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Abstract: Numerical models are useful tools to analyze water quality by computing the concentration
of physical, chemical and biological parameters. The present work introduces a two-dimensional
depth-averaged model that computes the most relevant and frequent parameters used to evaluate
water quality. High performance computing (HPC) techniques based on graphic processing unit
(GPU) parallelization have been applied to improve the efficiency of the package, providing speed-ups
of two orders of magnitude in a standard PC. Several test cases were analyzed to show the capabilities
and efficiency of the model to evaluate the environmental status of rivers and non-stratified estuaries.
IberWQ will be freely available through the package Iber.

Keywords: computational fluid dynamics; depth-averaged modeling; water quality; environmental
quality standards; high performance computing (HPC); graphic processing unit (GPU); CUDA

1. Introduction

The application of Environmental Quality Standards (EQS) has become a widely used technique
to assess the status of surface water bodies. These standards are based on the spatial and temporal
evolution of certain variables and pollutants that might pose a significant risk to the environment
(temperature, salinity, fecal contamination, nutrients, dissolved oxygen, pH, etc.). The concentration
of these variables, which depends on the receiving waters, must be within a range of values to
protect the environment and the human health. More generally, not only the exceedance of a given
threshold should be controlled, but also the frequency and duration of those exceedance events.
Concentration-duration-frequency curves can be used to define the thresholds that should not be
exceeded to guarantee a correct environmental status [1-3].

In this context, numerical models have become valuable tools to help decision makers to evaluate
alternative measures and solutions for the control of sewage spills. Some of the most known and
used models for this purpose are the Water Quality Analysis Simulation Program (WASP) originally
developed by [4,5], the QUAL2K model [6] and the CE-QUAL-W2 model [7,8]. Since these models
assume different hydrodynamic approximations, their suitability is strongly dependent on the case
under study. QUAL2K is a 1D steady flow model for rivers that assumes that the flow is well-mixed in
the whole cross section. CE-QUAL-W?2 is a 2D laterally averaged model that solves the hydrodynamics
in the longitudinal and vertical direction, being therefore appropriate for rivers, reservoirs and estuaries
well-mixed in the lateral direction. WASP can solve 1D, 2D and 3D problems with a large variety
of pollutant types. However, this model needs to be linked with a hydrodynamic model to provide
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accurate flow velocities and water elevation. Many other codes have been used in the scientific
literature to model different water quality parameters in rivers and estuaries [9-13].

The model IberWQ was presented in [14] as a numerical tool for 2D water quality modeling in
rivers and non-stratified estuaries. Its use is especially adequate to simulate the mixing of effluents
when the flow is well mixed in the vertical direction. This model is integrated into the software package
Iber and is freely available at http://www.iberaula.com.

IberWQ is not a suitable tool to deal with flows with vertical stratification or with relevant
vertical gradients of velocity and concentration. In this context, it might be used as a complementary
tool to 3D near-field models as VisualPLUMES [15] or CORMIX [16]. It could also be integrated in
a hydrological-hydraulic modeling cascade approach [17] as a complementary tool of a basin-scale
water quality hydrological model as SWAT [18].

In its original version, IberWQ could be used to compute the spatial and temporal evolution of:
Escherichia coli, dissolved oxygen (DO), carbonaceous biochemical oxygen demand (CBOD), organic
nitrogen (org-N), ammoniacal nitrogen (NH3-N), nitrate-nitrite nitrogen (NO3-N), water temperature
(T) and salinity (S). The model solved one 2D depth-averaged advection-diffusion-reaction equation
for each water quality variable. The diffusion and advection by the mean flow were computed using
the velocity and water depth fields obtained from the hydrodynamic module of Iber, which solves
the 2D shallow water equations using an explicit finite volume solver [19].

An important limitation of IberWQ was the fact that it did not simulate variables as phosphorus,
phytoplankton and pH. However, these variables are relevant parameters that are often used to
evaluate the environmental status of water bodies. Phosphorus is a necessary nutrient for algae
and phytoplankton, which can be a limiting factor for plant growth. Neglecting phosphorus and
phytoplankton prevented the application of the model to evaluate eutrophication due to the excessive
concentration of nutrients (mainly nitrates and phosphates). pH is also an important water quality
indicator that should be inside a certain range to preserve the ecosystems. This parameter determines
the solubility of chemicals (e.g., metals are more soluble, and thus toxic, at lower pH values) and
the amount of nutrients that can be utilized by aquatic life [20].

Another practical limitation of IberWQ was the computational burden required to compute real
cases. Most studies imply the simulation of several water quality parameters over large spatial domains
and rather long time intervals. The implementation of water quality early warning systems also requires
very fast computational codes to immediately and effectively respond to hazardous events. As IberWQ
solves the conservation and water quality transport equations on a fine numerical grid, it requires
a high computational time (hours or days depending on the specific case). A natural way to overcome
this limitation is the implementation of HPC (high performance computing) techniques. This approach
had already been implemented for the hydrodynamic module of Iber [21] using GPU (graphical
processing unit) parallelization techniques. Due to these developments, the new implementation is
able to achieve speed-ups up to nearly two orders of magnitude.

This work presents an improved version of IberW(Q model that addresses the previously mentioned
limitations. The paper is organized as follows. First, the implementation of new water quality
parameters and the parallelization of the code are briefly described in Section 2. New variables include
organic phosphorus (org-P), phosphates (PO4-P), phytoplankton, inorganic carbon (inorg-C), alkalinity
and pH. Several examples showing the capabilities of the code and the speed-ups achieved in problems
with different computational burden are presented in Section 3. Finally, the conclusions are reported in
Section 4.

2. Model Structure and Equations

2.1. Model Structure

IberWQ consists of a set of routines that solve a series of unsteady 2D depth-averaged transport
equations for different water quality parameters. This includes advection by the mean flow, diffusion
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due to concentration gradients and reaction with other variables. Those routines are fully integrated
within the shallow water model Iber [19], which solves the 2D Saint-Venant equations including
turbulence. Thus, the resulting model for water quality and hydrodynamics is fully coupled.

Figure 1 shows the different species and biochemical reactions considered in the extension of
the IberWQ module presented in this paper. The new components considered in relation to [14]
are organic and inorganic phosphorus, phytoplankton, alkalinity and inorganic carbon. In addition,
the pH is computed as a function of inorganic carbon and alkalinity. Phytoplankton is represented as
the concentration of Chlorophyll-A (Chl-A), as commonly done in other water quality models [22].
Thus, in the case of computing phytoplankton the user must introduce the ratios between nitrogen,
phosphorus, carbon and Chl-A in order to evaluate the corresponding biochemical reactions.
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Figure 1. Model structure. Solid arrows indicate interactions between variables due to different
biochemical processes.

Inorganic carbon includes carbonates (CO%‘), bicarbonates (HCOj) and carbon dioxide (COy).
The three species were modelled together as total inorganic carbon dissolved in water. A posteriori
estimation of the concentration of each species was done as a function of pH (specific equations are
presented in Appendix B).

The whole model included therefore 14 water quality parameters that are commonly used to
evaluate the environmental status of rivers and estuaries (the 13 variables shown in Figure 1 plus
pH). The different model components can be activated or deactivated depending on the problem to
be solved. The kinetic constants of most of the biochemical reactions depend on water temperature
and salinity. In case that the temperature field is computed by the model, additional atmospheric
input data (time series of net solar and atmospheric radiation, air temperature, atmospheric relative
humidity and wind velocity) must be introduced by the user.
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2.2. Model Equations

A generic 2D depth-averaged advection-diffusion equation with reaction terms is solved for each
of the species considered in the model. In order to compute the advection terms, the water quality
module is linked to a hydrodynamic module that solves the 2D shallow water equations, given by:

%(h C) + (%(qxci) + aiy(qyci) = %(h ve%) + %(h vg%—(;) + Sih @)

where / is the water depth, z;, is the bed elevation (topography), (4x, gy) are the two components of
the unit discharge,

q| is the modulus of the unit discharge, C; is the depth-averaged concentration of
the species i (the available species are shown in Figure 1), S; is a generic reaction term for the species i,
p is the density of water, g is the gravity acceleration, 7 is the Manning coefficient and v, is the effective
viscosity computed using a depth-averaged turbulence model. The available turbulence models
include the k — ¢ model, a mixing-length model and a parabolic model, and are described in detail
in [23]. If the baroclinic pressure is activated in the simulation, the water density is computed from
the salinity and temperature fields. For this, the International One Atmosphere Equation of State of
Seawater [24] is employed. The total number of partial differential equations solved (1.;) depends on
the number of species considered on each specific test case (;), and it is equal to 1e; = 3 + n;.

The biochemical reactions considered for each species were modeled with the source terms S;.
Each solid arrow in Figure 1 represents a biochemical reaction and was modeled as a first order
reaction [22,25]. The formulations used to compute the different source terms are basically the same as
those used in well-known and extendedly used models such as WASP, QUAL-2K and CE-QUAL-W2,
which follow [22]. The details of the equations implemented in IberWQ are given in Appendices A
and B, while the model constants to be introduced by the user are detailed in Appendix C.

2.3. Numerical Solver

The 2D depth-averaged transport equations for each species were solved with an unstructured
finite volume solver, using a computational grid formed by triangular and quadrilateral elements.
The same finite volume mesh was used to solve the transport equations of the water quality species
and the hydrodynamic equations. Thus, the water depth (k) and the unit discharges (gx, g,) needed to
compute the advective fluxes in the scalar transport equations were obtained from the hydrodynamic
module of Iber. This module solved the 2D Saint Venant equations using an upwind Godunov scheme
with the approximate Riemann solver of Roe. In order to transfer the water velocity and depth from
the hydraulic module to the water quality advection—diffusion equations, the mass conservative scheme
detailed in [26] was used.

The advective terms can be discretized with either a first order upwind scheme [27] or a second
order upwind scheme. In particular, the Gamma scheme proposed in [28] was implemented in
the solver to obtain second order accuracy in space. Using this approach only implies an increase on
the CPU (Central Processing Unit) time of approximately 5-10%.
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2.4. Parallelization

In order to address the limitations in terms of efficiency of the Iber model, a new implementation
was developed. The new implementation, Iber+ onwards, was first presented in [21]. It was developed
in C++ using the object-oriented paradigm to improve the modularity and the maintenance of
the source code. Iber+ was parallelized for shared memory systems using OpenMP and for GPUs using
the Nvidia CUDA (Compute Unified Device Architecture) [29] platform. The GPUs are a cost-effective
solution to accelerate numerical models without the necessity of expensive HPC facilities. GPUs are
a solution available for servers, workstations and laptops. GPU computing is attractive not only
to reduce the computational time of the simulations but also to improve the time spent on design
and test cases. There are numerous cases of success in the literature for both meshless [30] and
mesh-based [31-34] codes. Iber+ features both CPU and GPU parallelization, however the focus of
the implementation is on GPU computing, so in this study only the GPU implementation is analyzed.
Iber+ is included in the official package of Iber since version 2.5 and can be downloaded without any
cost at http://www.iberaula.com. The new developments presented in this paper will be included in
the next release.

Originally developed exclusively for computer graphics, the GPUs feature a highly parallel
architecture that provides several TFLOPS (10'2 floating point operations per second) of computing
power in a single card [35]. This high-throughput hardware can be employed for general applications
due to the GPGPU (general processing graphics processing unit) APIs (application programming
interface), being Nvidia CUDA one of the most popular in scientific applications. CUDA exposes
the GPUs capabilities to programmers due to an extension to common programming languages like C,
C++ or Fortran. These extensions provide three abstractions to programmers: the thread hierarchy;,
shared memory and barrier synchronization [29].

The Nvidia GPUs feature a SIMT (single instruction multiple thread) architecture that issues
threads in groups of 32 named warps. Each warp is executed in parallel in a SM (stream multiprocessor).
All the threads in a warp execute the same instruction. If a branch instruction is processed, a divergence
starts in this case, the threads that follow one of the paths are stalled while the others are executed and
vice versa. Once the branch is finished, all the threads converge again. It is essential to consider this
peculiarity of the GPUs in order to achieve a high throughput. The algorithms should be revised to
avoid unnecessary branching and reorganize data to avoid divergence.

Discrete GPUs have their own memory, independent of the system memory. Data transfers should
be made from the system memory to the GPU’s memory, usually through the PCI-Express bus. These
data transfers can be a potential bottleneck due to the limited bandwidth and higher latency compared
with the system memory accesses. Figure 2 shows the flowchart of Iber+, the memory transfers
have been reduced as much as possible. The problem data is transferred before the simulation starts
and when it is necessary to write it to the hard disk. Only the current timestep of the simulation is
transferred on every loop iteration of the simulation. The write of the simulation state to the hard disk
can suppose an important part of the total run time, depending on the case and system configuration.
To reduce these times, data is written to disk in background by a thread separated from the main
execution thread. On the other hand, the data locality is essential in modern architectures to reduce
the cache miss rate and thus improve performance. For this, the elements of the mesh are reordered
using a space-filling curve, more specifically the Hilbert curve [36] was used for this purpose.
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Figure 2. Flowchart of the Iber+ implementation.

Global synchronization in GPUs is expensive, making some algorithms like reductions more
complicated than their CPU counterpart. In order to implement reductions efficiently, Iber+ employs
the library Nvidia CUB (CUDA unbound) [37].

Modern GPUs have significant performance differences when working with single or double
precision. The performance ratio single/double precision may vary from 1/2 for the Nvidia Tesla
V100 [35] targeted to the HPC market up to 1/32 for the Nvidia RTX 2080ti [38] targeted for the consumer
market. For this reason, most of the computations are performed in single precision. The use of double
precision is restricted to potentially sensitive variables like the simulation time or the computation
of distances.

For the implementation of the water quality module, an object-oriented approach was used. In
this way, new species can be easily added by implementing an abstract class without significantly
affecting the existing code.

3. Test Cases

In this section, four test cases were analyzed to illustrate the capabilities and performance of
IberWQ and its GPU implementation. For a detailed validation of the test cases the reader is addressed
to previous publications from the authors [14]. More information about the data sources used for
the cases analyzed can be found in Appendix F. All the cases were run in a workstation equipped with
an AMD Ryzen 7 2700X processor, 32 GB of RAM (random access memory) and an Nvidia RTX 2080ti
graphics card. The run time measurements were carried out using the execution time corresponding to
the simulation loop.
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3.1. Faecal Contamination in a Coastal Estuary

3.1.1. Description

The first test case simulated the concentration of fecal contamination in a coastal estuary. This
is a typical application of 2D depth-averaged water quality models [9,13,39-43] in which only one
species, E. coli, needs to be computed.

The model was applied to compute the concentration of E. coli in the coastal estuary of Ferrol,
located in the NW of Spain (Figure 3). The estuary extends over 32 km? with a relatively narrow and
elongated shape. The total length of the estuary is 17 km, while its width varies from 400 m to a couple
of kilometers in its widest part. Tidal ranges vary from 0.9 (neap tides) to 4.6 m (spring tides), being
freshwater inflows from rivers negligible. As we are using a 2D depth-averaged model, we assumed
well-mixed conditions over the water depth, which are characteristic of the autumn, winter and spring
seasons in this estuary [39].

B Il 1.83
-5.50

-12.84
-20.18
-27.52
-34.86
-42.20
-48.98
-54.63

TR

Figure 3. Bathymetry of the Ferrol estuary (NW, Spain). The sewage discharges are located at V1 and
V2, whilst the control points are placed at P1, P2 and P3.

Approximately six spring semi-diurnal tidal cycles were simulated (3 days), with an approximate
tidal range of 4.2 m. Two continuous sewage spills at different locations were considered. The first
one (V2 in Figure 3) is located in the narrowest region of the estuary, where the high water velocities
activate a rapid mixing with the receiving waters. The second one (V1 in Figure 3) is located in the inner
part of the estuary, where mixing and dispersion were slower due to the lower water velocity. Both
discharges were characterized by an E. coli concentration of 107 ¢fu/100 mL and a sewage discharge of
0.1 m%/s, both values were constant in time. Even though the model included the possibility of using
the formulation of Mancini to evaluate the degradation of E. coli, in this case we had fixed the value of
the degradation constant to 5.5 days™!, following previous studies performed in this estuary [44].

To perform the computations, the estuary was discretized with an unstructured computational
grid with 143,993 elements (with an average element size of 222 m?). The levels of E. coli were sampled
every 600 s with Iber and Iber+ at control points P1, P2 and P3.
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3.1.2. Results

The E. coli concentration was sampled at three control points (P1, P2 and P3 in Figure 3). Figure 4
compares the spatial distribution of E. coli in the estuary at different time steps for the CPU and GPU
implementations. The results obtained with Iber and Iber+ were virtually identical. The time series
of concentration at the three control points are shown in Figure 5 where no significant differences
could be observed. Furthermore, the time series of concentration obtained with the GPU and CPU
implementations were statistically compared in terms of the normalized root mean square deviation
(in %):

N 2
NRMSD — 100x — <MD pyyp — | Ziz (730
Ymax — Ymin N

where x; and y; are the values computed with Iber+ and Iber respectively for any variable of interest.

©)

t=20h t=40h t=60h

Iber+ GPU
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Il 2500
Bl 549.54
[]120.22
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Bl 5.75
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Iber

Figure 4. Comparison of Escherichia coli concentrations at different time steps obtained with Iber (CPU)

and Iber+ (GPU).
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Figure 5. Time series of E. coli concentration at control points P1 (a), P2 (b) and P3 (c), for the first
test case.

The average error, (NRMSD) = 0.07%, was calculated taking into account all variables at all control
points, supporting the good resemblance between series suggested by the visual comparison.

Table 1 shows the performance measurements for the first test case. This was the best case for
GPU implementation because it had the largest mesh (143,993 elements) among the cases under study.
GPU computing implied a certain overhead, mainly due to memory transfers and kernel launch latency.
The higher the GPU workload the less significant the overhead will be. In this case Iber took more
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than 16 h to complete the simulation whilst Iber+ could run the same problem in less than 6 min. This
implied a speedup of 181.

Table 1. Performance measurements obtained for the first test case (estuary of Ferrol).

. . Millions of Cells
Model Run Time (s) Time per Step (ms) per Second Speedup vs. Iber
Iber 60,545 66.8 2.2 1
Iber+ GPU 335 04 400.0 181

3.2. Organic Matter Contamination in an Estuary

3.2.1. Description

In the second test case the concentration of dissolved oxygen (DO) and carbonaceous biochemical
oxygen demand (CBOD) were computed in the estuary of A Coruifia, located in the NW of Spain
(Figure 6). The estuary has an area of 26 km?. The outer part of the estuary is relatively deep (with
depths of the order of 20 m and maximum values of circa 30 m in the mouth), while the inner part,
where the sewage spills are located, is relatively shallow (with maximum water depths of the order of
5 m at high tide and many dry regions at low tide).

-

Elevation (m

411
W -0.85

Figure 6. Bathymetry of the estuary of A Corufa (NW, Spain). The sewage spills are located at V1, V2,
V3 and V4. The control points are placed at P1, P2 and P3.

The physical time simulated for this case extends over 8 tidal cycles (4 days) in which the tidal
range moves from neap tides (with a tidal range of 1.2 m) to spring tides (with a tidal range of 3.5 m).
The river discharge at the upstream boundary of the model is equal to 20 m3/s, which corresponds to
its annual average value. Four discontinuous sewage spills of CBOD were considered, all of them
located in the inner estuary (Figure 6). The mean depth at the spills varied within 3 m and 4 m, which
were relatively shallow depths. All the spills were characterized by the same uniform concentration of
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CBOD and DO (511 mg/L of CBOD and 3.5 mg/L of DO). The water discharges were discontinuous and
different from one spill to another, with maximum values ranging from 0.06 to 0.5 m%/s. The CBOD
degradation rate at 20 °C was set to kp,c = 0.23 day_l.

The domain was discretized using a computational grid of 50,329 elements. The mesh size was
variable over the estuary. A finer resolution was used in the inner part of the estuary (element sizes of
10 m) since in this region the spills were located and unsteady wet-dry tidal fronts appeared. The size
of the elements in the mouth of the estuary was approximately 180 m. The levels of DO and CBOD
were sampled every 300 s using both Iber and Iber+ at control points P1, P2 and P3.

3.2.2. Results

In the second test case, the levels of CBOD and DO were sampled at four control points shown in
Figure 6. In particular, the time series of CBOD computed at these control points are shown in Figure 7
with identical results for both implementations. Regarding DO concentration (Figure 8), very small
differences could be appreciated at control point P2, where the peak values computed with Iber+ were
slightly higher than those computed with Iber. Statistically, the differences were not significant with
a negligible average error ((NRMSD) = 0.32%, covering all points and variables), although higher than
in previous case.

—— Iber  ----- Iber+ GPU
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Figure 7. Time series of carbonaceous biochemical oxygen demand (CBOD) for Test 2 at control points
P1 (a), P2 (b) and P3 (c).
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Figure 8. Time series of DO for Test 2 at control points P1 (a), P2 (b) and 3 (c).

This case employed a mesh with 50,329 elements, about a third of the mesh elements used in
the first test case. As shown in Table 2, Iber+ was able to perform the simulation 61 times faster than
Iber. In spite of having a lower number of elements, Table 2 shows that the real time employed by
Iber+ to compute a simulation time step was longer than in the previous test. This can be explained by
two reasons. First, this case had to compute two water quality species instead of one, causing a larger
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kernel launch overhead. Second, the size of the problem was not big enough to saturate the GPU
capacity. Thus, this case was not able to take full advantage of the GPU computing capacity, as it
happened in the previous case.

Table 2. Performance measurements obtained for the second test case (estuary of A Corufia).

Millions of Cells

Model Run Time (s) Time per Step (ms) Speedup vs. Iber

per Second
Iber 31,615 28.8 1.8 1
Iber+ GPU 522 0.5 107.1 61

3.3. Combined Sewer Ouverflows in a River Mifio Reach

3.3.1. Description

This test case was extracted from the study presented in [1]. In that work, a 2D water quality
model is used as a fundamental part of an integrated modeling approach for the design of the sewer
network of the city of Lugo (Spain). Here, the impact of combined sewer overflows (CSO) in the river
Mifio was evaluated by means of the Environmental Quality Standards (EQS) presented in the Urban
Pollution Manual [44]. The application of EQS requires an efficient water quality model since usually
a large number of simulations must be run over long periods of time.

The objective variables computed in [44] to apply the EQS are the concentrations of dissolved
oxygen and ammonia. The evaluation of these variables requires the computation of the five following
species: org-N, NH3-N, NO3-N, DO and CBOD.

In the example presented here, two days of discontinuous sewage discharges at three different
locations along the river were modeled. All the spills were characterized by the following concentrations:
102 mg/L of CBOD, 5 mg/L of org-N, 1.5 mg/L of NH3-N and 4 mg/L of DO. The concentration of
nitrates (NO3-N) in the spills is negligible. The spill discharges were discontinuous in time and different
from each other, with maximum values of discharge ranging from 0.18 to 1.5 m3/s. The ambient river
concentration of the water quality species was negligible with the exception of the DO concentration,
which was set to 9 mg/L. Those ambient values were imposed as initial and upstream boundary
conditions in the model. The river discharge, which was obtained from a Water Quality Automatic
Information System (SAICA) located upstream the river reach under study, varied from 40 to 60 m3/s
during the two days of computation. The same values of the reaction kinetic constants proposed
in [45] were used in the simulations, namely (all values at 20 °C): CBOD degradation rate equal
to kjpoe = 0.35 day_l, org-N hydrolysis rate equal to k,, = 0.20 day_l, nitrification rate equal to
kyqir = 0.50 day_l and denitrification rate equal to kg,,;; = 0.05 day_l.

Figure 9 shows the bathymetry of the river reach under study and the location of the sewage
spills. The computational domain extends over 8 km of river, with an average width of 70 m and a total
extension of 0.57 km?. The domain was meshed with 8763 elements with an average size of 65 m?.
The levels of the simulated species were sampled every 600 s with both models at the control points P1,
P2, P3 and P4.
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Figure 9. Bathymetry of the Mifio River as it passes through the city of Lugo (NW, Spain). The sewage
spills are located at points V1, V2 and V3. The control points are located at P1, P2, P3 and P4.

3.3.2. Results

In the third case, five species (org-N, NH3-N, NO3-N, DO and CBOD) were sampled at the four
control points indicated in Figure 9. For the sake of clarity, only the results obtained at P3 are shown in
Figure 10, while the rest of time series are shown in Appendix D. In this simulation, the average error
((NRMSD) = 0.04%) was negligible and smaller than in the previous two cases.
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Figure 10. Time series sampled at control point P3 for dissolved oxygen (a), carbonaceous biochemical
oxygen demand (b), organic nitrogen (c), ammoniacal nitrogen (d) and nitrite-nitrate nitrogen (e).
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In this case, Iber+ completed the simulation 29 times faster than Iber (Table 3). This speedup was
considerably lower than the one obtained in the previous two cases due to the relatively small size of
the mesh, with just 8763 elements. Compared to the previous case, the time needed to process a single
time step was lower whilst the number of cells processed per second was much lower. This indicates
the difficulty of taking full advantage of the GPU resources in cases with a small number of elements,
such as the present one. Nevertheless, even with a small mesh, Iber+ ran significantly faster (29 times)
than the non-parallelized CPU version.

Table 3. Performance measurements obtained for the third test case (Mifio River, NW Spain).

Millions of Cells

Model Run Time (s) Time per Step (ms) per Second Speedup vs. Iber
Iber 3054 8.6 1.0 1
Iber+ GPU 105 0.3 30.2 29

3.4. Effluent Discharge from a Wastewater Treatment Plant

3.4.1. Description

In this case an effluent discharge from a wastewater treatment plant into a river located in the south
of Spain was modeled. The water quality species computed in this case are DO, CBOD, org-N, NH3-N,
NOs3-N, org-P, PO4-P, inorg-C, alkalinity, salinity and pH. Thus, 10 transport equations were solved
in addition to the three Saint Venant equations (as mentioned in Section 2, the pH did not have an
associated transport equation, instead its value was computed at each mesh element from the values of
alkalinity and inorg-C).

The river reach modeled (Figure 11) is 18 km long and approximately 200 m wide, with a total
area of 4 km?. The downstream boundary of the reach modeled is located 50 km upstream the river
mouth into the ocean and is affected by the ocean tidal elevation, although tide does not propagate
all the way up to the upstream boundary. Thus, a tidal wave with a range of 1.0 m was imposed at
the downstream boundary while a constant river discharge of 3.6 m®/s was imposed at the upstream
boundary. The ambient concentrations of the water quality components imposed at the upstream
boundary were the following: 8 mg/L of DO, 0 mg/L of CBOD, 2.8 mg/L of org-N, 1.3 mg/L of NH3-N,
4.2 mg/L of NO3-N, 0.3 mg/L of org-P, 0.2 mg/L of PO4-P, 90 mg/L of inorg-C, 346 mg/L. CO;Ca
(alkalinity) and 0.8 mg/L of salt. These values correspond to mean winter conditions in this river reach.

A continuous spill from a waste water treatment plant (Figure 11) was modeled, with a discharge
of 2.1 m?/s and the following concentration of the water quality variables considered in this case:
5 mg/L of DO, 23.6 mg/L of CBOD, 23.9 mg/L of org-N, 28.4 mg/L of NH3-N, 0.3 mg/L of NO3-N,
0.8 mg/L of org-P, 0.4 mg/L of PO4-P, 97 mg/L of inorg-C, 392 mg/L CO3Ca (alkalinity) and 1 mg/L
of salt.

The following kinetic constants were used in the simulations (all values at 20 °C): CBOD
degradation rate (kj,,c = 0.23 day_l), org-N hydrolysis rate (k;,, = 0.20 day_l), nitrification rate
(kynit = 0.20 day_l), denitrification rate (kj,,,;; = 0.05 day_l) and organic phosphorus hydrolysis rate
(kyy = 0.20 day ™).

The simulated physical time was 3 days, using an unstructured mesh of 90,406 elements. At
the end of the simulation a steady state was achieved for the whole reach. All the simulated species
were sampled every 600 s with both Iber and Iber+ at control points P1, P2, P3 and P4.
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Figure 11. Bathymetry of the river reach in Test Case 4. The sewage spill of the Wastewater Treatment
Plant (WWTP) is located at point V1. Control points are located at P1, P2, P3 and P4.

3.4.2. Results

In the last case, ten different species were simulated (DO, CBOD, org-N, NH3-N, NOs-N, org-P,
PO4-P, inorg-C, alkalinity, salinity and pH). Time series of concentrations were taken at Points P1 to
P4 as indicated in Figure 11. The zone of the sewage spill is shown in detail in Figure 12. The time
series of concentration at control point P3 are shown in Figure 13. For the sake of clarity, the results at
the other control points were included in Appendix E. The results provided by Iber and Iber+ were
almost identical in all cases, confirmed by the negligible average error ((NRMSD) = 0.16%) as obtained
for the rest of the cases.
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Figure 12. Detail of the concentration of CBOD downstream the sewage spill at t = 60 h using both Iber
and Iber+ implementations.

—— Iber  ----- Iber+ GPU
9.0 -
. 80 1
=) —~ ~03
i I 300 1 = a9
8.5 3! 60 - I
T g0 O 200 1 g Eo2
[>T O 240 o
= 8 3
75 £ 100 { £ 2] £o1
i &) a,
7.0 4 : . . 0 1 : ' . CRE - . . 0.0 1; . . .
0 20 40 60 20 40 60 0 20 40 60 0 20 40 60
Time (h) Time (h) Time (h) Time (h)
(a) (b) (c) (d)
5.0] 12
~ . - 4 ~101 8]
203 3 S 8 26
Eoz EE’ g 8] g
50 82 2 S
Q z z §
a, 0.1 =11 Z 2] Z 2
0.0 1; : . . 0 1 : ' . 0L : . . 04 ; . .
0 20 40 60 20 40 60 0 20 40 60 0 20 40 60
Time (h) Time (h) Time (h) Time (h)
(e) () (9) (h)
10 1
—~6 8 -
= a
4] 5 ]
5 E 4 A
o o
M 24 A
(&) 21
0 1 : ' . 0L : . .
20 40 60 0 20 40 60
Time (h) Time (h)
(i) ()]

Figure 13. Time series for the analyzed species in Test 4, sampled at control point P3.



Water 2020, 12, 413 16 of 28

Table 4 shows the performance measurements for this case, where a mesh of 90,406 elements
(halfway between Test 1 and Test 2) was considered. Iber+ reached a speedup of 92 with respect to Iber.
Comparing with Test 2, the new mesh was almost double the size of the former one and ten species
were simulated instead of two. As a result of this, the time required to process a single time step was
almost 3.5 times longer. However, the number of mesh cells processed per second was only twice
lower. In this case, Iber+ could take more advantage of the GPU processing capacity due to the bigger
mesh size.

Table 4. Performance measurements obtained for the fourth test case.

Millions of Cells

Model Run Time (s) Time per Step (ms) per Second Speedup vs. Iber
Iber 44,367 146.5 0.6 1
Iber+ GPU 482 1.6 56.9 92

4. Conclusions

Numerical models are useful tools for the evaluation of the environmental status of water bodies.
However, it should be noted that these kinds of tools rely on a set of simplifications and are much
simpler than the real systems, whose complexity cannot be fully reproduced by the models. Hence,
they can provide wrong results, especially when the managers or the decision makers are not aware of
those limitations. The parametrization of the models is then a crucial task in order to obtain precise
results, which requires an exhaustive sensitivity analysis. In the particular case of Iber+, its 2D nature
makes it only applicable to rivers and non-stratified estuaries.

On the other hand, the main advantage of 2D models like Iber+ is their affordable execution time,
which makes them especially valuable for fast response purposes when compared with 3D models.
However, its application is hindered by the high spatial resolution required for water quality studies in
long river reaches or large estuaries.

This paper presented an improved version of a two-dimensional depth-averaged water quality
model, whose efficiency was improved by implementing HPC techniques based on GPU parallelization.
The model considered the water quality parameters most commonly used in the environmental
assessment of receiving waters, including dissolved oxygen, CBOD, organic nitrogen, ammonia,
nitrates, organic phosphorus, phosphates, pH, salinity and temperature. The implementation of
the code ran in NVIDIA GPUs that are commonly installed in standard laptop and desktop PCs. In
the test cases presented here, speedups in computational time between 29 and 181 were obtained
when compared with the non-parallelized implementation, keeping the accuracy of the original model.
The code will be integrated in the software package Iber, making it freely available.

In summary, the model presented three key features that make it very attractive and useful for
the scientific and engineering community: simulation of the most common water quality parameters,
high-performance computing in standard PCs and free availability.

Author Contributions: O.G.-F, L.C. and M.G.-G. conceived the study; O.G.-F. and L.C. developed the software;
L.C. and J.M.D. supervised the code development; O.G.-F. and ].G.-C. performed the experiments; O.G.-F,, L.C.,
J.G.-C. and M.G.-G. analyzed the results; O.G.-F,, L.C,, ].G.-C., ].M.D. and M.G.-G. wrote the manuscript. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by INTERREG-POCTEP under project RISC_ML (Code:
0034_RISC_ML_6_E) co-funded by European Regional Development Fund (ERDF); and by Xunta de Galicia
under Project ED431C 2017/64-GRC “Programa de Consolidacion e Estruturaciéon de Unidades de Investigacion
Competitivas (Grupos de Referencia Competitiva)”. O.G.F. is supported by Xunta de Galicia grant
ED481A-2017/314.

Acknowledgments: The aerial pictures used in this work are courtesy of the Spanish IGN (Instituto Geografico
Nacional) and part of the PNOA (Plan Nacional de Ortofotografia Aérea) program.



Water 2020, 12, 413 17 of 28

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study;
in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish
the results.

Appendix A. Reaction Terms

The following source terms were included in the advection-diffusion equation to model
the biochemical reactions between the water quality species considered in the model, as represented in
Figure 1. Salinity and alkalinity were considered as conservative variables with no source terms.

Chlorophyll-A
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Appendix B. pH model

pH computations are based on the values of alkalinity and inorganic carbon. The pH model
proposed by [45] was used. The model was based on the following equilibrium, mass balance and
electroneutrality equations.

[HCO3] [HY] [cO>] [HY]

Ky = [H2CO;)] 2= "Thcoy] Ky = [HT][OH]
Cinorg-c = [H2CO3] + [HCO3 | + O3] (A12)
Alk = [HCO; | +2[CO%"| + [OH™] - [HY]

where K1, K> and Ky, are equilibrium constants, Alk is the alkalinity (eq/L), Ciyorq-c is the concentration
of inorganic carbon (mol/L), [HZCOE] is the sum of carbon dioxide and carbonic acid dissolved in
the water (mol/L), [HCO;] is the concentration of bicarbonate ions, [CO%‘] is the concentration of

carbonate ions, [H"] is the concentration of hydrogen ions and [OH™] is the concentration of hydroxyl
ions. The equilibrium constants are computed as a function of water temperature as:

logo(Kw) = —4822 —7.132110g,(T) — 0.010365 X T +22.8
log (K1) = —356.3094 — 0.0609196 x T + 28337 1 126.8339 log, o (T) — 1682212 (A13)
logo(K3) = —107.887 — 0.0325285 x T + 213122 4 38.9256 log, (T — 23432

The values of Cjjorg-c and Alk are obtained from the solution of their respective depth-averaged
transport equations. The previous system of five equations is solved as proposed in [44], by solving
the following algebraic non-linear equation for [H"] at each mesh element:

Kaw

(0(1 =+ 2052) Cinorc—c + [H+] - [H+] —Alk =0 (A14)
with: )
ap = [H]
[H+]2+K1[[H++]]+K1KZ
_ K [H A15
M= K B K (AL5)
- K Ky

 [HTP 4Ky [HY]+Kq Ko

The coefficients ap, a1 and a; represent respectively the fraction of inorganic carbon in form of
carbon dioxide, bicarbonates and carbonates. Once the previous equation is solved at each mesh
element, the pH can be computed as:

pH = —log,,[H'| (A16)
and the concentration of carbon dioxide, bicarbonates and carbonates as:

Ch,c0; = a0Cinorg-c (A17)
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Appendix C. Model Constants

20 of 28

Suggested Values

Constant  Units Description
Min Max

Tna mg/mg 0.7 9.0 Ratio of Nitrogen to Chl-A in phytoplankton

Tpa mg/mg 0.1 2.0 Ratio of Phosphorus to Chl-A in phytoplankton

Toa mg/mg 14 180 Ratio of Oxygen to Chl-A in phytoplankton

Tea mg/mg - - Ratio of Carbon to Chl-A in phytoplankton

krp 1/day 0.04 0.8 Phytoplankton respiration rate

Hinax 1/day 1.0 3.0 Maximum photosynthesis rate

kap 1/day 0.05 0.5 Phytoplankton death rate

kpa - 0.0 1.0 Phytoplankton preference factor for ammonia

Vsa m/day - - Phytoplankton settling velocity

onp me/L 0.01 03 Nitroger} half-saturation constant for photosynthesis
attenuation

- mg/L 0.001 0.05 Phospho'rus half-saturation constant for photosynthesis
attenuation

ke mg/L ) ) Carbon balf—saturation constant for photosynthesis
attenuation

Ky W/m? 0.05 03 Light ha.lf-saturation constant for photosynthesis
attenuation

ksop mg/L - - Oxygen half-saturation constant for respiration attenuation

ke 1/m - - Light extinction coefficient in water

Vispo m/day - - Organic phosphorus settling velocity

Vspi m/day - - Inorganic phosphorus settling velocity

Kpyp 1/day 0.01 0.7 Organic phosphorus hydrolysis rate at 20 °C

kit 1/day 0.01 1.0 Nitrification rate at 20 °C

kpy, 1/day 0.02 0.4 Organic nitrogen hydrolysis rate at 20 °C

Kdenit 1/day 0.001 0.1 Denitrification rate at 20 °C

VN m/day 0.001 0.1 Organic nitrogen settling velocity
Oxygen half-saturation constant for nitrification

o2 mg/L atteyfuation
Oxygen half-saturation constant for denitrification

Kam /2 mg/L attgfuation

Kapoc 1/day 0.02 34 CBOD degradation rate at 20 °C

VspBoc m/day 0.01 0.36 CBOD settling velocity
Oxygen half-saturation constant for CBOD degradation

ksoc f mg/L .
attenuation

ksod kg/m?/day 0.0 0.01 Sediment oxygen demand rate

roe meg/mg ) ) Ratio of'oxygen consumed per organic carbon oxidized to
inorganic carbon

Kdec 1/day Mancini Degradation constant for E. coli
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Appendix D. Time Series for Test 3

—— Iber  ----- Iber+ GPU
8_ .4 VN
8 8 1 8

f\6_
) 6 6 6

)
Eu 4 4 4
g

2 2 2 A 2

0 0 01— 01"

0 20 40 0 20 40 0 20 40 0 20 40

Time (h) Time (h) Time (h) Time (h)
(a) (b) (c) (d)
Figure A1. Time series of dissolved oxygen for Test 3, sampled at control points P1 (a), P2 (b), P3 (c)
and 4 (d).
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Figure A2. Time series of CBOD for Test 3, sampled at control points P1 (a), P2 (b), P3 (c) and P4 (d).
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Figure A3. Time series of organic nitrogen for Test 3, sampled at control points P1 (a), P2 (b), P3 (c) and
4 (d).
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Figure A4. Time series of ammoniacal nitrogen for Test 3, sampled at control points P1 (a), P2 (b), P3
(c) and P4 (d).
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Figure A5. Time series of nitrate-nitrite nitrogen for Test 3, sampled at control points P1 (a), P2 (b), P3
(c) and P4 (d).

Appendix E. Time Series for Test 4
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Figure A6. Time series of pH for Test 4, sampled at control points P1 (a), P2 (b), P3 (c) and P4 (d).
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Figure A7. Time series of alkalinity for Test 4, sampled at control points P1 (a), P2 (b), P3 (c) and P4 (d).
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Figure A8. Time series of inorganic carbon for Test 4, sampled at control points P1 (a), P2 (b), P3 (c)
and P4 (d).
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Figure A9. Time series of inorganic phosphorus for Test 4, sampled at control points P1 (a), P2 (b), P3

(c) and P4 (d).
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Figure A10. Time series of organic phosphorus for Test 4, sampled at control points P1 (a), P2 (b), P3 (c)
and P4 (d).
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Figure A11. Time series of nitrite-nitrate nitrogen for Test 4, sampled at control points P1 (a), P2 (b), P3
(c) and P4 (d).
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Figure A12. Time series of ammoniacal nitrogen for Test 4, sampled at control points P1 (a), P2 (b), P3

(c) and P4 (d).
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Figure A13. Time series of organic nitrogen for Test 4, sampled at control points P1 (a), P2 (b), P3 (c)
and P4 (d).
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Figure A14. Time series of CBOD for Test 4, sampled at control points P1 (a), P2 (b), P3 (c) and P4 (d).
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Figure A15. Time series of dissolved oxygen for Test 4, sampled at control points P1 (a), P2 (b), P3 (c)

and P4 (d).



Water 2020, 12, 413

26 of 28

Appendix F. Data Sources for the Test Cases

Table A1l. Data sources for the Test Case 1.

Bathymetry

Bathymetric survey carried out for previous studies. Spatial resolution of 30 m.

Effluent Discharge
and Concentration

Virtual

Annual average flow from river Grande de Xubia. Available from the regional

Streamflow Meteorological Agency MeteoGalicia (www.meteogalicia.gal).
. Tidal harmonics obtained from the tidal gauge of Ferrol. Available from Puertos
Tide
del Estado (www.puertos.es).
Table A2. Data sources for the Test Case 2.
Bathymetry Bathymetric survey carried out for previous studies. Spatial resolution of 30 m.
Effluent Discharge

and Concentration

Sewer network model carried out in previous studies.

Annual average flow from river Mero. Available from the regional

Streamflow Meteorological Agency MeteoGalicia (www.meteogalicia.gal).
. Tidal harmonics obtained from the tidal gauge of A Corufia. Available from
Tide
Puertos del Estado (www.puertos.es).
Table A3. Data sources for the Test Case 3.
Bathymetry Bathymetric survey carried out in [44].
Effluent Discharge

and Concentration

Sewer network model carried out in [46] and [46].

River discharge obtained from a Water Quality Automatic Information System
(SAICA) located upstream the river reach under study. Available from

Streamflow the regional water administration Confederacion Hidrografica del Mifio-Sil
(www.chminosil.es).
Table A4. Data sources for the Test Case 4.
Digital terrain model at 2 m resolution, obtained from LiDAR data from
Bathymetry the Spanish National Plan of Aerophotogrammetry (PNOA), available from
the Spanish National Geographic Institute (www.ign.es).
Effluent Discharge

and Concentration

Virtual.

Streamflow

Annual average flow obtained from the regional water administration
Confederacion Hidrografica del Guadalquivir (www.chguadalquivir.es).
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