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Abstract: This paper presents a space–time meshfree method for solving transient inverse problems in
subsurface flow. Based on the transient groundwater equation, we derived the Trefftz basis functions
utilizing the method of separation of variables. Due to the basis functions completely satisfying
the equation to be solved, collocation points are placed on the space–time boundaries. Numerical
solutions are approximated based on the superposition theorem. Accordingly, the initial and boundary
conditions are both regarded as space–time boundary conditions. Forward and inverse examples are
conducted to validate the proposed approach. Emphasis is placed on the two-dimensional boundary
detection problem in which the nonlinearity is solved using the fictitious time integration method.
Results demonstrate that approximations with high accuracy are acquired in which the boundary data
on the absent boundary may be efficiently recovered even when inaccessible partial data are provided.

Keywords: Trefftz basis functions; inverse problems; boundary detection problems; transient;
meshfree method

1. Introduction

To model a real groundwater system, the forward problem and its inverse must be solved.
The forward problems of groundwater modeling are concerned with the determination of head
distribution in a domain when the domain geometric shape, boundary conditions, initial conditions,
and hydraulic parameters are specified [1–3]. On the other hand, the inverse problems involve the
findings of the missing geometric shape, unknown physical parameters, and other conditions of the
system by fitting observed system states. In the inverse problems, the boundary identification problem
is of importance, in which the geometric shape of inaccessible parts of the domain remains unknown
and is found from the measured groundwater head or fluxes on the accessible boundaries [4–6].
The hyporheic flow distinguished from groundwater flowing near rivers, which is important in
understanding recharge or discharge, may belong to the boundary detection problem. The study of
forward problems has developed rapidly. However, research on inverse problems is still limited to the
consideration of simple models [7–9].

In recent years, significant developments in the meshfree methods have been reported [10,11].
The meshfree methods, which do not require mesh construction and are especially advantageous for
problems including complicated and irregular geometry, have attracted much attention. The radial
basis function collocation method, the Trefftz method, the method of fundamental solutions, and the
reproducing kernel collocation method have been widely used [12–14]. The Trefftz method developed
by Erich Trefftz is one of the relatively simple meshfree methods due to the collocation points provided
only on the boundary since the basis functions are solutions of the Laplace equation [15–18]. The Trefftz
method is usually utilized only for solving the Laplace-type equations [19,20]. Prior research shows
that this approach may be restricted to stationary and linear problems. The engineering applications of
the Trefftz method for solving inverse problems in subsurface flow may be a challenging task [21].
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In this article, we propose the space–time meshfree method utilizing Trefftz functions for
solving transient inverse problems in subsurface flow. Based on the transient groundwater equation,
we derived the basis functions adopting the method of separation of variables. The numerical solution
is approximated based on the superposition theorem. Accordingly, the boundary and initial data
are regarded as space–time boundary conditions. Using the space–time collocation, the initial value
problem for solving the transient groundwater equation may be considered to be an inverse boundary
value problem (BVP). Numerical examples are carried out to verify the accuracy of our approach.
Two-dimensional inverse and boundary detection problems are carried out. This work is organized
as follows: In Section 2, the methodology is introduced. The validation of our approach is carried
out in Section 3, where the convergence analysis of our approach is discussed. To further evaluate
the stability, robustness, and effectiveness of our approach, several boundary detection problems are
conducted in Section 4. In the final section, key findings are summarized.

2. The Methodology

2.1. The Governing Equation

The transient groundwater problem in two dimensions is [6]

∂2h(r,θ, t)
∂r2 +

∂h(r,θ, t)
r∂r

+
∂2h(r,θ, t)

r2∂θ2 =
1
D
∂h(r,θ, t)

∂t
in Ωt, (1)

where h represents the total head, r is the radius, t is the time, θ represents the polar angle, D represents
the hydraulic diffusivity, and Ωt represents the space–time domain. The initial data is

h = h0(r, θ, t = 0) in Ωt, (2)

where h0 is the initial total head. The boundary data are

h = BD(r, θ, t) on ∂Ωt, (3)

hn =
∂h
∂n

= BN(r, θ, t) on ∂Ωt, (4)

where BD(r, θ, t) represents the Dirichlet boundary condition, and BN(r, θ, t) represents the Neumann
boundary condition. In the case of the forward problem, one of the above boundary conditions is often
specified. On the other hand, for the inverse problem, over-specified boundary conditions are applied
at the given location.

In this study, the accessible data contaminated by different random noise are considered

B̃D(r, θ, t) = BD(r, θ, t) ×
[
1 +

s
100
× (2× rand− 1)

]
(5)

B̃N(r, θ, t) = BN(r, θ, t) ×
[
1 +

s
100
× (2× rand− 1)

]
(6)

where s denotes the percentage of noise, B̃D denotes the noisy Dirichlet data, B̃N denotes the noisy
Neumann data, and rand denotes the random number.

2.2. The Space–Time Collocation Trefftz Method

2.2.1. Space–Time Trefftz Functions

The space–time meshfree approach adopting Trefftz functions originates from the Trefftz method.
We assumed that

h = R(r)φ(θ)T(t), (7)
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in which R(r), φ(θ), and T(t) are independent functions. The following notations are adopted.

R′ =
dR(r)

dr
, R′′ =

d2R(r)
dr2 , φ′′ =

d2φ(θ)

dθ2 , and T′ =
dT(t)

dt
. (8)

Substituting Equation (7) into Equation (1) yields

R′′ + 1
r R′

R
+

1
r2

φ′′

φ
=

T′

T
. (9)

Dividing R(r)φ(θ)T(t) in Equation (9) obtains

R′′

R
+

1
r

R′

R
+
ξ

r2 = λ,
T′

T
= λ,

φ′′

φ
= ξ, (10)

where λ and ξ denotes the separation constants. To guarantee λ and ξ to be negative or positive
constants, the value p and q are considered and assumed to be λ = p2 or λ = −p2 or λ = 0 and ξ = q2

or ξ = −q2 or ξ = 0. There are nine possible scenarios with the combination of positive or negative or
zero value for λ and ξ. When λ = −p2 and ξ = −q2, the following equation is obtained

T = c1e−p2 t̂, φ = c2 sin qθ+ c3 cos qθ, R = c4 Jq(pr) + c5Yq(pr), (11)

where c1,c2,c3,c4, and c5 are arbitrary constants to be determined. Based on the superposition theorem,
we may acquire

h = A1 +
s∑

q=1
A2qr̂q cos(qθ)+

s∑
q=1

A3qr̂q sin(qθ) +
m∑

p=1
A4pe−p2 t̂

pJ0(pr̂)+

m∑
p=1

s∑
q=1

Jq(pr̂)[A5pq cos(qθ) + A6pq sin(qθ)]e−p2 t̂+

B1 ln r̂ +
m∑

p=1
e−p2 t̂B2pY0(pr̂)+

s∑
q=1

B3qr̂−q cos(qθ) +
s∑

q=1
B4qr̂−q sin(qθ)+

m∑
p=1

s∑
q=1

Yp(pr̂)[(B5pq cos(qθ) + B6pq sin(qθ)]e−p2 t̂+

m∑
p=1

[C1pI0(pr̂) + C2pK0(pr̂)]ep2 t̂+

m∑
p=1

s∑
q=1

Iq(pr̂)[C3pq cos(qθ) + C4pq sin(qθ)]ep2 t̂+

m∑
p=1

s∑
q=1

Kq(pr̂)[C5pq cos(qθ) + C6pq sin(qθ)ep2 t̂]

(12)

where r̂ = r/R0, R0 is the characteristic length, t̂ denotes the dimensionless time, which is described
as t̂ = tD/R2

0, A1, A2p, · · ·C6pq denote arbitrary constants that have to be evaluated, I0 denotes the
modified Bessel function of the first kind, K0 denotes the modified Bessel function of the second kind,
J0 denotes the Bessel function of the first kind, Y0 denotes the Bessel function of the second kind,
Iq denotes the modified Bessel function of the first kind of the q order, Kq represents the modified Bessel
function of the second kind of the q order, Jq denotes the Bessel function of the first kind of the q order,
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Yq represents the Bessel function of the second kind of the q order, s and m denote the order of the basis
functions. In this study, only positive basis functions are considered [6].

h = A1 +
s∑

q=1
A2qr̂q cos(qθ)+

s∑
q=1

A3qr̂q sin(qθ)+

m∑
p=1

A4pe−p2 t̂
pJ0(pr̂) +

m∑
p=1

s∑
q=1

Jq(pr̂)[A5pq cos(qθ) + A6pq sin(qθ)]e−p2 t̂ (13)

∂h
∂n =

s∑
q=1

A2q
q

R0

[
(r̂q−1 cos(qθ) cosθ+ r̂q−1 sin(qθ) sinθ)nx+

(r̂q−1 cos(qθ) sinθ− r̂q−1 sin(qθ) cosθ)ny

]
+

s∑
q=1

A3q
q

R0

[
(r̂q−1 sin(qθ) cosθ− r̂q−1 cos(qθ) sinθ)nx+

(r̂q−1 sin(qθ) sinθ+ r̂q−1 cos(qθ) cosθ)ny

]
−

m∑
p=1

A4p
p

R0
(J1(pr̂) cosθnx + J1(pr̂) sinθny)e−p2 t̂+

m∑
p=1

s∑
q=1

A5pqe−p2 t̂

 (
p

2R0
(Jq−1(pr̂) − Jq+1(pr̂)) cos(qθ) cosθ+ qJq(pr̂) sin(qθ) sinθ

r )nx+

(
p

2R0
(Jq−1(pr̂) − Jq+1(pr̂)) cos(qθ) sinθ− qJq(pr̂) sin(qθ) cosθ

r )ny

+
m∑

p=1

s∑
q=1

A6pqe−p2 t̂

 (
p

2R0
(Jq−1(pr̂) − Jq+1(pr̂)) sin(qθ) cosθ− qJq(pr̂) cos(qθ) sinθ

r )nx+

(
p

2R0
(Jq−1(pr̂) − Jq+1(pr̂)) sin(qθ) sinθ+ qJq(pr̂) cos(qθ) cosθ

r )ny



(14)

where nx and ny represent the outward normal direction. To determine the unknown coefficients of
A1, A2p, A3q, A4q, A5pq, A6pq in Equations (13) and (14), the space–time collocation scheme is adopted.
A system of equations is acquired as

1 (r̂1)
q cos(qθ1) (r̂1)

q sin(qθ1) · · · Jq(pr̂1) sin(qθ1)e−p2 t̂1

1 (r̂2)
q cos(qθ2) (r̂2)

q sin(qθ2) · · · Jq(pr̂2) sin(qθ2)e−p2 t̂2

...
...

...
. . .

...
1 (r̂v)

q cos(qθv) (r̂v)
q sin(qθv) · · · Jq(pr̂v) sin(qθv)e−p2 t̂v

...
...

...
. . .

...
0 T1

′

(v) T2
′

(v) · · · T5
′

(v)





A1

A2q
...

A5pq
...

A6pq


=



h1

h2
...

hv
...

hnv


(15)

where t̂1, t̂2, · · · , t̂v are time in dimensionless form, r̂1, r̂2, · · · , r̂v are radiuses in dimensionless form,
θ1, θ2, · · · ,θv are polar angles, and h1, h2, · · · , hnv represent Dirichlet boundary data. The notation
T1
′

(v), T2
′

(v), . . . , T5
′

(v) in the above Equation is depicted in Table 1. Equation (15) is then obtained as

Ac = B, (16)

where A represents a matrix assembled from the basis functions, c denotes a vector of the unspecified
coefficients, and B represents a vector of boundary value. Solving Equation (16), we acquired the
coefficients which are unknown for the space–time domain.
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Table 1. The notation in Equation (15).

T1
′ s∑

q=1
A2q

q
R0

[
(r̂q−1 cos(qθ) cosθ+ r̂q−1 sin(qθ) sinθ)nx+
(r̂q−1 cos(qθ) sinθ− r̂q−1 sin(qθ) cosθ)ny

]
T2
′ s∑

q=1
A3q

q
R0

[
(r̂q−1 sin(qθ) cosθ− rq−1 cos(qθ) sinθ)nx+
(r̂q−1 sin(qθ) sinθ+ r̂q−1 cos(qθ) cosθ)ny

]
T3
′ m∑

p=1
−A4p

p
R0
(J1(pr̂) cosθnx + J1(pr̂) sinθny)e−p2 t̂

T4
′ m∑

p=1

s∑
q=1

A5pqe−p2 t̂

 (
p

2R0
(Jq−1(pr̂) − Jq+1(pr̂)) cos(qθ) cosθ+ qJq(pr̂) sin(qθ) sinθ

r )nx+

(
p

2R0
(Jq−1(pr̂) − Jq+1(pr̂)) cos(qθ) sinθ− qJq(pr̂) sin(qθ) cosθ

r )ny


T5
′ m∑

p=1

s∑
q=1

A6pqe−p2 t̂

 (
p

2R0
(Jq−1(pr̂) − Jq+1(pr̂)) sin(qθ) cosθ− qJq(pr̂) cos(qθ) sinθ

r )nx+

(
p

2R0
(Jq−1(pr̂) − Jq+1(pr̂)) sin(qθ) sinθ+ qJq(pr̂) cos(qθ) cosθ

r )ny


2.2.2. The Space–Time Collocation Scheme

The space–time collocation scheme is utilized to solve transient groundwater inverse problems in
two dimensions as shown in Figure 1a. With the consideration of the space–time collocation scheme,
the original Euclidean space domain, therefore, becomes a three-dimensional space–time, as depicted in
Figure 1b. It is found that both initial and boundary data can be assigned on the space–time boundaries.
Additionally, the space–time collocation scheme transforms the original transient groundwater inverse
problem into an inverse BVP. The initial value problem used for solving inverse problem can be treated
as the inverse boundary problem.
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2.2.2. The Space–Time Collocation Scheme 

The space–time collocation scheme is utilized to solve transient groundwater inverse problems 
in two dimensions as shown in Figure 1a. With the consideration of the space–time collocation 
scheme, the original Euclidean space domain, therefore, becomes a three-dimensional space–time, as 
depicted in Figure 1b. It is found that both initial and boundary data can be assigned on the space–
time boundaries. Additionally, the space–time collocation scheme transforms the original transient 
groundwater inverse problem into an inverse BVP. The initial value problem used for solving inverse 
problem can be treated as the inverse boundary problem. 

 
(a) 

Figure 1. Cont.
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2.2.3. The Iterative Scheme for Modeling Boundary Detection Problem

The forward problems of groundwater modeling are concerned with the determination of head
distribution in a domain. While the domain geometric shape, boundary conditions, initial conditions,
and hydraulic parameters are specified, a linear system of simultaneous equations is yielded. The heads
in the domain can be obtained using Equation (16) where the coefficients are solved by the linear system
of simultaneous equations. On the other hand, the boundary identification problem is categorized into
the inverse problem in which the missing geometric shape of the inaccessible part of the domain is
the unknown. In this study, the missing geometric shape is described by a set of collocation points.
The location (ri,θi, ti) of the collocation point is unknown, which has to be solved. The coefficients are
solved by the linear system of simultaneous equations from the given groundwater head or fluxes on
the accessible boundaries.

Since the location (ri,θi, ti) of the collocation point is unknown, we may obtain the following equations.

f (ri) = h(ri,θi, ti) (17)

f (ri) = A1 +
s∑

q=1
A2qr̂i

q cos(qθi)+
s∑

q=1
A3qr̂i

q sin(qθi) +
m∑

p=1
A4pe−p2 t̂i pJ0(pr̂i)+

m∑
p=1

s∑
q=1

Jq(pr̂i)[A5pq cos(qθi) + A6pq sin(qθi)]e−p2 t̂i (18)

Equation (18) is the nonlinear algebraic equation. Given (θi, ti), we can then solve ri using
Equation (18). Most of the methods for solving nonlinear algebraic equations are based on the
iteration scheme. Liu and Atluri (2008) proposed a time integration method named the Fictitious Time
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Integration Method (FTIM) [22,23]. The FTIM was first used to solve a nonlinear system of algebraic
equations by introducing a fictitious time. The stationary point of these evolution equations is the
solution for the original algebraic equation. Accordingly, we adopted the FTIM to solve Equation (18).
The iterative scheme of the FTIM for solving the boundary detection problem is expressed as follows:

ri
k+1 = ri

k
−

δν

(1 + τk)
m F(rk

i ), (19)

F(rk
i ) =

∣∣∣ f (rk
i ) − h(ri,θi, ti)

∣∣∣ (20)

where δ is the time step size, v is the non–zero coefficient, m is the value in the range of zero to one,
and ri

k is the value of r at the kth discrete time τk = kδ.
The iterative scheme for the FTIM is utilized to deal with the system of nonlinear algebraic

equations that are resulted from spatial discretization of the space–time collocation Trefftz method. It is
obvious that the unknown in the iterative equation is the radius, which is the location of the boundary
shape. Since the above equation is a nonlinear equation, the emphasis is placed on the two-dimensional
boundary detection problem which the nonlinearity is solved using the FTIM. The iteration procedure
begins by assigning a primary guess for the unknown spatial position and ends while the stopping
criteria are reached.

F(rk
i ) ≤ ε, (21)

where ε is the stopping criteria.

3. Accuracy and Convergence Analysis

A transient groundwater problem in two dimensions is conducted. The shape of irregular
geometry is expressed as

∂Ωt =

(r, θ, t)

∣∣∣∣∣∣∣∣ r =

√
cos(2θ)

√
1.1− sin2(2θ),

0 ≤ θ ≤ 2π, 0 ≤ t ≤ 3

. (22)

The initial data is
h = sin(r cosθ) cos(r sinθ), (r, θ) ∈ Ωt. (23)

The over-specified boundary conditions are applied using the following exact solution.

h = e−2Dt sin(r cosθ) cos(r sinθ), (r,θ, t) ∈ Ωt. (24)

In this example, the hydraulic diffusivity is 10−2 and the final elapsed time is 3 s. To validate our
approach, a convergence analysis is firstly conducted. The following error is then evaluated

RMSE =

√√√√√√ NI∑
i=1

(hE(ri, θi, ti) − hN(ri, θi, ti))
2

NI
, (25)

MAE = maximum
∣∣∣hE(ri, θi, ti) − hN(ri, θi, ti)

∣∣∣, 1 ≤ i ≤ NI, (26)

where hE(ri, θi, ti) is the exact solution, hN(ri, θi, ti) is the numerical approximation, RMSE denotes the
root mean square error, MAE denotes the maximum absolute error, and NI denotes the scattered inner
points. Figure 2a shows the error versus the order of the basis functions. It appears that approximations
with high accuracy are acquired while the order is superior to 14. The relationship between the absolute
error and the number of boundary points is displayed in Figure 2b. Results obtained illustrate that
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approximations with high accuracy are achieved while the number of boundary points is greater
than 900.Water 2020, 12, x FOR PEER REVIEW 8 of 19 
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4. Numerical Examples

4.1. An Inverse Transient Groundwater Problem—A Cassini-like Boundary

The transient groundwater inverse problem is described as Equation (1). A two-dimensional
Cassini-like boundary, as displayed in Figure 3, is defined as follows.

∂Ωgiven =

(r,θ, t)

∣∣∣∣∣∣∣∣ r =
3

√
cos(3θ) +

√
2− sin2(3θ),

0 ≤ θ ≤ 1.5π, 0 ≤ t ≤ 3

. (27)
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From Figure 3, not only the initial data are absent, but part of the boundary information is also
not given. The specified boundary data are

h = e−2Dt sin(r cosθ) cos(r sinθ), (r,θ, t) ∈ ∂Ωgiven, (28)

hn =
∂h
∂n

, (r,θ, t) ∈ ∂Ωgiven. (29)

The final time is 3 s, and hydraulic diffusivity is 0.1. The number of boundary points and the
order of the basis functions are 1173 and 15, respectively. In addition, the parameters including δ = 0.8,
v = 1.9, m = 0.1, and ε = 10−12 are considered in this numerical implementation.

To obtain the recovered boundary data, 240 boundary points are assigned to the recovered
boundary positions. To show the stability of our approach, the measured data are polluted by noise,
where the noise levels are s = 0.001, s = 0.01, and s = 0.1. Figure 4 depicts the recovered boundary
data by adding different noise levels. It seems that the recovered boundary data utilizing our method
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are consistent with the exact boundary data. However, Figure 4d shows that the discrepancy between
numerical and analytical solution (at t = 0.2 s) with s = 0.1 may be found due to the large noise.
Figure 5 displays the absolute error of our method at t = 0.2 s and t = 2.8 s. From Figure 5, the MAE
(at t = 2.8 s) with s = 0, s = 0.001, s = 0.01, and s = 0.1 can reach the order of 10−10, 10−4, 10−3,
and 10−2, respectively.
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4.2. A Boundary Detection Problem—An Amoeba-like Boundary

The second example is to investigate the effectiveness and stability of the proposed method to
solve this boundary detection problem. The transient groundwater inverse problem is described
as Equation (1). We consider the given boundary positions defined by Equations (30)–(33) for four
different cases in Figure 6.

∂Ωgiven =

{
(r,θ, t)

∣∣∣∣∣∣ r = esin(θ) sin2(2θ) + ecos(θ) cos2(2θ),
−0.6π ≤ θ ≤ 0.8π, 0 ≤ t ≤ 3

}
, (30)

∂Ωgiven =

{
(r,θ, t)

∣∣∣∣∣∣ r = esin(θ) sin2(2θ) + ecos(θ) cos2(2θ),
−0.4π ≤ θ ≤ 0.6π, 0 ≤ t ≤ 3

}
, (31)

∂Ωgiven =

{
(r,θ, t)

∣∣∣∣∣∣ r = esin(θ) sin2(2θ) + ecos(θ) cos2(2θ),
−0.2π ≤ θ ≤ 0.4π, 0 ≤ t ≤ 3

}
, (32)
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∂Ωgiven =

{
(r,θ, t)

∣∣∣∣∣∣ r = esin(θ) sin2(2θ) + ecos(θ) cos2(2θ),
0 ≤ θ ≤ 0.2π, 0 ≤ t ≤ 3

}
. (33)
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From Figure 6, not only the initial conditions are inaccessible, but partial boundaries are unspecified.
Four different combinations of inaccessible space–time boundaries are conducted, as displayed in
Figure 6. In case A, we consider a boundary detection problem, where 70% of the overall space–time
boundary positions are given, as depicted in Figure 6a. In cases B, C, and D, not only the initial data
but also parts of the space–time boundary positions are inaccessible. The percentage of the given
boundary positions in cases B, C, and D is 50%, 30%, and 10%, respectively. As shown in Figure 6b–d,
the specified boundary data are given at a partial portion of the space–time boundaries. The specified
data are

h = (r cos(θ))2 + (r sin(θ))2 + 4Dt, (r,θ, t) ∈ ∂Ωgiven, (34)

hn =
∂h
∂n

, (r,θ, t) ∈ ∂Ωgiven. (35)

The boundary data on the unknown boundary positions are applied as

h = (ri cos(θi))
2 + (ri sin(θi))

2 + 4Dti, (ri,θi, ti) ∈ ∂Ωunknown (36)
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where (ri,θi, ti) are the positions of the unknown boundary. In this two–dimensional boundary
detection problem, the final elapsed time is 3 s, and the hydraulic diffusivity is 0.1. The number of
collocation points and the order of the basis functions to be 960 and 15, respectively. In addition,
the parameters including δ = 0.8, v = 1.9, m = 0.1, and ε = 10−12 are considered in this numerical
implementation.

To recover the boundary positions at different times, 60 boundary collocation points are collocated.
It seems that unspecified boundary positions can be completely recovered, as shown in Figure 7.
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Figure 7. Recovered boundary positions at different times: (a) case A; (b) case B; (c) case C; (d) case D.

Figure 8 depicts the absolute error of our method at different times. Results show that the MAE
without noise for case A to case D are 10−10, 10−7, 10−5, and 10−2, respectively. The accessible data
polluted by noise are further considered, where the noise level is s = 0, s = 1, s = 3, s = 5, and s = 10 in
case A. Table 2 indicates the error with different noise levels. It appears that inaccessible boundary
positions may be recovered even when noises are polluting the specified data.

Table 2. Error of the proposed approach for case A.

Noise Level s = 0 s = 1 s = 3 s = 5 s = 10

MAE 6.55× 10−11 2.62× 10−2 1.91× 10−1 2.83× 10−1 1.05× 100

RMSE 1.98× 10−11 2.07× 10−2 5.46× 10−2 8.88× 10−2 2.98× 10−1
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4.3. A Boundary Detection Problem—A Flower-like Boundary

Three cases for the different combinations of unspecified boundary positions are conducted
in this problem. For cases 1, 2, and 3 in Figure 9, the specified boundary locations are defined by
Equations (37), (38), and (39), respectively.

∂Ωgiven =

(r,θ, t)

∣∣∣∣∣∣∣ r =
∣∣∣tan(4θ)

∣∣∣sin(8θ)
,

0.025π ≤ θ ≤ 0.275π, 0 ≤ t ≤ 3

, (37)

∂Ωgiven =

(r,θ, t)

∣∣∣∣∣∣∣ r =
∣∣∣tan(4θ)

∣∣∣sin(8θ)
, 0 ≤ t ≤ 3

−0.1π ≤ θ ≤ 0.025π, 0.65π ≤ θ ≤ 0.775π

, (38)
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∂Ωgiven =

(r,θ, t)

∣∣∣∣∣∣∣ r =
∣∣∣tan(4θ)

∣∣∣sin(8θ)
, 0 ≤ t ≤ 3

0.025π ≤ θ ≤ 0.15π, 1.025π ≤ θ ≤ 1.15π

. (39)
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From Equations (37)–(39), it is found that the accessible boundary data are only assigned at 1/8
portion of the space–time boundary.

The specified boundary data are assigned as

h = e−2Dt sin(r cos(θ)) sin(r sin(θ)), (r,θ, t) ∈ ∂Ωgiven, (40)

hn =
∂h
∂n

, (r,θ, t) ∈ ∂Ωgiven. (41)

The boundary data on the unknown boundary positions are applied.

h = e−2Dti sin(ri cos(θi)) sin(ri sin(θi)), (ri,θi, ti) ∈ ∂Ωunknown (42)

In this two-dimensional boundary detection problem, the final elapsed time is 3 s, and the
hydraulic diffusivity is 0.1. The number of boundary points and the order of the basis functions are
960 and 15, respectively. In addition, the parameters including δ = 0.8, v = 1.9, m = 0.1, and ε = 10−12

are considered in this numerical implementation.
To recover the boundary positions at different times, 240 boundary collocation points are collocated.

It seems that the inaccessible boundary locations are completely recovered, as displayed in Figure 10.
The absolute error of our approach for solving this boundary detection problem is also evaluated.
Results obtained demonstrate that the MAE for case 1 to case 3 is 10−3, 10−4, and 10−5, respectively.
It seems that the unknown boundary positions may be completely recovered, even 7/8 portion of the
overall space–time boundaries are inaccessible.
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5. Conclusions

We present a space–time meshfree method for solving transient groundwater inverse problems in
this article. Key findings are described herein.

(1) For modeling of the two-dimensional transient groundwater inverse problems, an innovative
concept, that the collocation points are placed on the space–time boundaries, is presented.
Both the initial and boundary data are regarded as boundary conditions on the space–time
boundary. Using the space–time collocation, the initial value problem (IVP) for solving the
transient groundwater equation is considered to be a problem of the inverse boundary value
where the time marching for the IVP can be avoided.

(2) Previous studies depict that the Trefftz method is limited to linear and stationary problems.
This study demonstrates that we solved transient groundwater inverse problems using the
space–time meshfree method utilizing Trefftz functions with very high accuracy. The iterative
scheme of the FTIM is utilized to deal with the system of nonlinear algebraic equations, which is
resulted from spatial discretization of the space–time collocation Trefftz method. The advantages
of the proposed meshfree method for solving inverse problems are also presented. Accurate
approximations are yielded in which inaccessible boundary may be recovered, even 7/8 portion
of the overall space–time boundaries are inaccessible.

(3) The approximations of the transient groundwater boundary detection problem in two dimensions
were developed. The geometric shape of inaccessible parts of the domain remains unknown
and is obtained by solving the nonlinear equation formulated from the Trefftz functions and the
coefficients. The fictitious time integration method was successfully applied for the solution of the
nonlinearity. Highly accurate results for the two-dimensional transient groundwater boundary
detection problem were obtained using the proposed space–time meshfree method.
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