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Abstract: Subsurface flow constructed wetland (SSFCW) has been applied for wastewater treatment
for several decades. In recent years, the combination of ferric-carbon micro-electrolysis (Fe/C-M/E)
and SSFCW was proven to be an effective method of multifarious sewage treatment. However, Ferric
substrate created a relatively reductive condition, decreased the oxidation efficiency of NH4

+-N,
and blocked the following denitrification process, which led to the low removal efficiencies of
NH4

+-N and total nitrogen (TN). In this study, partial aeration was introduced into the ferric-carbon
micro-electrolysis SSFCW (Fe/C-M/E CW) system to solve the problem above. The water quality and
nitrogen-related functional genes of bacteria on the surface of substrate were measured for mechanism
exploration. The results showed that, the removal efficiencies of NH4

+-N and total phosphorus
(TP) in an aerated Fe/C-M/E CW system were 96.97% ± 6.06% and 84.62% ± 8.47%, much higher
than 43.33% ± 11.27% and 60.16% ± 2.95% in the unaerated Fe/C-M/E CW systems. However, the
TN removal in Fe/C-M/E CW system was not enhanced by aeration, which could be optimized by
extending more anoxic section for denitrification.

Keywords: aeration; Ferric-Carbon Micro-Electrolysis; nitrogen removal; phosphorus removal;
subsurface-flow constructed wetlands

1. Introduction

Constructed wetland (CW) for wastewater treatment is a competitive technology due to the low
cost, easy operation and simple maintenance [1,2]. Nitrogen in wastewater can be removed by microbial
ammonification, nitrification and denitrification, plant absorption and volatilization, matrix adsorption,
filtration and precipitation in CW [3,4]. In addition, the removal mechanism of phosphorus includes the
adsorption of the fillers, chemical action, absorption of plant and algae, combining with organics, normal
assimilation and excessive accumulation of microorganisms, among which, phosphorus adsorption
by fillers is considered the most effective pathway [5]. Subsurface flow constructed wetland (SSFCW)
is applied for domestic sewage treatment [6,7]; however, it was reported that the denitrification
efficiency was limited [8]. To enhance the efficiency of nitrogen and phosphorus removal, a new method,
i.e., the combined SSFCW with ferric-carbon micro-electrolysis (Fe/C-M/E) was designed [9]. M/E
technology was wildly used in a variety of industrial wastewater treatment processes [10]. Ferric-carbon
micro-electrolysis played a role by galvanic cell reaction, reduction of hydrogen ions, complexation
reaction, flocculation and precipitation, oxidation-reduction, among others [11].

In previous studies, a conclusion was found that the application of ferric-carbon micro-electrolysis
SSFCW (Fe/C-M/E SSFCW) enhanced the removal performance in simulated domestic sewage water
treatment, especially in the process of denitrification and phosphorus removal. Significant nitrogen and
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phosphorus removal performance was also achieved, which were indicated by several studies [9,12–14].
The mechanism of these promoting effects was the supply of electrons by the galvanic corrosion of
numerous micro-scale sacrificial anode in denitrification, and the combination of PO4

3− with Fe2+ or
Fe3+ to remove phosphorus [15].

The experimental results showed that, the removal efficiencies of NO3
−-N and phosphorus by

M/E-SSFCW were 99.54% ± 0.80% and 93.63% ± 5.30%, respectively, which were much higher than
those of the ordinary SSFCW (NO3

−-N: 37%; total phosphorus (TP): 39%) and biochar-added SSFCW
(NO3

−-N: 57%; TP: 21%) [9]. Another study by Zheng et al. [13] showed the similar tendency that
the removal efficiencies of chemical oxygen demand (COD) and total nitrogen (TN) in iron-carbon
micro-electrolysis vertical flow constructed wetland system increased by 10.16% and 13.72% respectively
compared with the traditional constructed wetland treating tail water of a sewage treatment plant.

Nevertheless, the rapid decrease of dissolved oxygen (DO) in the system is a significant limitation
for nitrification in constructed wetlands [9,16]. Moreover, Fe would compete for trace oxygen with
NH4

+-N, which further inhibited the nitrification process [9]; while in the process of denitrification,
NH4

+-N was produced as nitrate and reacted with Fe (0) directly [17]. Given concerns about the
toxicity of ammonia nitrogen in a water environment [18,19], it is necessary to solve the problems of
low nitrification efficiency and the NH4

+-N accumulation in ferric-carbon micro-electrolysis SSFCW.
Cottingham et al. [20] indicated that there was less soluble ammonia at the outlet in aerated compared to
non-aerated basins, confirming the positive effect of aeration on nitrifying bacteria. Another study [21]
also showed a positive influence of appropriate aeration mode to improve the removal efficiency of
sewage in constructed wetlands. Moreover, the removal of phosphorus in subsurface flow wetland is
also affected by dissolved oxygen (DO). When DO increased in the system, phosphorus precipitation
and adsorption to the substrate were also increasing [22]. Experimental results of Wang et al. showed
that middle aeration allowed the CW to possess more uniform oxygen distribution and to achieve
greater removals of COD and NH4

+-N [23].
Consequently, partial aeration of the substrate was chosen to increase DO content in the Fe/C-M/E

SSFCW. To reduce the reaction of iron with oxygen and enhance the role of iron as an electronic donor
for nitrate reduction, a system with upper aeration section and lower ferric-carbon micro-electrolysis
section was set up to verify whether this structure can improve the efficiency of ammonia oxidation
and the consequential total nitrogen removal in the practical application of Fe/C-M/E CW. The other
three control systems were set up as whole-course Fe/C-M/E-coupled half-way aeration, whole-course
Fe/C-M/E and traditional SSFCW.

In summary, there are three objectives of this optimization experiment: (1) investigate the effects
of aeration on the removal efficiency of nitrogen and phosphorus in M/E-SSFCW; (2) explore the
mechanism of pollutant removal influenced by aeration; (3) verify whether the structure of upper
aeration and lower micro-electrolysis system could improve the removal efficiency of nitrogen.

2. Experimental Design and Methods

2.1. Experimental Facility

The schematic setup of four reactors is shown in Figure 1. Four light-proof laboratory-scale
SSFCWs were set up in Qingdao, Shandong, China. These SSFCW cylinders were made of polyvinyl
chloride, with the height of 600 mm and diameter of 200 mm. Quartz sand (diameter: 2–4 mm;),
iron scraps (10–15 mm;) and biochar (10–15 mm) were three main substrates for the middle layer.
The middle 450 mm layers of the four SSFCWs were installed with different substrate as follows: (1)
Fe/C-M/E system (WME): 20% biochar including 60% iron scraps and quartz sand; (2) whole-course
Fe/C-M/E coupled half-way aeration system (WWME-HA); 20% biochar including 60% iron scraps and
quartz sand; (3) half-way Fe/C-M/E coupled half-way aeration system (WHME-HA): upper part is quartz
sand, lower part is 20% biochar including 60% iron scraps and quartz sand; (4) blank control system
(WC): only quartz sand. At the bottom (50 mm) of the four systems, coarse gravel (20–30 mm) was filled
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as the supporting layer and the top (100 mm) of CWs were also covered with quartz sand (diameter:
2–4 mm). The effluent water level was set at the height of 500 mm to guarantee the flooded status of
most substrate in CWs and simulate the real function status of SSFCW. No plants were involved in these
systems, since the contribution of pollutant removal by plants in vertical subsurface flow constructed
wetland was reported to be less than 20% [8]. Three polyvinyl chloride (PVC) aeration pipes were
each inserted in to the middle of substrates in WWME-HA and WHME-HA and providing the aeration
with 1 L/min (as shown in Figure 1). In addition, a porous PVC pipe was inserted vertically through
substrate to take out the samples from different heights and measure the indexes of temperature, pH,
DO, oxidation reduction potential (ORP) and other physical and chemical properties of the systems
in situ.
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Figure 1. Schematic diagram of experimental laboratory-scale subsurface flow constructed wetlands
(SSFCW).

2.2. Experimental Condition and Operation

The iron scraps were truncated to 10–15 mm, and the biochar was made of Arundo donax by
heating in a muffle furnace at 300 ◦C for 1 h. The detailed preparation was described in our previous
paper [9]. The size of iron scraps and biochar were both between 10–15 mm. The simulated primary
effluent of treated domestic sewage as set out in Table 1. The experiment was conducted in continuous
inflow mode, and the hydraulic loading rate (HLR) was set to 0.17 m3/(m2

·d) for an average hydraulic
retention time of 3 days. These four CWs were placed indoor with irradiation by high voltage sodium
lamps. During the experiment, the temperature was kept between 20 ◦C and 25 ◦C. The whole
experiment lasted from September 2018 to January 2019.
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Table 1. Influent water quality contents.

Indicator Chemical Oxygen
Demand (COD) NH4

+-N NO3−-N
Total Phosphorus

(TP)

Setting Concentration (mg/L) 60 5 15 1
Medicament Sucrose (C12H22O11) (NH4)2SO4 KNO3 KH2PO4

Dosage (mg/L) 51 37.6 76.57 7

2.3. Sample Collection and Analytical Methods

Water samples were collected every two days from the outlets, and six water quality indicators TP,
NH4

+-N, NO2
−-N, NO3

−-N, TN, and COD were measured according to Standard Methods for the
Examination of water and wastewater of American Public Health Association. DO and temperature
were determined by a DO meter (HQ30d, HACH, USA). The pH was monitored by a portable pH meter
(PHS-3D, Rex Instrument, Shanghai, China). A portable ORP meter (ORP-BL, Shunkeda Instrument,
Beijing, China) was applied for the ORP measurement.

Substrate samples were taken from four layers of 0–10 cm, 10–20 cm, 20–30 cm and 30–40 cm and
mixed evenly, to analyze the nitrogen-related functional genes (i.e., ammonia monooxygenase (amoA),
membrane-bound nitrate reductase (narG), copper-containing nitrite reductase (nirK), cd1-containing
nitrite reductase (nirS), and nitrous oxide reductase (nosZ)) of the microbial community by quantitative
polymerase chain reaction (qPCR) as in Shen [9].

Each measurement was performed in triplicate, and the results of each measurement were
presented as mean ± standard deviation. One-way analysis of variance (ANOVA) was used to indicate
the statistical differences between results in four SSFCWs, and the significance level of all analyses was
set to p < 0.05.

3. Results and Discussion

3.1. Nitrogen Removal Performance

3.1.1. Overall Removal Performance and Removal Mechanism of Nitrogen

The physicochemical characteristics of the influent and effluent in four SSFCW systems are shown
in Table 2. Nitrogen removal efficiency in SSFCW was expressed by items of NH4

+-N, NO2
−-N, NO3

−-N
and TN. The removal efficiency of NH4

+-N in aerated M/E-SSFCW WWME-HA and WHME-HA presented
excellent performance as 96.97% ± 6.06% and 95.66% ± 5.51% far more than (p < 0.05) the result of
unaerated SSFCW WME (43.33% ± 11.27%) and WC (22.41% ± 9.60%). It strongly demonstrated the
aeration plays an important and positive role in NH4

+-N removal (as shown in Figure 2). The effect of
aeration on NH4

+-N removal was also reflected in the studies of Lee et al. [24] and Cottingham et al. [20].
The higher DO content in WWME-HA and WHME-HA caused the better nitrification of nitrifying bacteria.

The TN removal efficiency in WME, WWME-HA and WHME-HA reached 53.87% ± 4.60%, 55.92% ±
8.25% and 52.49% ± 10.29% respectively, showed a better effect than WC (30.68% ± 9.03%) (p < 0.05).
Enhanced nitrification in aeration groups led to high removal efficiency of NH4

+-N. However, from
the aspect of NO3

−-N removal efficiency, the unaerated M/E-SSFCW WME was the best at 97.07% ±
1.78%, followed by the aerated M/E-SSFCW WWME-HA, WHME-HA and the traditional CW WC with the
TN removal efficiencies less than 70% (p < 0.05). In M/E-SSFCW, the higher removal efficiency was
caused by the ferric-carbon micro-electrolysis substrate in denitrification. Besides the electron donator
COD in wastewater, Cathode Fe substrates can provide electrons to adjacent anode biochar (as shown
in Figure 2), and NO3

−-N in liquid phase could be directly consumed as electron acceptors in the
anode compartment by the relative bacterial function on the surface of biochar, shown as Equations (1)
and (2) [25] below.

5Fe + 2NO3
− + 6H2O→ 5Fe2+ + N2 + 12OH− (1)

10Fe2+ + 2NO3
− + 6H2O→ 10Fe3+ + N2 + 12OH− (2)
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Table 2. The physicochemical characteristics of influent and effluent and related removal efficiency (mean ± standard deviation (SD), n = 30).

Items
Influent
(mg/L)

Effluent (mg/L, except pH) Removal Efficiency (%)

WME WWME-HA WHME-HA WC WME WWME-HA WHME-HA WC

pH 7.60 ± 0.03 7.42 ± 0.05 7.49 ± 0.06 7.46 ± 0.06 7.39 ± 0.04 / / / /
Dissolved Oxygen (DO) 7.53 ± 0.05 0.64 ± 0.32 3.30 ± 0.04 3.64 ± 0.04 0.43 ± 0.04 / / / /

COD 59.09 ± 8.39 31.47 ± 8.39 25.07 ± 7.11 26.44 ± 7.66 38.13 ± 5.679 43.64 ± 9.72 54.98 ± 6.63 51.78 ± 6.48 32.73 ± 7.32
NH4

+-N 5.99 ± 0.63 3.79 ± 0.78 0.16 ± 0.32 0.27 ± 0.35 4.50 ± 0.65 43.33 ± 11.27 96.97 ± 6.06 95.66 ± 5.51 22.41 ± 9.60
NO3

−-N 15.04 ± 1.04 0.44 ± 0.27 5.27 ± 1.01 6.70 ± 1.45 7.32 ± 0.86 97.07 ± 1.78 64.94 ± 5.35 55.48 ± 11.93 51.35 ± 7.58
NO2

−-N 0.19 ± 0.22 0.60 ± 0.18 0.27 ± 0.09 0.40 ± 0.09 2.13 ± 0.87 / / / /
TN 17.27 ± 1.62 7.92 ± 0.51 7.41 ± 1.43 7.91 ± 1.33 11.58 ± 0.55 53.87 ± 4.60 55.92 ± 8.25 52.49 ± 10.29 30.68 ± 9.03
TP 1.04 ± 0.37 0.47 ± 0.11 0.15 ± 0.08 0.41 ± 0.05 0.89 ± 0.13 60.16 ± 2.95 84.62 ± 8.47 63.28 ± 4.16 23.27 ± 6.35
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The results that removal efficiency of NO3
−-N in the aerated group (i.e., WWME-HA and WHME-HA)

were statistically significantly lower than that in unaerated group (p < 0.05), were consisted with the
study of Pan et al. [26]. The removal efficiency of NO3

−-N in aerated group were 64.94% ± 5.35%, while
in the unaerated systems, the removal efficiency of NO3

−-N up to 97.07% ± 1.78%. This phenomenon
can be explained by the reduction of denitrification. On one hand, the amount of oxygen supplement
by aeration can consume COD and activated hydrogen [H], leaving less COD for denitrification of
nitrate/nitrite [13,27]. On the other hand, aeration formed an aerobic condition with DO above 4 mg/L
in the whole system, which inhibited the growth and function of denitrifying bacteria [28]. As can
be seen from Table 2, three experimental systems (WME, WWME-HA and WHME-HA) with iron-carbon
micro-electrolytic substrates caused a small accumulation of NO2

−N, which were all less than 1 mg/L;
while the concentration of NO2

−-N in the effluent of WC reached above 2 mg/L (p < 0.05).

3.1.2. Nitrogen Concentration Distribution in Different Heights of the SSFCWs

Figure 3 shows the variation curves of physical and chemical indexes along constructed wetlands.
As a poisonous pollutant, the concentration of NH4

+-N was of primary concern. The concentrations
of NH4

+-N in four CW systems (Figure 3c) were all reduced rapidly within the 0–10 cm interval.
However, the removal efficiency of NH4

+-N in aerated systems was significantly higher than that in
unaerated systems in this section (p < 0.05). The removal efficiency of NH4

+-N in the 0–10 cm section
of aerated systems were close to 100%, while in the unaerated systems, the nitrification was inhibited
because the DO concentration dropped below 2 mg/L in the 10–60 cm section (Figure 3e), then the
NH4

+-N nitrification was inhibited and became stable.
The concentrations of TN (Figure 3b) in 0–10 cm were all decreased in all four systems. It can be

deduced that simultaneous nitrification and denitrification process occurred in the 0–10 cm section
of all the four CWs. However, the TN concentration tended to be stable in WC in 10–60 cm, while it
gradually decreased in WME, WWME-HA and WHME-HA. Among them, the removal effect in WME was
slightly better than that of WWME-HA and WHME-HA.

NO3
−-N showed a similar trend to TN. The NO3

−-N concentration in WME, WWME-HA and
WHME-HA showed continuous downward trends, while the downward trend is gentler in WC (Figure 3a).
In WWME-HA and WHME-HA, the denitrification rate was higher than that of WC due to the presence of
iron-carbon micro-electrolytic substrate, but lower than that of WME owing to the high DO concentration.
Though aeration was imported to strengthen the ammonia oxidation, excess aeration could inhibit the
following denitrification process, which should be accurately adjusted.

ORP, oxidation-reduction potential, reflects the concentration of oxidizing substance and the
activity of organisms in the systems, which has also been used to monitor nitrification and denitrification
processes [29]. In 0–10 cm, ORP declined in four systems because of the oxidation of Fe and NH4

+-N by
DO. Then in 10–60 cm, ORP decreased in Fe/C-M/E systems (WME, WWME-HA and WHME-HA) along with
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the process of denitrification. Interestingly, in 30 cm of WWME-HA and WHME-HA, there were sudden
increases of ORP, which were due to the position of aeration. Although the relatively higher ORP in
WWME-HA and WHME-HA improved ammonia oxidation, it inhibited the denitrification process, which
needed further optimization.

In the study of Zhou et al., a proper gas-water ratio played a greater role in micro-electrolysis water
treatment process, and the optimal ratio of gas to water is 5:1 under experimental conditions [30]. The
relatively low concentration of NO2

−-N and NH4
+-N in WWME-HA and WHME-HA were attributed to a

high concentration of DO (as shown in Figure 3e). On the other hand, the over-high concentration of
DO in WWME-HA and WHME-HA destroyed the original anoxic condition, further inhibited the reduction
of NO3

- -N, and limited the TN removal. Hence, introducing partial aeration into the M/E CW system is
necessary for the first step of TN removal, i.e. the NH4

+-N oxidation, but the following anoxic condition
for denitrification should also be guaranteed. In other words, the ratio of aeration section to non-aeration
section set in this experiment needed to be optimized, which is extending the non-aeration section.
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Figure 3. The NO3
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−-N (d), DO (e), and Eh (f) concentration

distributions in different heights of four subsurface flow constructed wetlands (SSFCWs).
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3.2. Phosphorus Removal Performance

3.2.1. Overall Removal Performance of Phosphorus

As Table 2 shows, the phosphorus removal efficiency of WME, WWME-HA and WHME-HA are all
above 60%, obviously higher than that of WC (23.27% ± 6.35%) (p < 0.05). It indicated that, Fe/C-M/E
substrate played a positive role in improving phosphorus removal efficiency in CW. The dissolved Fe2+

or Fe3+ could co-precipitate with PO4
3+. In the experiment of Shang et al. [31], the TP removal efficiency

of continuously aerated M/E-SSFCW was 3.74% higher than unaerated M/E-SSFCW, and 24.82% higher
than traditional CW; these results are consistent with ours. Furthermore, research of Zhou et al. [32]
also showed that the combination of ferric-carbon micro-electrolysis and subsurface-flow constructed
wetlands enhanced the phosphorus removal performance. In our research, the combination of aeration
and ferric-carbon material addition improved the TP removal, which showed a better performance
than the independent effects of either aeration or ferric-carbon material.

3.2.2. Phosphorus Removal Mechanism and Concentration Distribution in Different Heights of the
Subsurface Flow Constructed Wetland (SSFCW)

The improvement of TP removal efficiency may be due to two factors-aeration and F/C-M/E
substrate. As Figure 4 shows, the TP removal efficiency of WC was ineffective, while other three M/E
CWs (i.e., WME, WWME-HA and WHME-HA) all presented a rapid downward trend. Among them, the
removal efficiency of TP in WME and WHME-HA was approximately coincident, while the removal
efficiency of WWME-HA was higher than those of the former two (p < 0.05), which provided strong
evidence that Fe/C-M/E coupled aeration could improve the removal efficiency of TP. The simultaneous
appearance of oxygen and Fe in the upper layer of WWME-HA could form more Fe3+ other than Fe2+,
providing 50% more ionic bond for PO4

3- compared with Fe2+ (as shown in Figure 2) [33]. That may be
the reason for the highest TP removal efficiency in WWME-HA (as shown in Figure 1). The dissolved ferric
ions were not detected, which guaranteed the effluent quality. Besides that, phosphorus-accumulating
bacteria (PAOs) can adsorb the dissolved phosphorus and form polyphosphates to accumulate energy
in the aerobic condition, and aeration can enhance the potential phosphorus absorption of PAOs [34].
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3.3. Microbial Community Analysis

The qPCR technique was applied to detect the effect of aeration and the Fe/C-M/E substrate
on microbial functional gene abundance and the further pollutant-removal efficiency. The types of
nitrogen-related genes were as follows: amoA, narG, nirK, nirS and nosZ [35], and bacterial 16S rRNA.
The substrate from the upper layer and below layer were separately taken for functional gene detection.
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As Table 3 shown, the addition of biochar in WME, WWME-HA, and WHME-HA increased the total number
of bacteria (in terms of 16S RNA). The abundance of nitrifying bacteria (in terms of amoA) in WWME-HA

was highest, followed by the WME, WHME-HA, and WC, which confirmed the promoting effect of
aeration in nitrification. In general, the abundances of denitrifying bacteria (in terms of narG, nirK, nirS,
and nosZ) in ME-SSFCW (WME, WWME-HA and WHME-HA) were higher than that in WC, which fitted
with the better denitrification efficiency in Fe/C-M/E CW. Moreover, the nitrification related genes
preferred to show in the upper layer for the better anaerobic condition, while the denitrification-related
bacteria/genes preferred to show in the lower layer for the better aerobic condition according to the
oxygen distribution as shown in Figure 3e.

Table 3. The abundances of related functional genes in denitrifying bacteria and nitrifying bacteria
(mean ± SD, n = 30).

Functional
Genes

WME
(Copy Numbers/g Substrate)

WWME-HA
(Copy Numbers/g Substrate)

WHME-HA
(Copy Numbers/g Substrate)

WC
(Copy Numbers/g Substrate)

Upper Lower Upper Lower Upper Lower Upper Lower

amoA 2.29 ± 0.06 × 107 1.45 ± 0.02 × 107 3.50 ± 0.04 × 107 1.08 ± 0.06 × 107 2.20 ± 0.04 × 107 9.99 ± 0.18 × 106 9.73 ± 0.34 × 106 5.30 ± 0.14 × 106

narG 4.20 ± 0.21 × 105 5.61 ± 0.33 × 105 1.97 ± 0.11 × 105 5.49 ± 0.45 × 105 4.28 ± 0.36 × 105 8.57 ± 0.10 × 105 2.52 ± 0.05 × 105 1.53 ± 0.09 × 105

nirK 1.29 ± 0.06 × 106 1.67 ± 0.04 × 106 8.57 ± 0.44 × 105 1.65 ± 0.10 × 106 8.79 ± 0.11 × 105 1.36 ± 0.01 × 106 8.83 ± 0.24 × 105 6.24 ± 0.74 × 105

nirS 6.20 ± 0.08 × 104 2.15 ± 0.06 × 105 1.81 ± 1.24 × 105 2.35 ± 0.02 × 105 1.78 ± 0.25 × 105 2.06 ± 0.03 × 106 3.00 ± 0.02 × 104 8.06 ± 0.17 × 105

nosZ 2.21 ± 0.11 × 108 2.61 ± 0.42 × 108 2.36 ± 0.17 × 108 1.04 ± 0.13 × 108 1.08 ± 0.06 × 108 6.24 ± 0.17 × 108 3.48 ± 0.49 × 107 7.27 ± 0.91 × 107

16S rRNA 2.13 ± 0.09 × 109 2.38 ± 0.06 × 109 1.64 ± 0.06 × 109 1.99 ± 0.06 × 109 2.62 ± 0.21 × 109 3.30 ± 0.06 × 109 1.27 ± 0.04 × 108 1.44 ± 0.01 × 108

4. Conclusion

The combination of Fe/C-M/E substrate and half-way aeration demonstrated a great advantage
in removing NH4

+-N and TP. The average removal efficiency of NH4
+-N and TP in the aerated

Fe/C-M/E system were 96.97% ± 6.06% and 84.62% ± 8.47%, which were 61.41% and 24.46% higher
than unaerated Fe/C-M/E system, respectively. The average TN removal efficiency of three Fe/C-M/E
CWs were similar, shown as 52.49%–55.92%, approximately 25% higher than the traditional SSFCW.
The structure of upper aeration and lower micro-electrolysis CW did not show the expected advantage
of TN removal owing to the excess aeration, which can be enhanced by decreasing the aeration section
and strengthening the anoxic iron-carbon micro-electrolytic substrate section.
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