
water

Article

Modelling the Impact of Leaky Barriers with a 1D
Godunov-Type Scheme for the Shallow
Water Equations

Shannon Leakey , Caspar J. M. Hewett * , Vassilis Glenis and Paul F. Quinn

School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
s.c.leakey2@newcastle.ac.uk (S.L.); vassilis.glenis@newcastle.ac.uk (V.G.); p.f.quinn@newcastle.ac.uk (P.F.Q.)
* Correspondence: caspar.hewett@newcastle.ac.uk

Received: 13 December 2019; Accepted: 21 January 2020; Published: 30 January 2020
����������
�������

Abstract: There is increasing interest in distributing small-scale interventions across the landscape as
an alternative means of reducing flood risk. One such intervention, the leaky barrier, is introduced in
channels to slow down high flows and encourage temporary storage on the floodplain. While these
barriers have been implemented widely, there is still resistance to their use at the scales required to
impact significantly on flood risk, at least partially due to an evidence gap. In particular, there is
no standard method for representing leaky barriers in hydraulic models. This study sets out a
methodology for developing mathematical models which capture the hydraulics of leaky barriers
accurately, allowing key questions about their combined behaviour in catchments to be answered.
A 1D Godunov-type scheme is set up and leaky barriers incorporated with internal boundary
conditions. This model is tested against benchmarks from the literature and new steady-state data,
and then run predictively on transient cases. The method will help to answer key questions about the
optimal leakiness of small-scale interventions, the limits to their usefulness, and how combinations
of barriers may or may not cause synchronisation problems when the effect of multiple barriers
is aggregated.

Keywords: hydraulic modelling; finite volume method; Godunov-type scheme; hydraulic flume;
nature-based solutions; sustainable drainage systems; runoff attenuation features; leaky barriers;
woody debris; log jams

1. Introduction

Flooding is one of the great issues of our time, representing the world’s most damaging
environmental hazard [1–3]. The pattern of land use change in both the developed and developing
world over the last century has been a key driver for increasing the risk of flooding. Most notably,
urban development has had a widely recognised impact, representing a direct change from high
infiltration to low infiltration [4]. Moreover, post-Green Revolution intensification of farming has
increased surface runoff pathways and soil erosion, as well as introducing diffuse pollution in the
form of nutrients and pesticides into waterways [5]. These impact not only on flood risk, but on
numerous environmental factors including water quality, river morphology, habitats and biodiversity.
While these changes are well researched and understood [6–9], solving the problems associated with
them remains a major challenge. In addition, climate change poses a further threat to urban and rural
catchments via wetter winters and more intense summer storms [10,11].

These current and potential future threats provide a backdrop for increasing interest in moving
away from large traditional engineered structures to large numbers of small-scale interventions
distributed across the landscape with a focus on approaches that mimic or work with natural
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processes. Numerous terms are used to describe such interventions, including Ecological
Engineering [12], Catchment Systems Engineering [13,14], Nature-Based Solutions [15,16], Natural
Flood Management [17–19], Natural Infrastructure [20], Engineering with Nature [21] and Working
with Natural Processes [22]. In urban settings this is paralleled by developments such as Green
Infrastructure [23,24] and Sustainable Drainage Systems [25,26].

Alongside reducing flood risk, nature-based interventions can also reduce diffuse pollution and
sediment export, or improve biodiversity and carbon accumulation [16]. Some interventions fall in
the category of Runoff Attenuation Features (RAFs): soft-engineering interventions in agricultural
catchments designed to slow flow and create temporary storage of water during periods of high
flow [27–29]. Examples include strategically placed leaky barriers and creation of temporary storage
ponds. RAFs are generally designed to target extreme flows, taking account of factors such as the need
to maintain high conveyance rates in floods, improving recharge rates and avoiding impoundment of
water needed by downstream communities. They provide the multiple benefits of reducing flood risk,
diffuse pollution from farming and soil erosion [13]. If a RAF intercepts the channel network or an
overflow path, it is called an online RAF. Otherwise it is called an offline RAF [30].

Leaky barriers are described in the literature by a plethora of terms including large woody
debris [31], woody debris structures [32], woody debris jams [33], engineered log jams [34] and leaky
dams [35]. One key effect of such barriers is that they reduce flow velocities and add friction to the
catchment system [30,36]. They can be created by natural processes, for example, barriers formed
by trees falling into waterways [37]. However, many of these natural barriers in river systems have
been removed in recent decades [38] which has given rise to an interest in installing engineered leaky
barriers in river catchments. Such structures aim to mimic the effect of natural leaky barriers, acting as
small RAFs that allow low flows to pass under or through them unimpeded, but causing high flows to
back up, creating temporary storage in the channel and encouraging water onto the floodplain [28,35].

Engineered leaky barriers may be constructed in a variety of designs, ranging from small structures
that only impede the flow a little to less leaky, more engineered “wedged log” or “horse jump”
dams [39,40]. The designs used vary hugely, in part due to cost, location and what materials are
readily available, but most pertinently because there are few or no design criteria available [32,41,42].
This could be due to our inadequate understanding of the effects of leaky barriers on turbulent flow
and the fluid forces acting on the barriers [34]. Such knowledge could inform and improve design
criteria, leading to optimal design. However, it is challenging to study leaky barriers in the field. This is
because data are generally limited before intervention and, once a barrier is in place, investigating its
effects depends on varying degrees of rainfall, including large storms [2,22]. It is also worth noting
that, given that the effect on flow of an individual leaky barrier is small, a large number are required
to have a significant effect at a catchment scale [43]. For example, in the UK, 457 leaky barriers have
been installed in Calderdale [44] and 167 in Pickering [45,46]. This requirement for a large number of
barriers means that scaling is a key problem [35,43,47,48]. Moreover, there are concerns that installing
large numbers of barriers across a catchment could lead to synchronisation issues. This is where the
timing means that peaks coincide from different sub-catchments [49], resulting in greater flooding than
when there were no interventions. Mathematical modelling is the obvious way to attempt to overcome
these problems, but there are limited options for modelling RAFs [50] and, in particular, there is no
accepted way of representing leaky barriers in models [22,51].

The simplest method is to circumvent the modelling problem by not modelling the barriers
themselves, but rather using their measured effect to drive another model. This was done for Pickering
with a 2D hydraulic model [46]. As other RAFs besides leaky barriers were implemented at Pickering,
this method could not isolate the effects of the leaky barriers. A more direct modelling approach would
be more reliable and more useful for planning.

The flood-excess volume method [43] is the simplest way to model leaky barriers directly. Here,
the volume of temporary storage provided by the barriers is estimated, and then it is removed from
the flood hydrograph. For example, the storage volumes behind online and offline barriers have been
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estimated with 1D hydraulic models [45] and hydrological GIS tools [52]. This approach assumes
the barrier is empty before the flood event, and so would not be effective at modelling multi-peak
events. Also, it neglects any losses through the barrier walls, and it does not consider the location
of the barriers. These problems mean that the modelled effects of the interventions are likely to be
overestimates. Ideally, there would be a way to include leaky barriers in the hydrological and hydraulic
models themselves.

A popular method for including leaky barriers in a model is to change parameters at the location
of the barriers. For example, online barriers are often represented as increased values of Manning’s n,
both in hydrological models [36,53] and hydraulic models [54,55]. However, even if these parameter
values come from the field, it is inappropriate to apply them to other sites or flow conditions [56].
Moreover, an increased Manning’s n will impact low flows as well as high flows, and so this would
not be a good model of barriers that let low flows through unimpeded. In fact, an increased Manning’s
n will have little effect on steeper slopes [36,57], but a leaky barrier is going to provide an obstruction
either way.

A more physically-based way to model online barriers is by altering the channel geometry.
For example, they have been modelled as partial blockages [47] and reduced cross-sections based on
field data [58], both in 1D hydraulic models. This has a different effect to changing the roughness.
Indeed, while increasing the roughness reduces velocities, decreasing the cross-sectional area increases
velocities [58].

Leaky barriers can also be modelled by comparing them to well-understood hydraulic structures.
For example, weir equations have been used to study the behaviour of different barrier designs—full
brow, rectangular slot, V-notch, inverted V-notch, letterbox slot—as part of a hydrological model
describing the ponded water behind each barrier [59]. Another option is to model leaky barriers as
sluice gates with weir overflow, as was done to route the runoff from Dynamic-Topmodel [28] and as
part of a simple network model [35]. While these representations have more potential to replicate the
real-life behaviour of online and offline barriers, they were not validated with data. We are constrained
by the theoretical and empirical equations that already exist.

There are limited detailed measurements of what happens at leaky barriers, and so there is no
agreed-upon way to represent leaky barriers in models. Without further investigation, it is impossible
to know if real leaky barriers will behave as high values of Manning’s n, reductions in cross-sectional
area, or weirs/sluice gates. To get a clearer idea of how leaky barriers behave in isolation, they have
to be investigated in isolation. In particular, a recent review paper [56] has recommended that the
hydraulic structure method be investigated in more detail. The aim of the present study is to develop a
methodology to model leaky barriers in catchments, using a combination of physical and mathematical
models. A 1D hydraulic model that includes leaky barriers as hydraulic structures is developed
and then tested against experimental data obtained from a controlled hydraulic flume. The results
suggest that internal boundary conditions provide a promising method for including leaky barriers as
hydraulic structures in mathematical models.

2. Materials and Methods

2.1. Conceptual Model

Figure 1a shows how the physical model of the leaky barrier consists of a single horizontal
aluminium sheet with a gap underneath. Some flow will always pass under the barrier and, in high
flows, there will be flow over the barrier too. In the terminology from the literature, the barrier is
like an underflow jam [60]. Such barriers have been modelled by adding together the sluice gate and
rectangular weir equations [28,35].

The physically-based models of [61] suggest that there are five possible operating stages for a
combined gate and weir structure, as illustrated in Figure 1c. These are:
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1. Gate operating freely, no weir overflow
2. Gate submerged by tailwater, no weir overflow
3. Gate and weir operating freely
4. Gate submerged by tailwater, weir operating freely
5. Gate and weir submerged by tailwater

In stages 1–2, the barrier acts as a sluice gate, while in stages 3–5, the barrier acts as a combined
sluice gate and rectangular weir. The differences within these two groups depend on the depth of the
tailwater and the location of the associated hydraulic jump. Different discharge equations are used if a
gate is operating freely, as in stages 1 and 3, or with its vena contracta submerged by a hydraulic jump,
as in stages 2, 4, and 5 [62]. Similarly, different discharge equations are used if a weir is operating freely,
as in stages 3 and 4, or if it is submerged, as in stage 5. Although in reality the gate and weir flows will
interact [63–65], the interaction is ignored in the present study, and the gate and weir discharges are
simply added together.

(a)

hL

hRa0

a1

(b)

1 2 3 4 5

(c)

Figure 1. The leaky barrier model. (a) Physical model in the hydraulic flume. (b) Definition sketch for
left-to-right flow. (c) Five operating stages, based partially on [61].

2.2. Flume Experiments

Physical modelling was undertaken in a hydraulic flume at Newcastle University. The flume
has length 17.95 m, width 0.294 m, and slope 1:1600. Calibration of the flume gave a Manning’s n of
0.009. A leaky barrier was placed at x = 11.14 m along the length of the flume, using slots on either
side of the flume to fix it in place, as shown in Figure 1a. These slots reduced the barrier width to
0.264 m. Let the depth of the base of the leaky barrier be a0 and the top a1, as in Figure 1b. Four barrier
configurations were tested, each for a range of steady-state flow conditions:

(a) No barrier, 1 experiment;
(b) (a0 = 0.05 m, a1 = 0.15 m), 7 free flow experiments;
(c) (a0 = 0.05 m, a1 = 0.1 m), 15 free flow experiments; and
(d) (a0 = 0.025 m, a1 = 0.125 m), 30 free flow and 2 submerged experiments.

“Free flow” refers to stages 1 and 3, or scenarios where the leaky barrier is not touched,
and “submerged” refers to stages 2, 4 and 5, where the downstream tailwater affects the flow through
the barrier. Depth measurements were taken at six fixed points along the flume, two upstream of the
barrier and four downstream:

h10, h11, h11.3, h12, h13, h17.8, (1)
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where the subscript denotes the distance in metres along the flume. For (c) and (d), two additional
depth measurements were taken for the free-flow experiments, one either side of the downstream
hydraulic jump.

For each of the 55 flume experiments, the steady-state discharge was measured using a manometer
(qman). For (a), (b) and (d), a velocity meter was also used to calculate the discharge (qvel). It was found
that the manometer and velocity-meter discharges did not agree. The equation

qvel = 0.00286 + 1.08 · qman (2)

describes the relationship for (d) with R2 = 0.99, as plotted in Figure 2. In case (c), there were no
qvel data. However, the velocity meter was known to give more accurate results than the manometer.
Therefore, for consistency, the regression Equation (2) was used to generate qvel values from measured
values of qman for all cases. This transformed discharge is assumed to be an unbiased measurement for
the remainder of the paper.
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Figure 2. The relationship between velocity-depth and manometer discharges, with regression for (d).

2.3. Numerical Model

2.3.1. Godunov-Type Scheme

The governing equations are the 1D shallow water equations, a set of nonlinear, hyperbolic partial
differential equations derived from the Navier-Stokes equations with the assumption that vertical
acceleration is negligible [66]. They can be written in conservative form as

∂U
∂t

+
∂F
∂x

= S, (3)

where the vector of conserved variables, flux vector, and source term vector are

U =

[
h

hu

]
, F =

[
hu

hu2 + 1
2 gh2

]
and S =

[
0

gh(Sb − S f )

]
, (4)

respectively, and h is the water depth (m), u the depth-averaged velocity (m/s), g the gravitational
acceleration (m/s2), S f the friction slope, and Sb the bottom slope.

A finite volume Godunov-type scheme was chosen because it can deal with rapidly varying and
transcritical flow, as well as flood waves represented as discontinuities in the water level. One splitting
scheme for the inhomogeneous Equation (3) is the explicit time-marching formula

Un+1
i = Un

i −
∆t
∆x

(Fn
i+1/2 − Fn

i−1/2) + ∆tSn
i , (5)
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where Un
i is the average value of U in cell i at time tn [66].

However, the flexible semi-discrete method is used to obtain a second-order accurate scheme.
This is when the space and time discretisations are considered separately [67]. Discretisation in space
but not time leads to the ordinary differential equation

dUi
dt

= − 1
∆x

(Fi+1/2 − Fi−1/2) + Si. (6)

For second-order accuracy in time, a second-order Runge-Kutta method is used to solve (6) as in [68].
Let

U∗i = Un
i + ∆tKi(Un

i ) (7)

where
K(Un

i ) = −(Fn
i+1/2 − Fn

i−1/2)/∆x + Sn
i . (8)

This is equivalent to (5), but second-order accuracy in time is obtained with

Un+1
i = Un

i +
1
2

∆t(K(Un
i ) + K(U∗i )) (9)

instead. To use this Equation (9), the time step ∆t, interface fluxes Fn
i+1/2 and Fn

i−1/2, and source term
Sn

i need to be found.
For stability, each time step ∆t is obtained using the Courant-Friedrichs-Lewy condition

∆t = C
∆x

max(|u|+ a)
(10)

where a =
√

gh is the celerity and C ∈ (0, 1] is the Courant number [66]. The value of C is fixed at
the start of the simulation, although the first time step is set to be ∆t = 10−5 s. This is because, at the
start of a dam break simulation, there is no contribution to the wave speed from the particle velocity u.
However, the velocity will immediately stop being zero, and so the first time step could be so large
that it leads to instabilities [67].

The HLL Riemann solver of [69] is used to estimate the flux through the cell interface. Suppose
the conserved variables to the left of a given interface are UL and those to the right are UR as shown in
Figure 3, where O is a local origin located at the cell interface. Then the flux through the interface is
approximated by

F =


FL if 0 ≤ SL
SRFL−SLFR+SLSR(UR−UL)

SR−SL
if SL ≤ 0 ≤ SR

FR if SR ≤ 0

, (11)

where SL and SR are approximate wave speeds in the Riemann problem, estimated here using the
adaptive method of [70]. In this method, an initial guess is given for the depth in the star region using
a two-rarefaction approximation:

h0 =
1
g

(
1
2
(aL + aR) +

1
4
(uL − uR)

)2
(12)

If this depth h0 is less than hL and hR, then the two-rarefaction approximation is kept to get h∗ = h0.
Otherwise, a two-shock approximation is used to get

h∗ =
pLhL + pRhR + uL − uR

pL + pR
(13)
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where

pK =

√
g(h0 + hK)

2h0hK
(14)

for K = L, R. Now, if h∗ > hL, then the left wave is a shock and

SL = uL − aL

√
0.5(h∗ + hL)h∗

hL
, (15)

otherwise
SL = uL − aL. (16)

Similarly, if h∗ > hR, then the right wave is a shock and

SR = uR + aR

√
0.5(h∗ + hR)h∗

hR
, (17)

otherwise
SR = uR + aR. (18)

Figure 3. HLL Riemann solver of [69].

For second-order accuracy in space, the left and right Riemann states UL and UR are found using
MUSCL-type extrapolation [71] with a minmod slope limiter as in [68]. For instance, at the interface
between the ith and (i + 1)th cells, the left and right Riemann states are given by

UL
i+1/2 = Ui +

∆x
2
∇Ui, (19)

UR
i+1/2 = Ui+1 −

∆x
2
∇Ui+1 (20)

with the gradient ∇Ui limited by

∇Ui = minmod
(

Ui −Ui−1

∆x
,

Ui+1 −Ui
∆x

)
(21)

where the minmod slope limiter is defined as
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minmod(a, b) =


min(a, b) if a, b ≥ 0

max(a, b) if a, b ≤ 0

0 otherwise

. (22)

This requires two ghost cells at each boundary.
Only the homogeneous case was taken into account when finding the flux, even though the

conservation laws (3) contain source terms. This is because the bed slope source term

ghSb = −gh
∂zb
∂x

(23)

is unsplit from the equations, and so is incorporated into the time-marching Formula (9) at the end of
each time step. A central difference approximation gives

Sn
i =

[
0

−ghn
i

zb,(i+1/2)−zb,(i−1/2)
∆x

]
(24)

as in [68]. In contrast, the friction source term S f is split into an ordinary differential equation

dq
dx

= −ghS f (25)

solved implicitly at the start of each time step with

qn+1 = qn − ∆tgh
u|u|n2

R4/3

/(
1 + 2∆t g

|u|n2

R4/3

)
(26)

as in [68], where R is the wetted perimeter. This is stable for high values of Manning’s n, which is
useful when comparing different ways to model leaky barriers.

2.3.2. Leaky Barriers as Internal Boundary Conditions

Suppose there is a leaky barrier located exactly at the interface between the cells i and i + 1, that
is, at the interface i + 1/2. The interface flux Fn

i+1/2 needed for the time-marching Formula (9) has two
components: the mass flux hu = q and the momentum flux

hu2 +
1
2

gh2 =
q2

h
+

1
2

gh2. (27)

Unless the water is shallow enough to flow unimpeded below the barrier, these fluxes cannot
be found using the Riemann solver (11)—there is a leaky barrier obstructing the flow and so the
shallow water Equation (3) are no longer valid. There are two steps for solving a similar problem
involving a sluice gate [72]. First, find the mass flux q through the hydraulic structure using a
well-understood steady-state discharge equation. Second, find some depth h to substitute into (27) to
get the momentum flux.

However, the leaky barrier to be studied (Figure 1a) is not a well-understood hydraulic structure.
The approach taken here is to assume that there are five possible operating stages for the barrier as
outlined in Section 2.1. Let the depth of the base of the leaky barrier be a0 and the top a1, and assume
that the flow is from left to right (Figure 1b). First, assume that the gate and weir are operating freely.
The gate flow is given by the classical equation

qg = Cga0
√

2ghL. (28)

Here, the discharge coefficient Cg is a function of the upstream depth hL,
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Cg = Cc

√
1

1 + Cca0/hL
(29)

where Cc is the contraction coefficient, as described by [72]. The weir flow is given by

qw =
2
3

√
2gCw(hL − a1)

3/2, (30)

where Cw is a constant. Ignoring any interactions between the gate and weir, the combined flow is
given by

q = qg + qw. (31)

If the gate is operating freely, then there is supercritical flow downstream of the barrier, as illustrated in
stages 1 and 3 of Figure 1c. The depth of this supercritical flow, denoted hsup, is calculated iteratively
using an energy balance either side of the barrier, as in [73]. Following [72,74], if hR is less than the
conjugate depth of hsup, then there is sufficient momentum to push the hydraulic jump downstream
and the gate is operating freely. Otherwise the gate is submerged (stages 2, 4, and 5). In these cases,
the submerged flow equation of [75] is used to find a reduced value of Cg,

Cg = KCc

√
1− h′

hL
(32)

where

h′

hL
=

K2 ±
√

K4 + 4A
(

A
(

hR
a0

)2
−
(

hL
a0

)
K2
)

2A
(33)

and
K =

1√
1−

(
Cca0
hL

)2
, A =

1

4Cc

(
1− Cca0

hR

) . (34)

Here, the discharge coefficient Cg is a function of hR as well as hL. This is the most suitable submerged
discharge equation when there are no calibration data [72,76]; however, it does add a degree of
uncertainty due to its purely theoretical nature. Additionally, if hR is deeper than the critical depth
over the weir, then the weir is also submerged (stage 5). In this case, the submerged flow equation
of [77] is used to modify qw, multiplying it by(

1−
(

hR − a1

hL − a1

)n)m

, (35)

where m = 0.185 and n = 1.5, to make qw also a function of hR as well as hL.
The discharge Equation (31) provides the mass flux hu = q, which is the same leaving the left-hand

cell as entering the right-hand cell. The momentum flux (27) is more difficult as it needs a value for h
as well as q, and h is different in each cell due to the discontinuity created by the leaky barrier. For the
momentum flux from the left-hand cell, the depth h in (27) is hL. For the flux into the right-hand cell,
the depth h in (27) is hsup for stages 1 and 3, and hR for stages 2, 4, and 5.

2.3.3. Establishing Discharge Coefficients and Energy Losses

The internal boundary condition used in the 1D model is based on equations with empirical
parameters in Supplementary Materials. These parameters were found by analysing the measured
depths immediately upstream and downstream of the barrier. First, as the slots either side of the
barrier reduced the barrier width to 0.264 m, the discharge Equation (31) was multiplied by the ratio
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0.246/0.294 ≈ 0.84. The discharge equation requires two more coefficients: the gate contraction
coefficient Cc and the weir discharge coefficient Cw. For each of the 52 free-flow experiments, the depth
measurements h11 were plugged into the discharge equation, with this predicted discharge then
visually compared against the measured discharge as in Figure 4. The coefficients Cc = 0.70 and
Cw = 0.70 were found to give the best fit with the measurements, and so they were used in the
numerical model.
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Figure 4. Measured depth-discharge relationship (circles) and the empirical discharge equation with
Cc = 0.70 and Cw = 0.70 (lines) for each barrier configuration. Only includes free-flow scenarios where
the depth is greater than the gap underneath the barrier.

Second, in free-flow conditions, an energy balance is required to find the depth of the supercritical
flow downstream of the leaky barrier, hsup. Bernoulli’s equation gives

hL +
(q/hL)

2

2g
= hsup +

(q/hsup)2

2g
+ ∆E. (36)

Note that the change in the channel bed elevation ∆zb is not included in (36) since we are considering
values at the cell interface i + 1/2. The effect of the bed slope is taken into account in the source term.

If we ignore energy loss (i.e., assume ∆E = 0) and solve (36) iteratively for hsup, the water exits
the leaky barrier too quickly in the 1D model, resulting in the hydraulic jump occurring further
downstream than observed. However, the upstream backwater effect is captured well, indicating
that the problem is not in the value of q, which determines the mass flux. This is demonstrated
in Figures A1–A8 in the Appendix A. Therefore, a method for estimating ∆E in (36) was required.
Incorporating energy losses into the momentum flux like this is reported elsewhere in the literature,
for example, for 1D flow around islands [78].

To find a function for these energy losses, they were first approximated for each of the 52 free-flow
experiments using Bernoulli’s equation:

∆E = hus +
(q/hus)2

2g
− hds −

(q/hds)
2

2g
− ∆zb, (37)

where q is the measured discharge, hus is the depth measurement h11, and hds is a depth measurement
downstream of the leaky barrier, generally h12. In some cases hds was taken to be h11.15 or h11.30 instead,
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depending on the position of the hydraulic jump and weir nappe. Note that ∆zb is included in (37)
because the depth measurements were taken up to 0.3 m away from each other. This analysis resulted
in the regression equation

∆E = 0.012− 0.362 · a0 + 0.205 · hus (38)

which gave R2 = 0.48, plotted in Figure 5. This is included in the 1D model by replacing hus with hL
in (38), and then plugging ∆E into (36) when finding the supercritical depth hsup.

0.00 0.02 0.04 0.06

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

Energy loss (m)

D
e

p
th

 j
u
s
t 

u
p

s
tr

e
a

m
 o

f 
b

a
rr

ie
r 

(m
)

Configuration

(b)

(c)

(d)

Figure 5. Estimated measured energy losses (circles) and the regression Equation (38) (lines) for each
barrier configuration. Only includes free-flow scenarios where the depth is greater than the gap
underneath the barrier.

3. Results

3.1. Benchmark Tests

The 1D scheme without a leaky barrier was tested to check if it correctly solved the shallow
water Equation (3). These benchmarks included two steady-state and one transient case. Then the 1D
scheme with a leaky barrier operating as a sluice gate (stages 1 and 2) was tested against three further
benchmarks. Unless otherwise noted, a Courant number of C = 1.0 was used.

3.1.1. Subcritical Flow

To verify that the scheme can deal with topographical variations, the first benchmark was
steady-state subcritical flow over a bump [79]. Here, the domain of length l = 25 m has its bed
given by

zb(x) =

{
0.2− 0.05(x− 10)2 if 8 < x < 12

0 otherwise
(39)

with the upstream boundary condition q(0) = 4.42 m2/s and downstream boundary condition
h(25) = 2 m. The initial conditions are set to be q(x) = 4.42 m2/s and h(x) = 2 m everywhere,
and Figure 6 shows that they settle out to the correct steady state.
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Figure 6. Analytical (black lines) and numerical (green circles) solution for subcritical flow.

3.1.2. Transcritical Flow

To verify that the scheme can deal with transcritical flows and friction represented by Manning’s
n, the second benchmark was a steady-state transcritical flow case from [79]. Full derivations of the
benchmark can be found in [80] and a programmed example in [81]. Figure 7 shows that, when the
simulation settles to a steady state, there is only a small error in the location of the hydraulic jump.
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Figure 7. Analytical (black lines) and numerical (green circles) solution for transcritical flow.

3.1.3. Riemann Problem

To verify that the scheme can capture shocks, the third benchmark was a Riemann problem
from [66], with discontinuous initial conditions

h(x) =

{
1.0 if x < 40

0.1 otherwise
and q(x) =

{
2.5 if x < 40

0.0 otherwise
(40)

across a domain of length l = 80 m. The analytical solution involves a left transcritical rarefaction and
right shock, and Figure 8 shows that it is recreated well.
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Figure 8. Analytical (black lines) and numerical (green circles) solution for Riemann problem.

3.1.4. Sluice Gate Riemann Problems

The internal boundary condition presented in Section 2.3.2 generalises the numerical method
of [72]. In the same paper [72], analytical solutions to Riemann problems where a sluice gate separates
the two Riemann states were also derived. As the leaky barrier can operate as a sluice gate (stage 1
and 2), these benchmarks were used to test the 1D model. In all three cases, the gap under the barrier
was set to be a0 = 0.2 m. The initial conditions for discharge were set to be q(x) = 0 everywhere and
the depth set to be

h(x) =

{
1.0 if x < 50

hR otherwise
(41)

where hR = 0.002, 0.2, 0.6 m for each case respectively.
Figure 9 shows that the wave structure, speeds, and strengths are accurate in all three

wet-bed cases, but the first test case requires a smaller Courant number to obtain accurate results.
This demonstrates the shock-capturing capabilities of the scheme under transient conditions when
leaky barriers are included.
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Figure 9. Analytical (black lines) and numerical (green circles) solutions for wet-bed Riemann problems
at sluice gates, based on Tests 3–5 from [72] with Cc = 0.61 and ∆E = 0.
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3.2. Steady-State Flume Experiments

The 1D model should be able to recreate longitudinal profiles for each of the 55 steady-state
flume scenarios. This was tested by using the parameters from Section 2.3.3 for the internal boundary
condition, the measured discharge as an upstream boundary condition, and the depth measurement
h17.8 as a downstream boundary condition. As the grid size was set to be ∆x = 0.1, the leaky barrier
was located at x = 11.1 m, four centimetres away from its real placement. The Courant number was
set to be C = 1.0 and the model run until it reached a steady state.

The water surface profiles of eight representative examples are displayed in Figure 10, with full
results in Figures A1–A8 in the Appendix A. First recall that the internal boundary condition introduces
two new pieces of information into the domain: the discharge through the barrier and the supercritical
depth downstream of the barrier. The first piece of information travels both upstream and downstream
from the barrier, whereas the second piece of information travels only downstream from the barrier.
Generally, the profile upstream of the barrier is simulated well by the model, reflecting the lack of
scatter in the discharge equation shown in Figure 4. The profile downstream of the barrier is subject to
more error, reflecting the poor R2 value for the ∆E Equation (38) and the resulting scatter in Figure 5.
Despite this scatter, the downstream profile is still captured accurately by the model in most cases.
Moreover, as there were no velocity measurements across the flume, the location of the hydraulic jump
is a proxy for the velocity. Its accurate placement thus suggests that the model accurately simulates
the velocities.

It is interesting to note that the submerged states are recreated well, considering that the two
parameters of (31) were calibrated for the free-flow conditions, and it is only the equations of [75]
and [77] that were used to generalise these to submerged flow. This is important because leaky barriers
are installed in series, and so the backwater effect from a downstream barrier may influence the
hydraulics of an upstream barrier.

3.3. Transient Flume Experiments

Finally, to demonstrate the transient functionality of the 1D model, it was used to simulate a dam
break in the flume for each configuration (a)–(d). The initial conditions were

h(x) =

{
0.20 if x < 8

0.02 otherwise
(42)

with an upstream boundary condition of q = 0.06 m2/s. The results, shown in Figure 11, are similar to
video footage from the flume experiments. However, there is currently no quantitative data to compare
them against. Nonetheless, the hydrographs in Figure 12 show that the bigger barriers provide more
of an obstruction, which is to be expected.
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Figure 10. Numerical solutions (green lines) and observations (black crosses) for eight representative
steady-state experiments in the flume. Note that the weir overflow is squeezed into the leaky barrier
cell interface, so it is modelled even though it is not plotted.
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Figure 12. Flood hydrograph at x = 16 m for the dam break simulations for configurations (a)–(d).

4. Discussion

Despite being a popular nature-based solution, the leaky barrier is currently not well-understood.
As the behaviour of individual barriers is generally unknown, inserting them into hydrological and
hydraulic models involves inherent uncertainties, and so the results of these larger scale models have
limitations. To address these evidence gaps, the present study tested a newly developed 1D hydraulic
model with experimental flume data. The results suggest that representing leaky barriers as hydraulic
structures is a valid method, provided that the barrier resembles the hydraulic structure, the energy
losses are incorporated into the momentum part of the internal boundary condition, and possible
submergence from downstream backwaters is considered. In particular, this investigation of the
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hydraulic structure method addresses a specific research gap put forward in a recent review paper
on modelling leaky barriers [56]. Given the current interest discussed above in installing multiple
leaky barriers across catchments for flood prevention purposes, greater understanding of potential
synchronisation issues is critical. The model presented here, which provides a first approximation of a
range of natural and designed barrier types including log jams, woody debris and beaver dams, has
the potential to address this issue by putting a large number of leaky barriers into a 1D hydrodynamic
model of a channel network.

More generally, the approach taken in this study, using a combination of physical and mathematical
modelling, has great potential to answer questions which urgently need addressing, as highlighted
in the introduction to this paper. Further work is currently being undertaken to take this forwards,
involving further flume experiments, 1D modelling, and 2D and 3D computational fluid dynamics
(CFD) simulations. For leaky barrier designs where empirical equations already exist, such as the
letterbox slot design [59] which can be modelled as a large rectangular orifice with weir overflow,
the approach presented here can be applied directly. However, some barrier designs do not resemble
hydraulic structures with established equations (e.g., combinations of gates, weirs and orifices).
Thus further research is needed to establish discharge equations. To this end, further flume experiments
are being undertaken alongside CFD simulations. CFD provides a virtual hydraulic flume, allowing
a greater range of barrier designs to be investigated, including under transient conditions, and will
generate much greater understanding of hydraulic behaviour. The CFD models will be tested and
validated using the experimental data. The results of this work will in turn be used to inform and
validate 1D models for a variety of barrier designs. Ultimately these will be applied to assess the
performance of networks of barriers under transient flood conditions.

5. Conclusions

This study set out a methodology for developing mathematical models that both capture the
hydraulics of individual leaky barriers accurately and can be applied to networks of barriers across
a catchment. The method was tested for a simple leaky barrier, with the 1D hydraulic modelling
results comparable to those from a controlled hydraulic flume. Further work is being undertaken
so that the method can be applied to more complex leaky barriers. This will answer key questions
about the optimal leakiness of small-scale interventions, the limits to their usefulness, and possible
synchronisation problems when the effect of multiple barriers is aggregated.

Supplementary Materials: The 1D model code and the flume data are openly available from the Newcastle
University research data repository at http://doi.org/10.25405/data.ncl.11499159.
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Appendix A

The full 55 results for Section 3.2 are given in this appendix. These comprise all four configurations
(a)–(d). The graphs display the observations (black crosses), simulations without energy losses (dotted
blue line), and simulations with energy losses (solid blue line).

http://doi.org/10.25405/data.ncl.11499159
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Figure A6. Results for configuration (d).



Water 2020, 12, 371 23 of 28

0.0

0.2 q = 0.033m2/s

0.0

0.2 q = 0.03m2/s

0.0

0.2 q = 0.027m2/s

0.0

0.2

W
at

er
 le

ve
l (

m
)

q = 0.025m2/s

0.0

0.2 q = 0.019m2/s

0.0

0.2 q = 0.019m2/s

0.0

0.2 q = 0.017m2/s

10 11 12 13 14 15 16 17 18
Distance along flume (m)

0.0

0.2 q = 0.015m2/s

Figure A7. Results for configuration (d).



Water 2020, 12, 371 24 of 28

0.0

0.2 q = 0.014m2/s

0.0

0.2 q = 0.013m2/s

0.0

0.2 q = 0.011m2/s

0.0

0.2

W
at

er
 le

ve
l (

m
)

q = 0.011m2/s

0.0

0.2 q = 0.008m2/s

0.0

0.2 q = 0.037m2/s

0.0

0.2

q = 0.039m2/s

10 11 12 13 14 15 16 17 18
Distance along flume (m)

0.0

0.2

q = 0.039m2/s

Figure A8. Results for configuration (d).

References

1. Arnell, N.; Gosling, S. The impacts of climate change on river flood risk at the global scale. Clim. Chang.
2016, 134, 387–401. [CrossRef]

2. Dadson, S.J.; Hall, J.W.; Murgatroyd, A.; Acreman, M.; Bates, P.; Beven, K.; Heathwaite, L.; Holden, J.;
Holman, I.P.; Lane, S.; et al. A restatement of the natural science evidence concerning catchment-based
’natural’ flood management in the UK. Proc. R. Soc. A-Math. Phys. 2017, 473. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s10584-014-1084-5
http://dx.doi.org/10.1098/rspa.2016.0706
http://www.ncbi.nlm.nih.gov/pubmed/28413336


Water 2020, 12, 371 25 of 28

3. Chiverrell, R.C.; Sear, D.A.; Warburton, J.; Macdonald, N.; Schillereff, D.N.; Dearing, J.A.; Croudace, I.W.;
Brown, J.; Bradley, J. Using lake sediment archives to improve understanding of flood magnitude and
frequency: Recent extreme flooding in northwest UK. Earth Surf. Process. Landf. 2019, 44, 2366–2376.
[CrossRef]

4. Jacobson, C.R. Identification and quantification of the hydrological impacts of imperviousness in urban
catchments: A review. J. Environ. Manag. 2011, 92, 1438–1448. [CrossRef] [PubMed]

5. Hewett, C.J.; Quinn, P.F.; Wilkinson, M.E. The decision support matrix (DSM) approach to reducing
environmental risk in farmed landscapes. Agric. Water Manag. 2016, 172, 74–82. [CrossRef]

6. Grigg, D.B. The Agricultural Systems of the World: An Evolutionary Approach; Cambridge Geographical Studies;
Cambridge University Press: Cambridge, UK, 1974.

7. Ramankutty, N.; Foley, J.A. Estimating historical changes in global land cover: Croplands from 1700 to 1992.
Glob. Biogeochem. Cycles 1999, 13, 997–1027. [CrossRef]

8. Goldewijk, K.K. Estimating Global Land Use Change over the Past 300 Years: The HYDE Database.
Glob. Biogeochem. Cycles 2001, 15, 417–433. [CrossRef]

9. O’Connell, E.; Ewen, J.; O’Donnell, G.; Quinn, P. Is there a link between agricultural land-use management
and flooding? Hydrol. Earth Syst. Sci. 2007, 11, 96–107. [CrossRef]

10. Kendon, E.J.; Roberts, N.M.; Fowler, H.J.; Roberts, M.J.; Chan, S.C.; Senior, C.A. Heavier summer downpours
with climate change revealed by weather forecast resolution model. Nat. Clim. Chang. 2014, 4, 570. [CrossRef]

11. Forzieri, G.; Feyen, L.; Russo, S.; Vousdoukas, M.; Alfieri, L.; Outten, S.; Migliavacca, M.; Bianchi, A.;
Rojas, R.; Cid, A. Multi-hazard assessment in Europe under climate change. Clim. Chang. 2016, 137, 105–119.
[CrossRef]

12. Mitsch, W. Ecological Engineering: A New Paradigm for Engineers and Ecologists in Engineering within
Ecological Constraints. In Engineering within Ecological Constraints; Schulze, P.C., Ed.; National Academy
Press: Washington, DC, USA, 1996; pp. 111–128. [CrossRef]

13. Wilkinson, M.; Quinn, P.; Barber, N.; Jonczyk, J. A framework for managing runoff and pollution in the rural
landscape using a Catchment Systems Engineering approach. Sci. Total Environ. 2014, 468–469, 1245–1254.
[CrossRef] [PubMed]

14. Hewett, C.; Mark E.; Wilkinson, M.; Jonczyk, J.; Quinn, P. Catchment Systems Engineering: An Holistic
Approach to Catchment Management. WIREs Water 2019, In press.

15. Eggermont, H.; Balian, E.; Azevedo, M.; Beumer, V.; Brodin, T.; Claudet, J.; Fady, B.; Grube, M.; Keune, H.;
Lamarque, P.; et al. Nature-based Solutions: New Influence for Environmental Management and Research
in Europe. GAIA 2015, 24, 243–248. [CrossRef]

16. Nesshöver, C.; Assmuth, T.; Irvine, K.N.; Rusch, G.M.; Waylen, K.A.; Delbaere, B.; Haase, D.; Jones-Walters, L.;
Keune, H.; Kovacs, E.; et al. The science, policy and practice of nature-based solutions: An interdisciplinary
perspective. Sci. Total Environ. 2017, 579, 1215–1227. [CrossRef] [PubMed]

17. Howgate, O.R.; Kenyon, W. Community cooperation with natural flood management: A case study in the
Scottish Borders. Area 2009, 41, 329–340. [CrossRef]

18. Forbes, H.; Ball, K.; McLay, F. Natural Flood Management Handbook; Technical Report; Scottish Environmental
Protection Agency: Edinburgh, UK, 2015.

19. Lane, S.N. Natural flood management. WIREs Water 2017, 4, e1211. [CrossRef]
20. Mahmoud, N.; Selman, P. Natural Infrastructure Concept in Arid Regions: Two Case Studies in Egyptian

Context. Int. J. Sustain. Dev. Plan. 2011, 6, 336–359. [CrossRef]
21. Bridges, T.S.; Lillycrop, J.; Wilson, J.; Fredette, T.; Suedel, B.; Banks, C.; Russo, E. Engineering with nature

promotes triple-win outcomes. Terra Aqua 2014, 135, 17–23.
22. Ngai, R.; Wilkinson, M.; Nisbet, T.; Harvey, R.; Addy, S.; Burgess-Gamble, L.; Rose, S.; Maslen, S.;

Nicholson, A.; Page, T.; et al. Working with Natural Processes Evidence Directory: Literature Review; Technical
Report; Environment Agency: Bristol, UK, 2017.

23. Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kaźmierczak, A.; Niemela, J.; James, P.
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