

Supplementary information

Linking Stoichiometric Organic Carbon–Nitrogen Relationships to planktonic Cyanobacteria and Subsurface Methane Maximum in Deep Freshwater Lakes

Santona Khatun ^{1,*}, Tomoya Iwata ^{2,*}, Hisaya Kojima ³, Yoshiki Ikarashi ², Kana Yamanami ², Daichi Imazawa ¹, Tanaka Kenta ⁴, Ryuichiro Shinohara ⁵ and Hiromi Saito ⁶

- ¹ Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan; g17lr002@yamanashi.ac.jp
- ² Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan; yoshiki.ikarashi@gmail.com (Y.I.); L14EV033@yamanashi.ac.jp (K.Y.)
- ³ Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan; kojimah@pop.lowtem.hokudai.ac.jp
- ⁴ Sugadaira Research Station, Mountain Science Center, University of Tsukuba, 1278-294 Sugadairakogen, Ueda 386-2204, Japan; kenta@sugadaira.tsukuba.ac.jp
- ⁵ National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan; r-shino@nies.go.jp
- ⁶ Department of Marine Biology and Sciences, Tokai University, 1-1 1-Chome 5-Jo Minami-sawa, Minami-ku, Sapporo, 005-8601, Japan; saitou@tsc.u-tokai.ac.jp
- * Correspondence: santona.khatun@gmail.com (S.K.); tiwata@yamanashi.ac.jp (T.I.)

Figure S1. Geographic location of nine study lakes in Japan. (1) Lake Ashinoko,(2) Lake Motosu, (3) Lake Saiko, (4) Lake Aoki, (5) Lake Nojiri, (6) Lake Chuzenji,(7) Lake Hibara, (8) Lake Toya, (9) Lake Shikotsu.

Figure S2. Vertical profiles of dissolved CH₄ concentration (nM, red circles) and water temperature (°C, gray circles) in nine study lakes during the period from July to September in 2016–2017. AS: Lake Ashinoko, MO: Lake Motosu, SA: Lake Saiko, AO: Lake Aoki, NO: Lake Nojiri, CH: Lake Chuzenji, HI: Lake Hibara, TO: Lake Toya, SH: Lake Shikotsu. Shaded areas denote the range of the thermocline.

Figure S3. Vertical profiles of dissolved CH₄ concentration (nM, red circles) and the percentage of surface irradiance (%, gray circles) in nine study lakes during the period from July to September in 2016–2017. See legend of Figure S2 for the abbreviation of lake names and the descriptions of shaded areas.

Figure S4. Vertical profiles of dissolved CH₄ (nM, red circles) and chlorophyll *a* (μ g/L, gray circles) concentrations in nine study lakes during the period from July to September in 2016–2017. See legend of Figure S2 for the abbreviation of lake names and the descriptions of shaded areas.

Figure S5. Vertical profiles of dissolved CH₄ (nM, red circles) and DOP (μ M, gray circles) concentrations in nine study lakes during the period from July to September in 2016–2017. See legend of Figure S2 for the abbreviation of lake names and the descriptions of shaded areas.

Figure S6. Vertical profiles of dissolved CH₄ (nM, red circles) and DIN (μ M, gray circles) concentrations in nine study lakes during the period from July to September in 2016–2017. See legend of Figure S2 for the abbreviation of lake names and the descriptions of shaded areas.

Figure S7. Vertical profiles of dissolved CH₄ (nM, red circles) and SRP (μ M, gray circles) concentrations in nine study lakes during the period from July to September in 2016–2017. See legend of Figure S2 for the abbreviation of lake names and the descriptions of shaded areas.

Figure S8. Vertical profiles of dissolved CH₄ (nM, red circles) and DOC (μ M, gray circles) concentrations in nine study lakes during the period from July to September in 2016–2017. See legend of Figure S2 for the abbreviation of lake names and the descriptions of shaded areas.

Figure S9. Vertical profiles of dissolved CH₄ concentration (nM, red circles) and TN/TP (ratio, gray circles) concentrations in nine study lakes during the period from July to September in 2016–2017. See legend of Figure S2 for the abbreviation of lake names and the descriptions of shaded areas.

Synechococcus (x10⁵ cells/mL)

Synechococcus (x10⁵ cells/mL)

Synechococcus (x10⁵ cells/mL)

1

0

ό

υ 100 DOC (μM)

50

1

0

δ

300

TN/TP

600

900

0

0.18

)6 0.12 DOP (μM)

0.06

Figure S10. Relationships between *Synechococcus* cell density (cells/mL) and lake physicochemical variables in study lakes. Univariate regression lines were shown for the explanatory variables that were retained in the best model of GLMs with gamma distribution of response variable. See the legend of Figure S10 for symbol description.

0

0.00

150

Figure S11. Vertical profiles of dissolved CH₄ concentration (nM, red circles) and Mn (μ M, gray circles) concentrations in nine study lakes during the period from July to September in 2016–2017. See legend of Figure S2 for the abbreviation of lake names and the descriptions of shaded areas.

Figure S12. Relationships between phytoplankton biomass (log₁₀ (Chl *a*), μ g/L) and two variables (DIN and DOC, μ M) in study lakes. \Box : Lake Ashinoko, \circ : Lake Motosu, Δ : Lake Saiko, \diamond : Lake Aoki, ∇ : Lake Nojiri, \blacklozenge : Lake Chuzenji, \blacksquare : Lake Hibara, \bullet : Lake Toya, \blacktriangle : Lake Shikotsu.

Figure S13. Vertical distribution of *Synechococcus* density (red circles) in relation to the DOC profile (gray circles) in the study lakes. Shaded areas denote the range of the thermocline. See legend of Figure S2 for the abbreviation of lake names.

No	Lake	Date	Origin	Catchment area (km²)*	Elevation (m)	Annual precipitation (mm)†	Surface area (km²)*	Volume (km³)*	Mean depth (m)‡	Maximum depth (m)*	Average water residence time (year)*
1	Ashinok o	2016/8/5	Caldera	15.9	724	1,010	7.0	0.18	26	44	4.50
2	Motosu	2016/8/10	Damme d	24.6	901	1,470	4.7	0.33	70	122	6.50
3	Saiko	2016/9/3	Damme d	34.4	902	1,470	2.1	0.082	39	73	1.60
4	Aoki	2016/9/9	Tectonic	7.3	822	1,760	1.7	0.054	29	58	0.53
5	Nojiri	2016/9/29	Damme d	12.9	654	2,100	4.5	0.096	21.	39	2.00
6	Chuzenji	2017/7/12	Damme d	119.7	1,267	1,920	11.6	1.13	97	163	5.90
7	Hibara	2017/8/10	Damme d	106.4	831	1,370	10.8	0.13	12	31	0.82
8	Тоуа	2017/9/6	Caldera	101.6	90	930	70.4	8.19	116	180	9.00
9	Shikotsu	2017/9/8	Caldera	144.5	252	1,490	78.8	19.5	248	363	43.00

Table S1. Watershed and lake morphological variables of the nine study lakes in Japan.

*Values determined by literature [1,2]. †Values obtained from nearby weather station for each lake. ‡Values calculated by dividing lake volume by surface area.

N			Secchi	Water								TN/TP	Mn	Chl a
0	Lake	Trophic status	depth	temperatu	рН	DOC (µM)	DIN (µM)	TN (µM)	SRP (µM)	$DOP\left(\mu M\right)$	TP (µM)	(ratio)	(M)	(ug/L)
0			(m)	re (°C)								(1200)	(μινι)	(µg/L)
	Ashinok	Oligotrophic		27.9										
1	0		9.2		8.4	83.9	2.7	19.3	0.038	0.058	0.165	117	0.030	1.68
		Ultra-		29.8										
2	Motosu	oligotrophic	14.0		8.1	37.8	9.5	25.7	0.021	0.046	0.113	227	0.014	1.24
3	Saiko	Oligotrophic	8.5	23.2	8.5	76.8	8.9	23.3	0.044	0.073	0.204	113	0.022	2.24
4	Aoki	Oligotrophic	5.9	23.0	7.8	42.5	10.2	21.3	0.021	0.051	0.143	149	0.018	1.10
5	Nojiri	Oligotrophic	5.4	20.8	7.4	93.6	4.5	21.1	0.021	0.062	0.182	116	0.025	1.84
6	Chuzenji	Mesotrophic	11.5	26.5	8.7	51.2	7.7	28.4	0.118	0.017	0.305	93	0.002	5.81
7	Hibara	Mesotrophic	5.8	25.6	7.2	81.5	8.8	28.5	0.062	0.033	0.267	107	0.124	3.84
0		Ultra-		22.2		12.0		22.2	0.040	0.010	0.4.40	2 24	0.007	
8	Toya	oligotrophic	14.5		7.7	42.9	17.4	33.3	0.042	0.012	0.142	234	0.006	0.72
0	01.11	Ultra-	15.0	24.8	0.0	20.4	6.0	15.0	0.020	0.011	0.050	222	0.000	
9	Shikotsu	oligotrophic	15.2		8.0	28.4	6.9	17.2	0.029	0.011	0.053	322	0.002	0.48

Table S2. Water quality variables of the nine study lakes in Japan.

Average of the measurement values shown.

			Discharge	Water									
Ν	τ.1.	T. l	(m ³ /s)	temp-	CH ₄	DOC	DIN	TN	SRP	DOP	TP	Mn	TN/TP
0	Lаке	Tributary		erature	(nM)	(µM)	(µM)	(µM)	(µM)	(µM)	(µM)	(µM)	(ratio)
				(°C)									
1	Ashinoko	Myojin	NA	21.8	1,320.8	42.9	29.8	41.9	2.14	0.00	0.97	0.07	43
2	Saiko	Honzawa	0.018	0.01821.8	15.8	32.3	28.3	40.5	0.25	0.12	0.60	0.01	67
3	Nojiri	Denkuro	0.12	17.9	90.5	233.8	43.0	64.2	0.25	0.00	0.45	0.02	141
4	Nojiri	Sugakawa	0.012	18.2	232.4	189.4	87.3	136.2	1.75	0.25	8.94	0.03	15
5	Nojiri	Terazaki	0.026	16.5	9.1	177.2	18.3	62.6	0.75	1.03	4.85	0.01	13
6	Chuzenji	Jigoku	1.94	21.5	8.8	42.2	13.4	24.6	0.33	0.00	0.06	0.01	436
7	Hibara	Oowasezawa	0.152	18.2	9.5	92.4	16.3	32.9	0.30	0.00	0.06	0.00	586
8	Hibara	Azuma	0.90	17.5	7.0	136.3	12.2	88.9	0.11	0.00	0.04	0.00	2383
9	Hibara	Nagai	0.63	16.5	12.7	100.3	7.1	33.1	0.11	0.00	0.08	0.01	423
10	Hibara	Ookawairikawa	0.89	17.7	11.5	228.0	6.8	62.9	0.19	0.02	0.21	0.00	306
11	Hibara	Aizu	0.16	16.2	16.1	68.0	9.3	52.7	0.21	0.04	0.12	0.00	449
12	Hibara	Oshizawa	0.26	16.3	10.5	50.7	11.9	70.4	0.19	0.04	0.07	0.00	1076
13	Hibara	Shimizuzawa	0.50	15.2	103.0	56.2	18.6	48.3	0.04	0.21	0.12	0.02	418
14	Toya	Sobetsu	0.28	14.7	9.3	77.7	15.5	34.8	0.14	0.27	0.12	0.01	302
15	Toya	Aka	0.13	16.1	57.0	13.9	4.2	62.4	0.79	0.00	0.54	0.12	116

Table S3. Water quality variables of tributary streams for study lakes.

16	Тоуа	Ookawa	0.12	14.4	8.2	34.2	14.9	37.9	0.86	0.00	0.64	0.04	59
17	Тоуа	Horoto	0.019	17.1	7.7	49.0	13.9	60.5	0.12	0.00	0.92	0.05	66
18	Тоуа	Osaru	NA	19.0	18.8	225.1	16.0	121.2	0.08	0.05	0.46	0.01	263
19	Тоуа	Poromoi	0.009	15.9	8.0	41.0	13	124.8	1.10	0.00	0.77	0.18	161
20	Тоуа	Nishiki	0.060	16.9	48.2	113.1	105.0	168.4	1.32	0.00	1.67	0.04	101
21	Тоуа	Тоуа	0.036	18.7	47.2	109.5	96.6	170.4	0.17	0.62	1.38	0.01	123
22	Shikotsu	Bifue	0.75	18.1	11.3	412.9	17.8	116.6	0.17	0.11	0.56	0.00	207
23	Shikotsu	Ninaru	0.052	14.2	6.0	274.4	17.2	76.9	0.18	0.00	0.36	0.02	215

Probes	Sequence (5' - 3')	Target organisms	FA (%)*	Permeabilization	References
EUB338	GCT GCC TCC CGT AGG AGT	Bacteria	35	Lysozyme	Amann et al. 1990 [3]
Mg84	CCA CTC GTC AGC GCC CGA	Type I methanotrophs	20	Lysozyme +	Ellow and Evendel 2001 [4]
			20	Achromopeptidase	Eller and Frenzei 2001 [4]
Mg705	CTG GTG TTC CTT CAG ATC	Type I methanotrophs	20	Lysozyme +	Ellow and Even rol 2001 [4]
			20	Achromopeptidase	Eller and Frenzel 2001 [4]
405_Syn	AGA GGC CTT CAT CCC TCA	Synechococcus	60	Lysozyme	West et al. 2001 [5]
ARCH915	GTG CTC CCC CGC CAA TTC	Archaea	25	Lysozyme +	Stahl and Amann 1991
	CT		35	Achromopeptidase	[6]

Table S4. The CARD-FISH probes used in the study.

* Formamide concentration in CARD-FISH hybridization buffer.

0	•			
	Akaike	e weights (w)	of response va	ariables
Explanatory variables	CH ₄	DIN	DOP+1	TN/TP
Depth	0.99	0.9	0.30	0.41
Water temperature	0.76	-	-	-
Percentage of surface irradiance	0.63	0.99	0.38	0.40
$\log_{10}(\text{Chl } a + 1)$	0.30	0.99	0.33	1.00
DIN	1.00	-	-	-
$log_{10}(SRP + 1)$	0.29	0.71	0.67	0.95
DOC	0.37	1.00	1.00	1.00
DOP	0.98	-	-	-
TN/TP	0.90	-	-	-
TN	-	-	0.48	-
TP	-	0.96	-	-

Table S5. Relative importance for limnological explanatory variables used in the generalized linear models (GLMs) with a gamma error distribution and an inverse link function for each response variable. Relative importance was evaluated by the sum of Akaike weights (*w*) for each model (CH₄, DIN, DOP and TN/TP).

Table S6. Results of the generalized linear models (GLM) assessing the univariate relationship between environmental variables and dissolved CH₄ concentrations (as shown in Figure 2), the univariate relationship between DOC and chemical variables (Figure 3), and the univariate relationship between lake environmental variables and the peak subsurface maximum (SMM) in nine study lakes (Figure 7). GLMs were constructed with a gamma error distribution and an inverse link function for each variable (1/y = ax + b), except for the variables with an asterisk whose relationships were estimated with GLMs with a Gaussian error and an identity link function (y = ax + b).

Response	Explanatory	Coefficient a	Intercept b	Null	Residual	%deviance
variable y	variables <i>x</i>	(SE)	(SE)	deviance	deviance	explained
CH4	Donth	0.000377	0.00471	88.68	64.65	27.1
$C\Pi 4$	Depth	(0.000087)	0.00108)			
CU	Water	-0.000526	0.0179	88.68	74.90	18.4
$C\Pi 4$	temperature	(0.000147)	(0.0029)			
<u>OII</u>	Surface interdiance	-0.0000156	0.00963	88.68	88.54	0.2
$C\Pi 4$	Surface irradiance	(0.000043)	(0.00132)			
CU.	DIN	0.00156	0.00189	88.68	41.19	53.6
CI 14	DIN	(0.00018)	(0.00070)			
CU	DOD	-0.0780	0.0142	88.68	66.54	25.0
$C\Pi 4$	DOP	(0.0108)	(0.0014)			
CU		0.0000763	-0.000680	88.68	55.63	37.3
U14	11N/11 ⁻	(0.0000110)	(0.00118)			

DIN	DOC	0.00238	0.00213	59.45	41.44	30.3
DIN	DOC	(0.00040)	(0.0175)			
DOD	DOC	-0.000598	0.998	0.109	0.084	22.9
DOP	DOC	(0.000118)	(0.008)			
	DOC	0.0000924	0.000684	31.92	17.92	43.9
$11N/11^{\circ}$	DOC	(0.0000130)	(0.000600)			
Doold CMN/*	DOC	6.03	-205.94	309571	32038	89.7
reak Sivilvi	DOC	(0.77)	(59.95)			
Dool CMM		0.00111	0.000694	6.50	2.62	59.7
Peak Sivilvi	DIN	(0.00050)	(0.00145)			
Dool CMN/*	DOR	2201.44	84.05	309571	165572	46.5
Peak Sivilyi	DOP	(892.22)	(77.24)			
Deal CMM		0.0000344	0.000861	6.50	3.47	46.6
Peak Sivilvi	11N/11	(0.0000191)	(0.00183)			
Doold CM/M/#	Cumachasasana	0.00140	84.62	309571	198007	36.0
	Synechococcus	(0.000703)	(90.85)			

T also	Cryptophyceae			Dino	ophyceae	<u>j</u>	Chrysophyceae		ceae	Bao	Bacillariophyceae			Euglenophyceae			Chlorophyceae		
Lаке	Epi	Meta	Нуро	Epi	Meta	Нуро	Epi	Meta	Нуро	Epi	Meta	Нуро	Epi	Meta	Нуро	Epi	Meta	Нуро	
Ashinoko	1.9	30.7	7.6	1.9	29.8	4.9	1.9	1.0	8.9	59.6	37.6	76.0	0.0	0.0	0.0	34.6	1.0	2.7	
Motosu	3.5	23.2	9.5	2.1	23.2	7.8	0.0	0.0	6.0	38.9	49.1	65.5	0.0	0.0	0.0	55.6	4.5	11.2	
Saiko	4.8	3.5	18.4	4.1	3.5	14.3	0.0	0.0	0.0	15.0	16.7	59.2	0.0	0.0	0.0	76.2	76.3	8.2	
Aoki	22.0	3.7	0.0	19.5	2.6	0.0	1.2	33.9	0.0	31.7	57.7	96.7	0.0	0.0	0.0	25.6	2.1	3.3	
Nojiri	24.5	13.3	6.7	12.2	13.3	6.7	4.1	5.7	13.3	20.4	40.0	63.3	2.0	0.0	10.0	36.7	27.6	0.0	
Chuzenji	1.2	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	13.1	47.6	54.2	0.0	0.0	0.0	85.7	51.9	45.8	
Hibara	4.3	10.1	2.2	6.7	0.5	4.4	3.0	0.5	0.0	39.0	46.4	64.4	0.0	0.0	2.2	47.0	42.4	26.7	
Тоуа	3.6	10.5	0.0	53.6	26.3	0.0	10.7	5.3	0.0	14.3	21.1	93.3	0.0	0.0	0.0	17.9	36.8	6.7	
Shikotsu	0.5	0.1	0.9	0.5	0.2	0.9	0.0	0.0	0.9	96.3	99.3	97.4	0.0	0.0	0.0	2.7	0.3	0.0	

Table S7. Relative abundance (%) of phytoplanktonic algae in the epilimnion, metalimnion and hypolTable S6. Relative abundance (%) of phytoplanktonic algae in the epilimnion, metalimnion and hypolimnion of study lakes.

References

- 1. Mori, K.; Sato, Y. Zusetsu Nihon no Mizuumi, Asakura Publishing: Shinjuku, Tokyo, 2015; pp. 1–164.
- 2. Iwata, T.; Mochizuki, N.; Suzuki, T.; Kohzu, A.; Kojima, H.; Fukui, M.; Urabe, J. Roles of terrestrial carbon subsidies to aquatic community metabolism in mountain lake ecosystems in Japan. In *Ecological Research Monographs*, **2016**; pp. 115–144.
- 3. Amann, R.I.; Binder, B.J.; Olson, R.J.; Chisholm, S.W.; Devereux, R.; Stahl, D.A. Combination of 16S rRNAtargeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. *Appl. Environ. Microbiol.* **1990**, *56*, 1919–1925.
- 4. Eller, G.; Frenzel, P. Changes in activity and community structure of methane-oxidizing bacteria over the growth period of rice. *Appl. Environ. Microbiol.* **2001**, *67*, 2395–2403.
- 5. West, N.J.; Schönhuber, W.A.; Fuller, N.J.; Amann, R.I.; Rippka, R.; Post, A.F.; Scanlan, D.J. Closely related *Prochlorococcus* genotypes show remarkably different depth distributions in two oceanic regions as revealed by in situ hybridization using 16S rRNA-targeted oligonucleotides. *Microbiology* **2001**, *147*, 1731–1744.
- Stahl D.A.; Amann, R. Development and application of nucleic acid probes. In *Nucleic acid techniques in bacterial systematics*; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley & Sons Ltd : Chichester, UK, 1991, pp. 205–248.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).