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Abstract: Light is an important factor that affects cyanobacterial growth and changes in light can
influence their growth and physiology. However, an information gap exists regarding light-induced
oxidative stress and the species-specific behavior of cyanobacteria under various light levels. This study
was conducted to evaluate the comparative effects of different light intensities on the growth and
stress responses of two cyanobacteria species, Pseudanabaena galeata (strain NIES 512) and Microcystis
aeruginosa (strain NIES 111), after periods of two and eight days. The cyanobacterial cultures were
grown under the following different light intensities: 0, 10, 30, 50, 100, 300, and 600 µmol m−2 s−1.
The optical density (OD730), chlorophyll a (Chl-a) content, protein content, H2O2 content, and the
antioxidative enzyme activities of catalase (CAT) and peroxidase (POD) were measured separately in
each cyanobacteria species. P. galeata was negatively affected by light intensities lower than 30 µmol
m−2 s−1 and higher than 50 µmol m−2 s−1. A range of 30 to 50 µmol m−2 s−1 light was favorable for
the growth of P. galeata, whereas M. aeruginosa had a higher tolerance for extreme light conditions.
The favorable range for M. aeruginosa was 10 to 100 µmol m−2 s−1.

Keywords: cyanobacterial growth; stress responses; Pseudanabaena galeata; Microcystis aeruginosa;
oxidative stress; antioxidative enzymes

1. Introduction

Eutrophication and global warming have promoted the growth of cyanobacteria in freshwater
systems worldwide, and this trend is expected to increase in the future [1]. Cyanobacterial blooms are
a serious issue in fresh, brackish, and marine water, as they decrease light penetration through the
water and deplete dissolved oxygen, causing mortality for aquatic life [2]. Cyanobacteria are oxygenic
autotrophs, constituting the largest and most diverse community of photosynthetic prokaryotes [3].
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They play imperative roles in carbon and nutrient cycling in aquatic systems, as well as in degrading
water quality and safety, causing numerous problems with water sources and ecosystem management [4].
From an environmental perspective, cyanobacterial blooms and their effects have been reported in
the scientific literature for more than a century, and their probability and severity have both escalated
over time [5]. The mass development of cyanobacteria has resulted in various negative consequences
including eutrophication, ecosystem imbalances, and scenic impairments [6]. Their ability to produce
toxic secondary metabolites is becoming an increasingly important environmental issue, which is
threatening human, animal, and plant health. Cyanobacterial blooms can, thereby, lead to ecosystem
destruction [7,8]. Given these problems, gaps in our knowledge of cyanobacteria must be filled.

It is important to understand the environmental factors associated with cyanobacterial growth and
metabolism to address real world problems. This subject has been extensively mentioned in connection
to climate change [9,10], and anthropogenic activities associated with land use changes are also being
experienced worldwide and have been widely discussed in the literature [11,12]. Cyanobacteria have
several environmental drivers, such as water temperature, water column irradiance, and stratification
of the water column coupled with long residence time, the availability of nitrogen (N) and phosphorus
(P), and the turbidity and salinity of water. Of these drivers, light intensity is a particularly important
determinant of the growth of cyanobacterial blooms [13]. The growth patterns of cyanobacteria
respond to different light intensities via morphological and physiological changes [14], and detailed
investigation of these changes is vital for the formulation of both proactive and reactive planning for
freshwater resources management.

Pseudanabaena galeata and Microcystis aeruginosa are two cyanobacteria species that are known to
degrade water quality and safety in many parts of the world [15]. P. galeata is a non-bloom-forming
species, however, it forms odorous 2-methylisoborneol (2-MIB) which causes operational issues
with water supplies [16]. M. aeruginosa is a bloom forming species that synthesizes secondary toxic
metabolites, namely microcystins, which affect water safety, and therefore human health, thereby
posing serious social and ecological hazards [17,18]. In addition to these concerns that arise with both
species, their worldwide occurrences have increased as eutrophication and global warming which
together have provided suitable conditions for vigorous growth [19,20].

As the frequency of cyanobacteria blooms continues to increase, various control measures
are being applied to control their growth [21]. Methods such as the mixing of water in lakes or
reservoirs mainly focus on exposing cyanobacteria to low levels of light. However, the photosynthetic
organisms of cyanobacteria can also be stressed by high-light exposure, and the excess energy produces
reactive oxygen species (ROS), which cause severe photodamage to their cellular components [22,23].
The growth rates of Microcystis and Anabaena species are high under low-light levels (25 µmol m−2 s−1),
however, these growth rates decrease under high-light levels (200 µmol m−2 s−1) [22,24].

Although high-light levels can negatively affect cyanobacteria species, the responses and
relationships of their oxidative stress, antioxidant, pigmentation, and protein contents are currently
not well understood. Therefore, in this study, we aimed to explore the responses of P. galeata
and M. aeruginosa to low-light and high-light stressors. We measured hydrogen peroxide (H2O2),
antioxidant enzymes (catalase (CAT) and peroxidase (POD)), chlorophyll a (Chl-a), protein contents,
and optical densities (OD730) under different light conditions. The growth performances of these two
species were calculated and validated using cyanobacteria growth models proposed by Steele [25],
Platt and Jassby [26], and Peeters and Eilers [27], to determine the applicability of our findings to
cyanobacteria control.

2. Materials and Methods

2.1. Cyanobacterial Cultures and Incubation

Strains of the cyanobacterial species P. galeata and M. aeruginosa were obtained from the National
Institute for Environmental Studies (NIES) at Ibaraki, Japan. The samples were cultured in BG-11
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medium [28] and acclimatized for 14 days inside an incubator (MIR-254, Sanyo, Tokyo, Japan) at
20 ◦C; they underwent manual shaking three to five times per day. The samples were cultured under
controlled light conditions, with photon flux levels of 20 to 30 µmol m−2 s−1 emitted from cool white
fluorescent lamps (5000 K color temperature). The cycle of light conditions to dark conditions was
maintained at 12 h light and 12 h dark [29], using an automatic setup time device (REVEX PT7, Saitama,
Japan).

2.2. Growth Experimental Setup

All of the experiments were conducted inside an incubator (MIR-254, Sanyo, Tokyo, Japan) at
a constant temperature of 20 ◦C throughout the experimental period. To characterize the growth
response to different light conditions, incubated P. galeata (NIES 512) and M. aeruginosa (NIES 111) cells
were separately subjected to seven different photon flux levels (0, 10, 30, 50, 100, 300, and 600 µmol m−2

s−1); a constant temperature of 20 ◦C was used to calculate the saturation light intensities. Light was
supplied from cold white fluorescent lamp sources. The cultures were maintained in an illumination
cycle of 12 h light and 12 h dark (12L:12D). Zero µmol m−2 s−1 light intensity means that there was no
light source; these cultures were maintained in 24 h of darkness. The light intensities were measured
using a quantum sensor (ml-020P, EKO Instruments Co., Ltd., Tokyo, Japan), and were read as voltage
output (mV) by a voltage logger (LR5041, HIOKI, Nagano, Japan). The cells that were cultured under
different light levels were sampled for Chl-a and enzyme analysis in two-day intervals. To ensure the
homogenous exposure of cells to the light environment, the cyanobacteria cultured flasks were shaken
gently five times a day. Each treatment was performed in triplicate.

2.3. Measuring Protein

The concentration of protein was measured using the Bradford method [30]. A crude protein
extract was discolored with Coomassie (G-250). After incubation at room temperature (25 ± 2 ◦C) for
10 min, the absorbance was measured at 595 nm using an ultraviolet visible (UV-Vis) spectrometer
(UVmini-1240, Shimadzu, Kyoto, Japan). Protein was diluted with the same buffer and was stained
with Coomassie (G-250) dye and used to prepare the standard curve; deionized water was used as
the blank.

2.4. Measuring OD730

To estimate the growth of cyanobacteria, the OD730 was measured by taking 1 mL of sample from
each flask. The OD730 was measured with a UV-Vis spectrophotometer (UVmini-1240, Shimadzu, Kyoto,
Japan) at an optical absorption wavelength of 730 nm, using a previously proposed methodology [31,32].

2.5. Measuring Chlorophyll a Content

The concentration of Chl-a in the cyanobacteria samples was measured according to the method
described by Holm and Romo [33,34]. The 1 mL cell suspensions of the two species were centrifuged
separately at 10,000× g for 10 min at 4 ◦C, and the supernatant was removed. Each cell pellet was
washed once with Milli-Q water and then extracted in 1 mL of 80% acetone. The mixture was shaken
vigorously and maintained in darkness overnight at room temperature (25 ± 2 ◦C). Then, each sample
was again centrifuged at 10,000× g, and the supernatant was measured with a UV-Vis spectrophotometer
(UVmini-1240, Shimadzu, Kyoto, Japan) at absorption wavelengths of 660 and 645 nm. To correct for
the absorbance for pheophytin a, the samples were acidified with 0.1 N HCL, and their absorbance
was measured again. The chlorophyll a content was calculated by using Equation (1) [33]:

Chl− a = (9.76×A660) − (0.99×A645) (1)

where Chl − a is the content of chlorophyll a (expressed in µg per mL), and A660 and A645 are the
absorbance values 660 nm and 645 nm, respectively.
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2.6. Measuring H2O2 Content

The method specified by Jana [35] was employed to measure the H2O2 concentration in the
cultured cyanobacteria samples. The P. galeata (NIES 512) and M. aeruginosa (NIES 111) cell pellets
were obtained by centrifuging at 10,000× g for 10 min and removing the supernatant. The cell pellets
were washed once with Milli-Q water and homogenized in 1 mL of 0.1 M pH 6.5 phosphate buffer
to extract the internal H2O2. The homogenate was then centrifuged at 10,000× g for 10 min at 4 ◦C
and the extract was used for H2O2 estimation. A reaction mixture of 0.1% titanium chloride in 20%
H2SO4 (v/v) was added to the supernatant, and after a 1 min incubation period, the mixture was
centrifuged at room temperature (25 ± 2 ◦C) and the absorbance was measured at 410 nm with a UV-Vis
spectrophotometer (UVmini-1240, Shimadzu, Kyoto, Japan). The H2O2 concentration was determined
using the pre-prepared standard curve for known concentration series. An extinction coefficient of
0.28 mmol−1 cm−1 was used to calculate the concentration of H2O2 in µmol mL−1.

2.7. Measuring CAT Activity

The CAT activity was measured using the method proposed by Aebi [36]. The cyanobacteria
cells were homogenized in a phosphate buffer (pH 7.0), supernatant liquid was, then, taken as an
enzyme extract, after being centrifuged at 12,000× g at 4 ◦C for 10 min. The decrease in absorbance at
240 nm was recorded for 3 min. The CAT activity was calculated using an extinction coefficient of
39.4 mM−1 cm−1.

2.8. Measuring POD Activity

The POD activity was measured based on guaiacol oxidation, as proposed by MacAdam [37].
The reaction mixture contained 920 µL of 100 mM potassium phosphate buffer (pH 6.8), 15 µL of 0.6%
H2O2, and 65 µL of enzyme extract. The increase in absorbance was measured at 420 nm every 10 s for
3 min.

2.9. Cell Growth Measurement and Different Model Fitting

The cell growth of cyanobacteria was measured using OD730 measurements. OD730 was measured
using a UV-Vis spectrophotometer (UVmini-1240, Shimadzu, Kyoto, Japan).

The cell growth measurements were compared with three cell growth models that have been
proposed for cyanobacteria growth [25–27]. The cell growth of cyanobacteria was measured using
OD730 measurements, which were applied to the growth rate in Equation (2) [38]. Then, the calculated
growth rates were compared with the three model outputs obtained for the different light intensities of
the present experiment.

µ =
(logODt − logOD0)

t
× 3.32 (2)

where µ is the cell growth rate, t is the time in days, ODt is the optical density after t days, and ODt is the
optical density at the beginning of the experiment zero time. Different models proposed by Steele [25],
Platt and Jassby [26], and Peeters and Eilers [27] were fitted to our experimental observations [39].

The model proposed by Steele [25], named Model I, is written as:

µT,I = µmaxT × I/IoptT × exp
(
I − I/IoptT

)
(3)

where µT,I is the growth rate at light intensity I, and µmaxT and IoptT are the estimated maximal growth
rates and the optimal light intensity at temperature T, respectively.

The model proposed by Platt and Jassby [26], named Model II, is written as:

µT,I = µmaxT × tan h[α× (I − Ic)/µmaxT] (4)
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where α is the growth efficacy, Ic is the estimated light intensity without growth (Ic ≥ 0), and tanh is the
hyperbolic tangential function.

The model proposed by Peeters and Eilers [27], named Model III, is written as:

µT,I = 2× µmaxT × (1 + β) ×
(
I/IoptT

)
/
[(

I/IoptT
)2
+ 2×

(
I/IoptT

)
× β+ 1

]
(5)

where β is the attenuation coefficient, which allows for consideration of the photoinhibition
phenomenon.

2.10. Statistical Analysis

All the presented results are expressed as the mean ± SD (n = 3). A two-way analysis of variance
(ANOVA) followed by Tukey’s post-hoc tests were performed to examine the statistical significance of
variations among the means between the light exposure period and light intensity combinations used
for P. galeata and M. aeruginosa. Statistical analyses were performed by using IBM SPSS Statistics for
Windows, Version 25.0. (Armonk, NY, USA: IBM Corp).

3. Results

The protein concentrations of P. galeata and M. aeruginosa species after two- and eight-day periods
of exposure to light of different intensities are presented in Figure 1a,b. After the two-day period of
exposure, the protein concentrations of each exposure condition were nearly the same as the initial
values, 61.6 ± 3.0 µg mL−1 for P. galeata (F6,14 = 1.250 and p = 0.34) and 54.5 ± 0.70 µg mL−1 for
M. aeruginosa (F6,14 = 3.960 and p = 0.016). However, for P. galeata (F6,14 = 32.795 and p < 0.0001) the
concentration substantially increased after eight days. It increased rapidly up to 100 µmol m−2 s−1

,

and then continued to increase at a slower rate up to 600 µmol m−2 s−1. For M. aeruginosa (F6,14 = 34.824
and p < 0.0001), the protein concentration exhibited a decreasing trend with respect to increasing
light intensity, which is an almost opposite trend to that of P. galeata. The protein concentration of
M. aeruginosa decreased rapidly up to a light intensity of 100 µmol m−2 s−1 and, then, continued to
decrease at a slower rate up to 600 µmol m−2 s−1.
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Figure 1. Changes in protein concentration with respect to light intensity after two and eight days for
two species. (a) Pseudanabaena galeata; (b) Microcystis aeruginosa.

The variations in OD730 with respect to light intensity are presented in Figure 2a,b. P. galeata
and M. aeruginosa both showed a statistically significant difference between the two- and eight-day
periods of exposure (P. galeata F6,28 = 188.811, p < 0.0001 and M. aeruginosa F6,28 = 145.041, p < 0.0001).
After two days, relatively constant OD730 values were observed under all of the light intensities, for
both P. galeata and M. aeruginosa. The eight-day OD730 value of P. galeata increased under 30 and 50
µmol m−2 s−1 light intensities and, then, decreased under higher light intensities over the two-day
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period. However, the OD730 values of M. aeruginosa after eight days were approximately double the
OD730 values of P. galeata.Water 2020, 12, x FOR PEER REVIEW 6 of 14 
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(b) M. aeruginosa.

The Chl-a concentrations of P. galeata and M. aeruginosa under different light intensities are
presented in Figure 3a,b. The Chl-a concentrations of P. galeata and M. aeruginosa showed a statistically
higher significant difference after eight than after two days (P. galeata F6,28 = 21.876, p < 0.0001 and M.
aeruginosa F6,28 = 9.036, p = 0.0001). After the two-day exposure, the Chl-a concentrations of both species
showed a slightly decreasing trend after 50 µmol m−2 s−1. After eight days, the Chl-a concentration
increased under 30 and 50 µmol m−2 s−1 for P. galeata, however, it decreased more under the high-light
intensity than that after the two-day exposure. After eight days, the Chl-a content of M. aeruginosa
also followed the same trend as P. galeata, but with different values. Chl-a gradually increased up to
50 µmol m−2 s−1 light intensity, and then started to degrade under higher light intensities.
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eight days.

The ratio of H2O2 per protein (H2O2/protein) over different light intensities is shown in Figure 4a,b.
After two days, P. galeata’s H2O2/protein decreased under 30 and 50 µmol m−2 s−1, increased gradually
up to 300 µmol m−2 s−1, and then remained level under 600 µmol m−2 s−1. After eight days,
the H2O2/protein was steady up to 100 µmol m−2 s−1 and, then, followed a decreasing trend under
300 and 600 µmol m−2 s−1. The H2O2/protein of M. aeruginosa showed an increasing trend up to
100 µmol m−2 s−1 under both two and eight days of exposure. Then, under 300 and 600 µmol m−2

s−1, we observed a slightly increasing trend for the two-day exposure and a decreasing trend for the
eight-day exposure. Both P. galeata and M. aeruginosa showed a statistically significant difference in
H2O2/protein after eight days as compared with after two days (P. galeata F6,28 = 9.036, p < 0.0001 and
M. aeruginosa: F6,28 = 10.864, p < 0.0001).
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increased more significantly than after two days of exposure, except for under 30 μmol m–2 s–1 (F6,28 = 
69.894, p < 0.0001). For M. aeruginosa, H2O2/OD730 decreased significantly from a light intensity of 30 
μmol m–2 s–1 (F6,28 = 13.964, p < 0.0001). We identified a clearer positive correlation between H2O2/OD730 
and light intensity for P. galeata after two days of exposure (r = 0.74) and after eight-day exposure (r 
= 0.88), as well as for M. aeruginosa after two (r = 0.91) and eight (r = 0.54) days of exposure. 
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after two and eight days.

The relationship between Chl-a content and H2O2 is shown in Figure 5a,b. We found a clear
negative correlation between Chl-a content and H2O2 for P. galeata (correlation coefficient, r = 0.94)
and M. aeruginosa (r = 0.71) after the two-day period only. The Chl-a content and H2O2 results were
scattered beyond the two-day period. Both species P. galeata (F6,28 = 40.569 and p < 0.0001) and
M. aeruginosa (F6,28 = 16.026 and p < 0.0001) showed statistically significant differences.
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Figure 6a,b depicts the H2O2 per OD730 (H2O2/OD730) variation with respect to light intensity
for both species after two and eight days. After two days, P. galeata H2O2/OD730 remained the same
across the light intensities. However, for M. aeruginosa, H2O2/OD730 decreased for 10 and 30 µmol
m−2 s−1, and then increased with further increasing light intensities. After eight days, P. galeata
H2O2/OD730 increased more significantly than after two days of exposure, except for under 30 µmol
m−2 s−1 (F6,28 = 69.894, p < 0.0001). For M. aeruginosa, H2O2/OD730 decreased significantly from a light
intensity of 30 µmol m−2 s−1 (F6,28 = 13.964, p < 0.0001). We identified a clearer positive correlation
between H2O2/OD730 and light intensity for P. galeata after two days of exposure (r = 0.74) and after
eight-day exposure (r = 0.88), as well as for M. aeruginosa after two (r = 0.91) and eight (r = 0.54) days
of exposure.
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The CAT activity of two cyanobacteria species were found to be a function of H2O2/protein,
as shown in Figure 7a,b. P. galeata showed a statistically significant difference (F6,28 = 2.870, p = 0.026),
as did M. aeruginosa (F6,28 = 2.881, p = 0.026). The CAT activity was highest for the two-day period
for the highest H2O2/protein values; after that, its value decreased with decreasing H2O2/protein for
P. galeata. In contrast, H2O2/protein increased with time for M. aeruginosa, therefore, a higher CAT
activity was generated.
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Figure 7. Catalase (CAT) activity with respect to H2O2/protein. (a) P. galeata; (b) M. aeruginosa, under
different light intensities (0 to 600 µmol photons m−2 s−1) after two and eight days.

The POD activity of the two cyanobacteria species was also found to be a function of H2O2/protein,
as shown in Figure 8a,b. P. galeata showed a statistically significant difference (F6,28 = 16.452, p < 0.0001),
as did M. aeruginosa (F6,28 = 3.640, p = 0.009). In P. galeata, POD activity after two days was higher
than that in the eight-day experiment. In contrast, in M. aeruginosa, the POD activity increased with
increasing H2O2/protein during both experiments.
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The trend was also observed in the color of the sample, which changed after both periods under
different light intensities, as shown in Figure 9.
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aeruginosa, under different light intensities (0 to 600 µmol m−2 s−1).

The observed growth rates were fitted to the models proposed by Steele (Model I) [25], Platt and
Jassby (Model II) [26], and Peeters and Eilers (Model III) [27]. The observed two-day growth rate of
P. galeata fitted Model II, and the eight-day growth rate fitted Model I (Figure 10). The observed two-
and eight-day data of M. aeruginosa fitted Model III, and the eight-day data fitted model III. P. galeata
attained a maximum growth rate of 0.13 day−1 within the first two days under a light intensity of
100 µmol m−2 s−1, whereas M. aeruginosa attained a maximum growth rate of 0.15 day−1 within the first
two days under a light intensity of 30 µmol m−2 s−1 (Figure 11). The mean growth rates of P. galeata
and M. aeruginosa were 0.08 day−1 and 0.12 day−1, respectively, achieved under a light intensity of
30 µmol m−2 s−1.
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Figure 10. Growth rates of P. galeata and M. aeruginosa as a function of light intensity at different time
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Steele (Model I) [25], Platt and Jassby (Model II) [26], and Peeters and Eilers (Model III) [27].
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4. Discussion

Two cyanobacteria species, P. galeata and M. aeruginosa, exhibited different responses under
different light intensities, and with respect to increasing light conditions, particularly when exceeding
50 µmol m−2 s−1. P. galeata was negatively affected when the light intensity exceeded 100 µmol m−2 s−1,
and M. aeruginosa was also negatively affected. However, under two days of exposure, neither species
was influenced, even by the extreme light conditions (300 and 600 µmol m−2 s−1), suggesting that under
a short exposure to high-light intensity, both species would survive. However, the extended exposure
(eight days) increased the stress on both species. Therefore, both species have the capacity to tolerate
light stress for shorter durations but lose this tolerance after extended exposure periods. Light intensities
between 30 to 50 µmol m−2 s−1 can be considered preferable light conditions for P. galeata growth; with a
corresponding range of 10 to 100µmol m−2 s−1 for M. aeruginosa (Figure 11). These findings show similar
trends to previously published results, as the growth of Microcystis and Anabaena species increased
under low light (25 µmol m−2 s−1) but decreased under high light (200 µmol m−2 s−1) [22,24,34].
However, we confirmed that light intensities exceeding 200 µmol m−2 s−1 further intensified stress
on both cyanobacteria species. As the only parameter that was varied in the present experiment was
light, this suggests that cells become stressed mainly due to photosystem-produced H2O2, even at
light intensities under 600 µmol m−2 s−1, as in most cyanobacteria species, photoinhibition occurred
when the light intensity exceeded 1000 µmol m−2 s−1 [40–42].

The reduced protein content, which reflects increased stress or vice versa for M. aeruginosa and
most cyanobacteria species [43], decreased more after the eight-day period than the two-day period,
independent from the light intensity. This reveals that M. aeruginosa has a defense mechanism to prevent
cell damage from light (Figure 1a,b). The observed decreases in protein content with increasing light
intensity in M. aeruginosa are a result of decreased phycobiliprotein synthesis, which protects against
the absorption of excess light energy and the increased degradation of protein by proteases [44–46].
The increased OD730 of M. aeruginosa, except at 0 and 600 µmol m−2 s−1 (two- and eight-day differences
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in M. aeruginosa OD730 under 600 µmol m−2 s−1 minimum as compared with P. galeata), evidences the
survival and continuous cell proliferation of M. aeruginosa. P. galeata, which appeared to be relatively
weak, strictly preferred 30 and 50 µmol m−2 s−1, and experienced high stress under lower or higher
light intensities, considering the Chl-a content and OD730. However, the observed increases in protein
content with increasing light stress suggest that there was a deviated stress response for P. galeata.
The increased protein content can be associated with the upregulation of stress-related protein, as the
oxidative stress was enforced due to the elevated H2O2 content with increasing light intensity [47].
However, further research focused on the upregulation of stress proteins is necessary to confirm
this phenomenon.

The oxidative stress response mechanism, in cyanobacteria, helps to protect from extreme
environmental conditions and can trigger antioxidant defense system responses [48]. The balance
between the oxidative stress and antioxidative enzymes is disturbed by abiotic stress factors, and cells
are subjected to oxidative stress in these conditions [49,50]. In this study, the H2O2 concentrations
of both species were enhanced under low light (0 and 10 µmol m−2 s−1) and high light (100 to
600 µmol m−2 s−1) intensities. After two days, the CAT and POD activities of P. galeata showed
scattered trends with respect to oxidative stress (Figure 7), whereas for M. aeruginosa, they showed
increasing trends (Figure 8). However, when testing the regression relationships between H2O2/protein
and antioxidant enzymes, CAT activity was found to have a strong relationship as compared with the
POD of both species (CAT: M. aeruginosa r = 0.89 and P. galeata r = 0.90; POD: M. aeruginosa r = 0.75
and P. galeata r = 0.45). This confirms that the CAT activity of both cyanobacteria species played a
more prominent antioxidant activity role than POD. Under higher stress, the antioxidant balance was
also lost.

These findings show that high levels of light exposure can be adopted as a non-chemical method
to control P. galeata and M. aeruginosa. This approach differs from methods such as the artificial mixing
of water in lakes and reservoirs, which are based on the hypothesis that low-light exposure suppresses
cyanobacteria growth [21]. However, we suggest that, in the case of controlling of P. galeata and
M. aeruginosa, both low- and high-light exposure can be used effectively. Practical methods should
be further studied to determine the field implications of high-light exposure for controlling these
species. Particular focus should be given to methods that would keep the water column illuminated,
thereby exceeding the light levels tolerable for P. galeata and M. aeruginosa. The growth performance of
these two cyanobacteria species was fitted with one or more mathematical models tested (Figure 10),
which confirmed the fit of the present data for the evaluation of growth responses of P. galeata and M.
aeruginosa under low- and high-light conditions.

5. Conclusions

The availability of 30 to 50 µmol m−2 s−1 light was found to be a favorable illumination range for
P. galeata, with the corresponding range for M. aeruginosa being 10 to 100 µmol m−2 s−1. Beyond the
optimal light intensities, the growth of the two cyanobacteria species was reduced. M. aeruginosa
demonstrated higher tolerance to higher light intensities than P. galeata. High-light intensities, at which
growth was lowest, could be used to develop control mechanisms, or to improve the present methods
based on low-light exposure. This could help to effectively control cyanobacteria in water bodies.
The fitting of the present results with the cyanobacteria growth models confirms that the growth
responses of P. galeata and M. aeruginosa to different light conditions can be modeled to predict and
control their occurrence.
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