution effect) and sampling months (seasonal effect) [20]. In this study, the contributions of
monitoring sites were used to visualize the spatial variation of water quality in the FM river basin
(Figure 4). For a given component, the value of contributions in percentage are summed up to 100, with
the variance explaining the monitoring sites summed up to the variance explained by that component.
One percentage of contribution is recommended as the threshold to decide if a monitoring site is
critical on a specific component. As such, 25 monitoring sites contribute more than one percent to
PC1. They are located mostly on the upstream tributaries (16 sites) and partly on the FM river and
its small first-order streams (9 sites). These monitoring sites make up 23% out of 37.6% of variance
explained by the first component. The weathering process is therefore spatially dependent and plays
an important role in the upstream and mainstream of the FM river basin in explaining the water quality
variance. The second component shows higher contributions in three places: Wilisch (in the upper
west of the river basin) and Roter Graben and Münzbach streams, which are close to Freiberg city
where abandoned mines and heavy industries are located. On the contrary, monitoring sites where
organic matter was observed showed that this component was homogenously distributed across the
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river basin, with only minor variations being observed. Notably, the highest contribution site to PC3
(10.1%) is located on Lampertsbach, which is a 5.6-km long stream running through the populated area
of Cranzahl and connected to the Sehma river. The second-highest contribution site of organic matter
was shown to be on the Schwarze Pockau, derived from bog-water in the Ore Mountains. Like PC3,
the fourth component (PC4) was evenly distributed among the monitoring sites, with a maximum
deposit of only 1.75% on Zschopau river, again showing that temperature and oxygen contribute to
minor spatial variations. The most relevant sites for measuring the fifth component (PC5) are located
on the Graben and Münzbach streams, with both being affected by mining discharges from Freiberg
city industry.

The temporal variability of each principal component was analyzed according to the monthly
contributions of each observed component, and calculated using the total amount of observations.
The contribution per component over a 12 months period was summed up to 100%; if each month
shows an equal contribution, the period of time sampled shows a negligible impact on that component.
A fluctuation in contributions over several months indicated that the component is subjected to
temporal variation, with a higher contribution suggesting the influence of the time period. Figure 5
shows the contribution over the entire monitoring period of 12 months (January to December) for
the first five components. The first component (PC1) remains almost constant over the 12 months,
with a minor contribution shift observed during the cold season of November to March, potentially
because the rate of chemical weathering decreases with the decreasing temperature [46]. This also
indicates the minor influence of the sampling months on the mineral contents in the FM river basin.
For the second component, a weak point is shown during warm periods, accompanied by a peculiar
pattern of higher and lower contributions, differing from month to month, with low contributions in
even months and high contributions in odd months. While the reason for this oscillating contribution
remains unclear, the observations suggested that the monitoring schemes favored odd months over
even months. The fluctuations in components three and four are quite similar: in PC3, the maximum
variation of organic matter is observed in July (12.1%), which is almost twice the contribution of April
(5.6%) and December (5.9%). The higher contribution of organic matter from June to September could
be related to lower and more variable flow during summertime. In PC4, the extreme warm (July to
September) and cold months (January to March) play a bigger role than the milder months of April,
May, and October in demonstrating the variation. The fifth component resembles patterns of the first
and second component, with less seasonal variation of manganese in the FM river basin.

Based on the contributions of observations from PCA, the mineral contents (major ions) in
the FM river basin are mainly impacted by sampling locations rather than seasonality. In contrast,
sampling months play a more important role in explaining the variation of organic matter, temperature,
and oxygen than sampling locations. Both monitoring schemes and locations influence the heavy
metals variation in the FM river basin. Temporally, July and September contribute the most and
December the least in explaining the data variability. As an implication, monitoring strategies should
focus more on the warmer months to capture the most variability of water quality in the FM river
basin. The significance of discharge variability for concentration variability should be further studied.
Spatially, areas close to Freiberg city and to the upper west of the river basin are the hotspots in terms
of heavy metals and mineral contents in explaining the water quality variations.
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3.4. Cost-Effectiveness of Proposed Water Quality Monitoring Network Based on PCA Results

Although the principal component analysis helped to identify the critical factors, variables, and
monitoring sites that explain the water quality variability, this information still does not constitute
a criterion to decide if the proposed variables and sites present the optimum options. This section
strives to provide a solution to this problem by quantifying the cost-effectiveness of the monitoring
network based on the results from PCA. According to Harmancioglu, et al. [10], a possible way
of measuring the benefits of monitoring practice can be the information conveyed by the collected
data. This study was conducted under the assumption that the “effectiveness” or the “information”
of a monitoring network corresponds to the water quality variance deriving from the monitoring
data collected. The information is therefore equivalent to the variance explained by the principal
components: specifically, if only strong loading parameters on the first component (Ca2+, Cl−, Mg2+,
K+, Na+, SO4

2−, Boron, and TIC) are monitored for all monitoring sites, then only 37.6% of water quality
variability is preserved. Cumulatively, if all 10 strong loading variables on PC1 and PC2 are monitored
(at all 151 monitoring sites), then the monitoring network retains 50.5% of its information. Depending
on the monitoring requirement, the water managers can select the parameters for observations on
specific components accordingly.

Monitoring costs in the state of Saxony are program-based and the monitoring prices of different
parameters are not available. Therefore, we estimated the monitoring costs based on the 2019 services’
price list of Brandenburg, another State in Germany that neighbors Saxony [47]. These estimations
include the cost of transportation (for an average of 10 monitoring sites per day), sampling, and
laboratory analysis. Detailed prices are given in Table 3. If only the laboratory cost was considered,
monitoring of organic matter (PC3), temperature and oxygen (PC4), and inorganic contents (PC1)
would be more economical compared to the heavy metals (PC2 and PC5), with the percentage of
information achieved per euro being 0.71, 0.68, 0.58, and 0.19, respectively. Furthermore, monitoring of
all 23 variables appeared to be less economical than monitoring the 14 critical variables of the first
five components.
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Table 3. Price in euro for transportation, sampling, and laboratory analysis according to Brandenburg services price list in 2019.

Items Related Principal
Component Price (Euro) Analytical Method Price per Principal

Component (Euro)
Variance Per Principal

Component (%)
Information Per
Price (%/Euro)

Total inorganic carbon PC1 16.8 †

64.6 37.6 0.58
Boron PC1 19.7 DIN EN ISO 17294-2 2005-02 (E 29)

Chloride, Sulphate, Calcium,
Sodium, Potassium, Fluoride,

Magnesium, Nitrate
PC1 28.1 * DIN EN ISO 10304-1:2009-07 (D 20)

Arsenic PC2 19.7 DIN EN ISO 17294-2 2005-02 (E 29)

59.1 12.9 0.22Zinc PC2 19.7 DIN EN ISO 17294-2 2005-02 (E 29)

Nickel PC2 19.7 DIN EN ISO 17294-2 2005-02 (E 29)

Total organic carbon PC3 16.8 DIN EN 12260:1996 (H 34)IN EN 1484:
1997-08 (H 3) 16.8 11.9 0.71

Temperature PC4 1.9 DIN 38404 Teil 4 (C4)
10.9 7.4 0.68

Oxygen PC4 9 EN 25814:1992 (G22) DIN 3840-G23

Manganese PC5 28.1 DIN 38406-E Serie 28.1 5.3 0.19

First 5 PCs 179.5 75.1 0.42

pH All PC 9 DIN 38404-5:2009-07 (C5)

290 100 0.34

Turbidity All PC 9 DIN EN ISO 7027: 2000-04

Barium All PC 19.7 DIN EN ISO 17294-2 2005-02(E 29)

DOC All PC 35.4 DIN EN 1484: 1997-08 (H 3)

Bicarbonate All PC 1.9 DEV D8: 1971

TON All PC 35.4 DIN EN 1484: 1997-08 (H 3)

Transportation from 1 km to 100 km 152

Sampling with basic efforts 35.1

* price for all the listed parameters at one analysis; † price is assumed to be equivalent to TOC.



Water 2020, 12, 420 13 of 21

Each monitoring site has a different contribution to a component to explain the total variance; the
variance explained by a monitoring site i on j components, denoted vi, j, is calculated as:

vi, j = ctri,1 × v1 + ctri,2 × v2 + . . .+ ctri, j × v j (1)

where ctri, j is the contribution of monitoring site i on component j, and v j is the variance explained by
j-th component. The variance explained by monitoring sites on each component is given in Annex 1.
According to the monitoring variables and number of monitoring sites, sampling and monitoring costs
are estimated for one monitoring event. To quantify the cost at different levels of information achieved,
the monitoring costs were estimated for five scenarios:

PC1: monitoring of six variables strongly correlated to PC1 (Ca2+, Cl−, K+, SO4
2−, Boron, and TIC)

and obtaining 37.6% of information accordingly;
PC1,2: monitoring of 10 variables strongly correlated to PC1 and PC2 (Ca2+, Cl−, K+, SO4

2−, Boron,
TIC, Fluoride, Arsenic, Zinc, Nickel) and obtaining 50.5% of information accordingly;

PC1,3,4: monitoring of nine variables strongly correlated to PC1, PC3, and PC4 (Ca2+, Cl−, K+, SO4
2−,

Boron, TIC, TOC, temperature, oxygen) and obtaining 56.9% of information accordingly;
PC1-5: monitoring of 14 variables correlated to the first five components (Ca2+, Cl−, K+, SO4

2−, Boron,
TIC, Fluoride, Arsenic, Zinc, Nickel, TOC, Oxygen, Temperature, Manganese) and obtaining
75.1% of information accordingly; and

All PC: monitoring of all 23 variables and obtaining 100% of the information.

An adaptation from the cost-effectiveness plane illustrating the information and the costs of
different monitoring options is shown in Figure 6. Monitoring sites are in descending order based on
their contributions to the variance explained (given in Appendix A) for calculating cumulative variance.
The cost-effectiveness plane in our case consists of four-quadrants: high information—low cost, high
information—high cost, low information—high cost, and low information—low cost. Five strategies of
variable selection according to the variance explained by principal components are also displayed in
the same diagram (Figure 6). The current monitoring practice of 23 variables at 151 monitoring sites
would give 100% of information on data variability at estimated 51,507 euro per monitoring event
(equivalent to 100% cost). A reduction of monitoring sites or WQ variables would result in a decrease
in the information achieved as well as the monitoring costs. As such, monitoring of six variables of PC1
(Ca2+, Cl−, K+, SO4

2−, Boron, and TIC) at 151 sites would cost 17,487 euro (40% of the total cost) but
would only give 37.6% of the information. Monitoring the 10 variables of PC1 and PC2 (Ca2+, Cl−, K+,
SO4

2−, Boron, TIC, Fluoride, Arsenic, Zinc, Nickel) at 151 sites would explain 50.5% of the information
at the cost of 26,411 euro (~51.2% compared to the total cost). The PC1 curve lies completely in the
low information—low cost quadrant, while the PC1,2 curve exceeded 50% of the cost at 148 sites.
Combination of three components (PC1,3, and 4) with cost-effective variables explained 57% of the
data variability at the cost of 21,669 euro for all sites, which provides more information at less cost than
the combination of PC1 and 2. The high laboratory costs of heavy metals made the cost of PC1,2 curve
increase faster than the information added, as compared to the PC1 and PC1,3,4 curves. Although
the curves of PC1-5 and All PC expand in three quadrants, it is deemed more effective to monitor
more variables at fewer sites than the opposite practice. For example, to achieve 75.1% of information,
measuring 14 variables at 151 sites would cost 34,837 euro while monitoring all variables at 72 sites
provides the same amount of information and would only cost 24,616 euro. It is noteworthy that the
strategies all parameters (All PC), main parameters (PC1-5), and cost-effective parameters (PC1,3,4)
perform similarly: up to 45% information, although they differ in their emphasis on number of sites
versus number of parameters. Other options with different level of cost and information achieved can
be compared easily using the rank of monitoring sites in Annex 1 and price list in Table 3.

The most challenging aspect of this approach is the selection of the representative variables on the
principal components. In this study, strong loading variables (loadings > 0.7) with low correlation
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coefficient (<0.9) were selected; by ignoring other variables, part of the variance explained would
certainly be lost. In addition, the input for PCA requires no missing data; thus, this approach is
data-dependent and only applicable when a decision must be made to remove monitoring sites
or WQ parameters. The quantification of information based on the variance explained limits the
objective of the designed monitoring network to the determination of changes in water quality only,
without consideration of other specific objectives such as trend detection and compliance monitoring.
Finally, the cost estimation was simplified for one monitoring event without consideration of other
fixed and operational costs of a monitoring program. In order to curb these limitations and provide
a more effective monitoring network design, future research should consider the quantification
of multi-objectives monitoring network (data quality, information accuracy, statistical methods,
monitoring costs, stakeholder views, social factors, etc.) and monitoring frequencies.
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Figure 6. The cost-information plane for different monitoring strategies. PC1 (37.6%)—monitoring 6
water quality variables at one to 151 sites, PC1,2 (50.5%)—monitoring 10 variables at one to 151 sites,
PC1,3,4—monitoring 9 variables at one to 151 sites, PC1-5 (75.1%)—monitoring 14 variables at one to
151 sites, and All PC (100%)—monitoring 23 variables at one to 151 sites.

4. Conclusions

This study demonstrates the usefulness of principal component analysis (PCA) in analyzing the
complex dataset to address the water quality management in rivers. PCA proves to be useful for
the analysis of 11-year irregular monitoring data from the Freiberger Mulde (FM) river basin, which
is comprised of 23 water quality parameters and 151 monitoring sites. A combination of PCA and
Pearson’s correlation analysis allowed for identification of 14 critical parameters that are responsible
for explaining 75.1% of data variability in the river basin. Weathering processes, historical mining,
wastewater discharges, and seasonality are the main causes of the river water quality variability.
The contributions calculated from factor scores are very insightful in interpreting spatial and temporal
sources of water quality variations. As such, heavy metals are impacted by both sampling locations
and sampling time. Specifically, Wilisch (in the upper west of the river basin), Roter Graben, and
Münzbach streams, which are close to the Freiberg city, appear to be the best selections for monitoring
of heavy metals. Monitoring of those significant sites is recommended to guarantee the continuity
of effective water quality monitoring in the future. The mineral contents play an important role in
explaining the water quality variations of the FM river basin and are impacted more by the sampling
locations than the sampling months. The variation of organic matter, oxygen, and temperature, in
contrast, are more dependent on the sampling months rather than the sampling locations, with July
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and September contributing to the highest variability in water quality. Temporarily, five major factors
explaining water quality of the FM river basin vary the most in July and September and the least in
December, hence the future monitoring scheme should concentrate more on the warmer months.

This work establishes a simple quantification of the cost-effectiveness framework of the monitoring
networks based on PCA results for the FM river basin. Under the current monitoring-intense conditions,
preserving monitoring variables rather than sites seems to be more economical than the opposite
practice. To achieve 75% of variance, it is recommended to monitor 23 parameters at 72 monitoring
sites, rather than monitoring 14 parameters at 151 monitoring sites, with the first option resulting in a
cost decrease of 20% compared to the second option. Different variable selection strategies increase in
significance depending on the requirement for substantial cost reductions. Up to 40% of information
can be retained for less than 15% of current costs, at either 21 sites with all variables or 31 sites with the
main variables (PCs 1-5), or 50 sites with more economical variables (PCs 1,3, and 4). This approach is
restricted to quantify the basin-wide variability of water quality based on the previously established
water quality variables and sampling sites. Further quantification of monitoring frequencies still needs
to be specified in order to assess the effectiveness of the monitoring network. Often, monitoring intends
to assess the state or development of a water body. Objectives such as trend detection or compliance
assessment require other evaluation criteria, rather than information explained. The monitoring costs
in this study were estimated only based on laboratory, transportation, and sampling costs, but the costs
of the whole monitoring program can be easily incorporated into the presented approach if the data of
monitoring period, frequencies, and other costs (logistics, personnel, maintenances, etc.) are available.
This approach may support water managers and practitioners in selecting the optimum monitoring
sites and variables through a rational understanding of the dynamic sources of water quality, when
there is a need to reduce the monitoring costs.
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Appendix A

Table A1. The variance (in percentage) explained by each monitoring site on selected
principal components.

Site River PC1 PC2 PC3 PC4 PC5 PC1,2 PC1,3,4 PC1-5 All PCs

OBF31301 Freiberger Mulde 0.206 0.015 0.125 0.092 0.059 0.222 0.424 0.498 0.689

OBF31302 Zethaubach 0.066 0.037 0.054 0.032 0.004 0.102 0.151 0.192 0.283

OBF31303 Helbigsdorfer Bach 0.032 0.078 0.037 0.048 0.009 0.110 0.117 0.205 0.296

OBF31400 Freiberger Mulde 0.081 0.041 0.076 0.043 0.036 0.122 0.200 0.277 0.422

OBF31500 Freiberger Mulde 0.094 0.011 0.053 0.036 0.040 0.105 0.183 0.234 0.573

OBF31510 Freiberger Mulde 0.156 0.059 0.052 0.030 0.046 0.215 0.238 0.343 0.650

OBF31520 Freiberger Mulde 0.042 0.039 0.012 0.009 0.010 0.081 0.063 0.112 0.182

OBF31530 Stangenbergbach 0.075 0.220 0.042 0.012 0.045 0.295 0.130 0.395 0.544

OBF31540 Hüttenbach 0.312 0.069 0.071 0.032 0.038 0.381 0.415 0.522 0.793

OBF31600 Freiberger Mulde 0.181 0.198 0.037 0.040 0.027 0.379 0.258 0.483 0.806
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Table A1. Cont.

Site River PC1 PC2 PC3 PC4 PC5 PC1,2 PC1,3,4 PC1-5 All PCs

OBF31601 Kleinwaltersdorfer Bach 0.020 0.011 0.023 0.056 0.010 0.031 0.100 0.121 0.213

OBF31610 Freiberger Mulde 0.212 0.073 0.019 0.023 0.035 0.285 0.255 0.362 0.429

OBF31700 Freiberger Mulde 0.739 0.255 0.070 0.070 0.112 0.994 0.880 1.246 1.510

OBF31701 Freiberger Mulde 0.178 0.049 0.017 0.008 0.028 0.227 0.204 0.281 0.333

OBF31710 Freiberger Mulde 0.215 0.039 0.028 0.017 0.029 0.253 0.260 0.328 0.395

OBF31711 Pitzschebach 0.151 0.013 0.057 0.089 0.118 0.164 0.298 0.428 0.686

OBF31800 Freiberger Mulde 0.189 0.035 0.021 0.024 0.023 0.224 0.233 0.291 0.346

OBF31801 Marienbach 0.178 0.035 0.043 0.045 0.041 0.212 0.266 0.342 0.442

OBF31900 Freiberger Mulde 0.195 0.034 0.022 0.024 0.022 0.229 0.241 0.297 0.358

OBF31950 Freiberger Mulde 0.182 0.029 0.029 0.031 0.015 0.211 0.241 0.285 0.357

OBF32000 Freiberger Mulde 0.462 0.065 0.070 0.076 0.038 0.527 0.608 0.711 0.859

OBF32001 Gärtitzer Bach 0.598 0.083 0.043 0.074 0.063 0.682 0.715 0.862 1.005

OBF32201 Görnitzbach 0.790 0.247 0.170 0.086 0.059 1.036 1.046 1.351 1.571

OBF32202 Schickelsbach 0.347 0.062 0.075 0.036 0.042 0.409 0.458 0.562 0.690

OBF32203 Polkenbach 0.559 0.143 0.050 0.063 0.045 0.702 0.672 0.860 0.991

OBF32204 Polkenbach 0.334 0.055 0.019 0.047 0.052 0.389 0.399 0.507 0.598

OBF32205 Fritzschenbach 0.365 0.064 0.073 0.072 0.070 0.429 0.511 0.645 0.778

OBF32206 Schanzenbach 0.493 0.232 0.217 0.088 0.086 0.726 0.798 1.117 1.299

OBF32300 Freiberger Mulde 0.251 0.032 0.092 0.092 0.057 0.282 0.434 0.523 0.742

OBF32600 Chemnitzbach 0.079 0.035 0.115 0.044 0.022 0.114 0.237 0.294 0.406

OBF32601 Voigtsdorfer Bach 0.087 0.005 0.063 0.026 0.008 0.092 0.176 0.189 0.342

OBF32700 Grosshartmannsdorfer Bach 0.064 0.110 0.096 0.081 0.011 0.175 0.242 0.363 0.568

OBF32750 Gimmlitz 0.293 0.027 0.116 0.067 0.008 0.320 0.476 0.511 0.657

OBF32800 Gimmlitz 0.100 0.048 0.105 0.043 0.015 0.148 0.249 0.312 0.452

OBF32900 Münzbach 2.102 0.153 0.243 0.089 0.206 2.255 2.434 2.793 3.363

OBF32901 Münzbach 0.223 0.391 0.157 0.063 0.045 0.613 0.442 0.878 1.398

OBF32903 Münzbach 0.349 0.050 0.039 0.024 0.038 0.399 0.413 0.501 0.728

OBF33010 Roter Graben 0.157 1.909 0.055 0.054 0.675 2.066 0.266 2.849 3.273

OBF33020 Roter Graben 0.414 1.154 0.035 0.054 0.425 1.568 0.504 2.082 2.405

OBF33090 Bobritzsch 0.033 0.003 0.245 0.103 0.017 0.036 0.381 0.401 0.699

OBF33100 Bobritzsch 0.018 0.048 0.086 0.060 0.073 0.066 0.164 0.285 0.515

OBF33111 Dittmannsdorfer Bach 0.180 0.040 0.066 0.046 0.005 0.219 0.291 0.336 0.465

OBF33200 Bobritzsch 0.051 0.061 0.100 0.106 0.100 0.112 0.257 0.418 0.657

OBF33300 Sohrbach 0.018 0.018 0.042 0.042 0.015 0.036 0.101 0.134 0.455

OBF33400 Colmnitzbach 0.023 0.017 0.033 0.048 0.020 0.040 0.105 0.142 0.234

OBF33500 Rodelandbach 0.039 0.015 0.071 0.061 0.007 0.054 0.170 0.193 0.319

OBF33601 Erbisdorfer Wasser 0.046 0.063 0.058 0.035 0.007 0.109 0.139 0.210 0.350

OBF33650 Grosse Striegis 0.007 0.064 0.052 0.005 0.093 0.071 0.065 0.222 0.296

OBF33701 Oberreichenbacher Bach 0.025 0.031 0.059 0.043 0.019 0.055 0.126 0.176 0.255

OBF33702 Schirmbach 0.007 0.011 0.030 0.046 0.005 0.018 0.083 0.099 0.207

OBF33703 Kemnitzbach 0.014 0.024 0.120 0.056 0.011 0.038 0.190 0.225 0.406

OBF33710 Grosse Striegis 0.041 0.009 0.032 0.035 0.005 0.051 0.108 0.123 0.254

OBF33711 Langhennersdorfer Bach 0.057 0.037 0.045 0.034 0.007 0.094 0.136 0.181 0.243

OBF33713 Aschbach 0.058 0.029 0.027 0.068 0.037 0.088 0.154 0.220 0.468

OBF33800 Grosse Striegis 0.096 0.012 0.061 0.066 0.008 0.108 0.223 0.243 0.422

OBF33900 Grosse Striegis 0.249 0.027 0.085 0.093 0.010 0.276 0.427 0.464 0.676

OBF34101 Pahlbach 0.043 0.025 0.037 0.035 0.028 0.069 0.116 0.169 0.287

OBF34200 Kleine Striegis 0.178 0.054 0.034 0.056 0.006 0.232 0.267 0.328 0.425

OBF34300 Klatschbach 0.506 0.104 0.085 0.107 0.015 0.611 0.698 0.818 1.219

OBF34390 Geyerbach 0.271 0.340 0.006 0.006 0.050 0.611 0.283 0.673 0.831
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Table A1. Cont.

Site River PC1 PC2 PC3 PC4 PC5 PC1,2 PC1,3,4 PC1-5 All PCs

OBF34400 Zschopau 1.173 0.049 0.097 0.022 0.023 1.222 1.292 1.364 1.553

OBF34401 Geyerbach 0.158 0.338 0.057 0.058 0.013 0.496 0.273 0.625 0.719

OBF34403 Greifenbach 0.271 0.165 0.052 0.083 0.012 0.437 0.407 0.584 0.699

OBF34404 Greifenbach 1.937 0.322 0.326 0.021 0.039 2.258 2.283 2.644 3.170

OBF34405 Zschopau 0.203 0.015 0.028 0.008 0.009 0.218 0.239 0.262 0.352

OBF34409 Zschopau 0.043 0.038 0.043 0.030 0.013 0.081 0.117 0.167 0.260

OBF34601 Hüttenbach 0.124 0.046 0.112 0.107 0.103 0.170 0.343 0.492 0.690

OBF34700 Zschopau 0.016 0.013 0.026 0.022 0.011 0.029 0.064 0.088 0.135

OBF34701 Venusberger Dorfbach 0.056 0.010 0.067 0.032 0.005 0.066 0.155 0.171 0.282

OBF34710 Zschopau 0.006 0.007 0.016 0.014 0.009 0.013 0.036 0.053 0.079

OBF34801 Dittmannsdorfer Bach 0.009 0.014 0.052 0.027 0.005 0.023 0.089 0.108 0.183

OBF34802 Schwarzbach 0.010 0.010 0.085 0.028 0.040 0.021 0.124 0.174 0.272

OBF34890 Zschopau 0.013 0.010 0.029 0.035 0.016 0.023 0.077 0.103 0.155

OBF34900 Zschopau 0.024 0.025 0.058 0.050 0.022 0.049 0.132 0.179 0.287

OBF34901 Eubaer Bach 0.382 0.020 0.052 0.046 0.007 0.403 0.479 0.507 0.673

OBF34910 Zschopau 0.026 0.019 0.053 0.072 0.035 0.045 0.151 0.206 0.321

OBF35001 Mühlbach 0.016 0.020 0.051 0.026 0.032 0.036 0.093 0.145 0.231

OBF35002 Lützelbach 0.181 0.017 0.019 0.040 0.008 0.199 0.240 0.266 0.365

OBF35003 Holzbach 0.132 0.013 0.036 0.034 0.013 0.146 0.203 0.229 0.308

OBF35101 Ottendorfer Bach 0.097 0.028 0.038 0.046 0.011 0.125 0.181 0.220 0.306

OBF35102 Altmittweidaer Bach 0.339 0.050 0.061 0.076 0.011 0.390 0.476 0.538 0.685

OBF35103 Auenbach 0.103 0.048 0.036 0.041 0.010 0.151 0.180 0.239 0.320

OBF35200 Zschopau 0.041 0.020 0.090 0.078 0.024 0.061 0.209 0.252 0.390

OBF35251 Schweikershainer Bach 0.151 0.059 0.054 0.063 0.016 0.210 0.267 0.343 0.445

OBF35252 Richzenhainer Bach 0.324 0.092 0.069 0.066 0.012 0.416 0.459 0.564 0.736

OBF35253 Richzenhainer Bach 0.595 0.034 0.055 0.073 0.056 0.629 0.723 0.813 0.998

OBF35254 Gebersbach 0.340 0.084 0.089 0.069 0.051 0.425 0.498 0.634 0.834

OBF35255 Eulitzbach 0.374 0.059 0.137 0.089 0.094 0.433 0.599 0.752 1.012

OBF35257 Mortelbach 0.222 0.072 0.028 0.030 0.006 0.294 0.280 0.358 0.456

OBF35258 Mortelbach 0.182 0.027 0.055 0.096 0.048 0.209 0.333 0.408 0.688

OBF35310 Zschopau 0.008 0.004 0.017 0.010 0.005 0.012 0.035 0.044 0.070

OBF35350 Zschopau 0.075 0.063 0.137 0.130 0.042 0.138 0.341 0.447 0.683

OBF35391 Rote Pfütze 0.007 0.119 0.025 0.016 0.149 0.126 0.047 0.315 0.445

OBF35400 Rote Pfütze 0.110 0.009 0.077 0.041 0.008 0.119 0.228 0.245 0.358

OBF35490 Sehma 1.355 0.013 0.088 0.057 0.020 1.368 1.500 1.533 1.736

OBF35600 Sehma 0.100 0.024 0.025 0.019 0.003 0.124 0.143 0.171 0.223

OBF35601 Lampertsbach 1.127 0.320 1.209 0.117 0.019 1.446 2.453 2.791 3.774

OBF35602 Lampertsbach 0.119 0.007 0.007 0.009 0.003 0.125 0.135 0.145 0.216

OBF35650 Sehma 0.046 0.020 0.014 0.007 0.003 0.066 0.067 0.090 0.142

OBF35800 Sehma 0.070 0.036 0.056 0.064 0.053 0.106 0.190 0.279 0.572

OBF35802 Sehma 0.102 0.193 0.023 0.077 0.003 0.295 0.201 0.397 0.565

OBF36000 Pöhlbach 0.051 0.023 0.035 0.014 0.007 0.074 0.101 0.130 0.289

OBF36100 Pöhlbach 0.031 0.007 0.021 0.014 0.009 0.038 0.066 0.081 0.207

OBF36200 Pöhlbach 0.037 0.019 0.055 0.055 0.008 0.056 0.147 0.173 0.442

OBF36300 Pöhlbach 0.026 0.012 0.058 0.035 0.007 0.038 0.119 0.138 0.266

OBF36400 Pressnitz 1.101 0.015 0.078 0.031 0.048 1.116 1.210 1.274 1.572

OBF36402 Steinbach 0.262 0.024 0.036 0.038 0.013 0.285 0.335 0.372 0.494

OBF36403 Haselbach 0.384 0.011 0.024 0.028 0.004 0.394 0.436 0.450 0.629

OBF36404 Sandbach 0.015 0.019 0.040 0.021 0.010 0.033 0.076 0.104 0.200

OBF36450 Pressnitz 0.122 0.004 0.018 0.012 0.002 0.126 0.151 0.158 0.189
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Table A1. Cont.

Site River PC1 PC2 PC3 PC4 PC5 PC1,2 PC1,3,4 PC1-5 All PCs

OBF36500 Pressnitz 0.292 0.022 0.075 0.056 0.014 0.314 0.423 0.458 0.598

OBF36600 Jöhstädter Schwarzwasser 0.553 0.023 0.047 0.039 0.015 0.575 0.639 0.677 0.952

OBF36601 Jöhstädter Schwarzwasser 0.230 0.014 0.028 0.031 0.004 0.243 0.288 0.306 0.396

OBF36700 Rauschenbach 0.118 0.029 0.079 0.028 0.014 0.147 0.225 0.268 0.435

OBF36793 Wilisch 0.036 0.091 0.085 0.057 0.046 0.126 0.178 0.315 0.444

OBF36794 Wilisch 0.131 0.874 0.032 0.060 0.010 1.004 0.224 1.107 1.469

OBF36795 Wilisch 0.029 0.287 0.022 0.029 0.006 0.316 0.079 0.372 0.520

OBF36797 Wilisch 0.015 0.062 0.048 0.031 0.017 0.077 0.094 0.173 0.238

OBF36800 Wilisch 0.065 0.116 0.051 0.110 0.060 0.182 0.227 0.404 0.714

OBF36801 Jahnsbach 0.022 0.017 0.066 0.040 0.006 0.039 0.127 0.151 0.259

OBF36803 Jahnsbach 0.271 0.192 0.015 0.062 0.005 0.463 0.349 0.546 0.647

OBF36850 Flöha 0.787 0.024 0.034 0.022 0.006 0.811 0.843 0.873 0.997

OBF36911 Cämmerswalder Dorfbach 0.120 0.031 0.089 0.028 0.006 0.151 0.236 0.274 0.378

OBF36912 Mortelbach 0.098 0.031 0.073 0.032 0.006 0.129 0.203 0.241 0.355

OBF37000 Flöha 0.446 0.033 0.101 0.065 0.018 0.479 0.612 0.663 0.801

OBF37001 Rungstockbach 0.509 0.009 0.023 0.028 0.021 0.518 0.560 0.590 0.721

OBF37010 Flöha 0.236 0.015 0.057 0.049 0.011 0.251 0.342 0.368 0.499

OBF37101 Saidenbach 0.064 0.055 0.026 0.022 0.018 0.120 0.112 0.185 0.266

OBF37103 Saidenbach 0.064 0.079 0.058 0.046 0.020 0.143 0.168 0.267 0.359

OBF37104 Haselbach 0.167 0.076 0.064 0.038 0.019 0.243 0.269 0.364 0.475

OBF37105 Lautenbach 0.288 0.054 0.056 0.060 0.079 0.342 0.404 0.538 0.691

OBF37106 Röthenbach 0.118 0.043 0.057 0.054 0.015 0.161 0.229 0.287 0.371

OBF37300 Flöha 0.097 0.035 0.142 0.080 0.018 0.131 0.318 0.371 0.544

OBF37400 Schweinitz 0.479 0.025 0.220 0.074 0.012 0.504 0.773 0.810 0.990

OBF37401 Seiffener Bach 0.023 0.013 0.030 0.074 0.061 0.037 0.127 0.201 0.325

OBF37404 Seiffener Bach 0.006 0.033 0.066 0.125 0.008 0.038 0.197 0.237 0.353

OBF37450 Natzschung 0.300 0.003 0.030 0.013 0.002 0.303 0.343 0.349 0.390

OBF37500 Natzschung 1.465 0.024 0.178 0.079 0.010 1.489 1.722 1.756 1.970

OBF37600 Bielabach 0.039 0.049 0.043 0.025 0.009 0.089 0.107 0.165 0.251

OBF37800 Schwarze Pockau 0.908 0.012 0.351 0.051 0.007 0.919 1.310 1.328 1.503

OBF37910 Schwarze Pockau 1.196 0.022 0.423 0.089 0.009 1.219 1.708 1.740 1.976

OBF38000 Schwarze Pockau 0.149 0.063 0.220 0.071 0.052 0.212 0.440 0.555 0.725

OBF38100 Rote Pockau 0.024 0.033 0.084 0.025 0.046 0.057 0.133 0.212 0.300

OBF38101 Rote Pockau 0.058 0.179 0.032 0.026 0.001 0.237 0.115 0.295 0.337

OBF38190 Rote Pockau 0.001 0.118 0.013 0.032 0.006 0.118 0.046 0.170 0.210

OBF38200 Rote Pockau 1.732 0.025 0.436 0.050 0.017 1.757 2.219 2.260 2.695

OBF38201 Schlettenbach 0.088 0.015 0.020 0.034 0.034 0.103 0.143 0.192 0.305

OBF38400 Grosse Lössnitz 0.019 0.080 0.097 0.052 0.019 0.099 0.168 0.266 0.477

OBF38401 Gahlenzer Bach 0.025 0.027 0.049 0.045 0.022 0.052 0.120 0.169 0.304

OBF38402 Weissbach 0.058 0.049 0.055 0.040 0.073 0.106 0.153 0.274 0.469

OBF38500 Hetzbach 0.037 0.044 0.136 0.068 0.034 0.082 0.242 0.320 0.504

Total variance explained (%) 37.6 12.9 11.9 7.4 5.3 50.5 56.9 75.1 100

Values in bold show the important sites on the principal components. PC3-organic matter and PC4-seasonality
show a minor dependence on the sampling locations with the variance distributed quite homogenously among the
sites. On the first five components, contribution of a monitoring site can be calculated as the quotient of its variance
and the total variance explained by the component.
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