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Abstract: This study aimed to estimate the discharge in ungauged watersheds. To this end, we herein
deviated from the model development methodology of previous studies and used convolution neural
network (CNN), a deep training algorithm, and hydrological images. As the CNN model was
developed for solving classification issues in general, it is unsuitable for simulating the discharge,
which is a continuous variable. Therefore, the fully connected layer of the CNN model was improved.
Moreover, images reflecting the hydrological conditions rather than a general photograph were used
as input data for the CNN model. Three study areas that have discharge gauged data were set for the
model’s training and testing. The data from two of the three study areas were used for CNN model
training, and the data of the other were used to evaluate model prediction performance. The results
of this study demonstrate a moderate predictive success of the discharge of an ungauged watershed
using the CNN model and hydrological images. Therefore, it can be suitable as a methodology for the
discharge estimation of ungauged watersheds. Simultaneously, it is expected that our methodology
can be applied to the field of remote sensing or to the field of real-time discharge simulation using
satellite imagery on a global scale or across a wide area.

Keywords: ungauged watershed; discharge; convolution neural network; hydrological image;
curve number

1. Introduction

Due to the population growth and industrialization brought about by the Industrial Revolution,
as well as flood and drought due to climate change, there has been an increased emphasis on the
importance of water resources; in particular, the demand for water resources is rapidly increasing.
To this end, each country establishes a national water resource management plan at the watershed
level to manage water resources. Water resource management plans such as integrated water resource
management [1] require recording of changes in discharge depending on conditions such as weather
and hydrology. This is because these represent the basic data for establishing future plans such as
water resource management and usage. Discharge data from countries that operate the total maximum
daily loads [2] for watershed management, such as South Korea, are an absolutely necessary factor
in establishing a water resource management plan. In particular, Paldang Lake in South Korea is
an extremely rare case because it is used by more than 50% of the population. The water resource
management plan for Paldang Lake and its inflowing rivers is recognized as extremely important at the
government level, and the South Korean government intends to establish a long-term comprehensive
water resource plan. There are several methods of collecting discharge data for watershed management;

Water 2020, 12, 3534; doi:10.3390/w12123534 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0002-8828-2692
https://orcid.org/0000-0001-9768-4602
http://dx.doi.org/10.3390/w12123534
http://www.mdpi.com/journal/water
https://www.mdpi.com/2073-4441/12/12/3534?type=check_update&version=4


Water 2020, 12, 3534 2 of 22

however, the best method is to build the data by conducting discharge measurements via skilled
personnel. However, this is not practical or inefficient as it requires astronomical budgets for fostering
professional manpower or various other costs required to gauge ADCP (acoustic doppler current
profiler, m3/s) discharge. For this reason, most countries only measure the discharge or collect
discharge data through water level measuring devices for important rivers and construct discharge
data using numerical models for ungauged watersheds. As the South Korean government also requires
the use of the TANK model [3] to build discharge data due to the aforementioned practical issues,
improvements in the discharge data generation and collection method are required. In previous
studies, the curve number (CN) proposed by the Soil Conservation Service (SCS) [4] or the Predictions
in Ungauged Watersheds (PUB) presented by the International Association of Hydrological Science
(IAHS) [5] were used. Furthermore, CNs were used in constitutive models such as the TANK model [3],
Hydrologic Engineering Center River Analysis System (HEC-HMS) [6], Streamflow Synthesis and
Reservoir Regulation Model (SSARR) [7], and the Storm Water Management Model (SWMM) [8].
Good predictive performance has been reported for a constitutive model that numerically expresses
the hydrological phenomenon on the basis of such physical laws [9]. However, this is cumbersome as
the method involves procedures such as data input of various items including microclimate, weather,
floodgates, and topography or verification and correction. With this, many studies that correct
appropriate parameters, such as bifurcation ratio, stream length ratio, maximum canopy storage,
base flow reduction factor, and Manning’s coefficient, are actively being conducted to the extent that
they are established as a study trend [10–13]. Expressing the relationship between precipitation and
discharge in a specific watershed is not numerically easy, even if a constitutive model is used, owing to
the condition that complex natural phenomena must be expressed with numerous formulae [14].
As an alternative, an empirical model explained by the stable relationship between the independent
variable and the dependent variable can be proposed [15]. The empirical model is relatively simple to
construct compared to the constitutive model, and the frequency of using the empirical model has
increased in several previous studies. In particular, with the development of artificial neural networks
(ANNs) [16,17], which represent the Fourth Industrial Revolution, the number of empirical model
development cases has increased in recent years. In addition, with the advent of the deeper structure
of deep neural networks (DNN) and various algorithms, neural network technology has deeply
penetrated into various fields in real life, as well as precipitation–discharge models [18,19]. Seckin [20]
simulated flood–runoff for a region in Turkey using the multilayer perceptron (MLP) neural network,
radial basis function-based neural network, and adaptive neuro-fuzzy inference system. As a result,
in terms of the r of the three models, the MLP showed the highest value at 0.7–0.9 and lowest at 0.5–0.9
m3/s, reporting the superiority of the model. Maca et al. [21] developed a precipitation–discharge
model using 12 functions, including sigmoid, hyperbolic tangent, linear function, gaussian function,
and root sigmoid, for the activation functions of ANN and performed a comparative evaluation.
Among them, the Nash-Sutcliffe efficiency (NSE) of the root sigmoid function was the highest at 0.7, and
the root sigmoid function was suitable as an activation function. Kumar et al. [22] evaluated the model
by developing a precipitation–discharge model using an ANN. The model performance in the five
watersheds was in the range of 5.04–9.99 m3/s for mean absolute error (MAE) and 8.24–16.83 m3/s for
root mean square error (RMSE), indicating that the developed model adequately reflected the measured
values. Kashani et al. [23] divided the studied watershed into sub-watersheds and developed an ANN
for each sub-watershed to simulate the precipitation–discharge of the entire watershed. Therein, r was
0.9, RMSE was 2.14 m3/s, and NSE was 0.7, similar to our experimental results. Kimura et al. [24]
predicted time-series flood levels in two watersheds using the transfer training of the CNN model.
The RMSE was in the range of 0.1–0.5 m and the relative error was 2.6–6.9% in Domain A, while the
RMSE was in the range of 0.1–0.2 m and the relative error was in the range of 3.3–4.3% in Domain B.
Likewise, the results of this study were similar to those of previous studies.

As mentioned above, the objective of our study was to overcome the complexity and difficulty of
constitutive model development by using empirical models to improve the difficulty and inconvenience
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of collecting discharge data in ungauged watersheds and to promote convenience in model development.
To this end, the convolution neural network (CNN) was adopted herein and was determined as a
methodology suitable for the development of a new type of runoff model as it has the characteristic
of using spatial attributes extracted from training images. In addition, instead of the input data in
the one-dimensional (1D) vector format used in the conventional ANN model, its performance was
presented using the hydrological image as input data for the model. The hydrological image is a 2D
matrix structure with a grid unit, with each grid having an attribute value reflecting the conditions of
precipitation, land use, and soil.

2. Materials and Methods

2.1. Study Area

To develop a discharge simulation model for ungauged watersheds, three watersheds within
the Paldang watershed—Jo Jong (JJ), Heuk Cheon (HC), and Bok Ha (BH)—were set as the target
study areas herein, as shown in Figure 1. Paldang watershed refers to the seven local governments
surrounding Paldang Lake, an artificial lake built as a result of the Paldang Dam. Paldang Lake is an
artificial lake approximately 27.3 km away from Seoul, the capital city of South Korea. The watershed
area of Paldang Lake is 23.800 km2, the storage capacity is 244 million m3, the effective storage capacity
is 18 million m3, and the residence time is 5.4 days. Its inflow rivers comprise the Namhan River,
Bukhan River, and Gyeongan River, which are national rivers.
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The three study areas are mostly composed of forest and agricultural areas, where the change in
land use over time is rare due to the abovementioned regulations (Figure 2). Yanghwacheon is the main
stream of BH, which is a watershed with little interference from external streams. The main stream
length, the average slope, and the area of BH are 32 km, 4.7◦, and 181.1 km2, respectively, which is a
typical agricultural area mainly comprising paddies, uplands, and forests. HC is a watershed with no
inflow of external streams, and Heukcheon is the main stream. The main stream length, average slope,
and the area of HC are 42.9 km, 18.4◦, and 314.1 km2, respectively, making it a forest-dominant area.
JJ is a watershed with Jojongcheon as the main stream, where the main stream length, average slope,
and area are 39 km, 20.2◦, and 260.6 km2, respectively. Similar to HC, JJ is a forest-dominant region
(Table 1).
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Figure 2. Land use map of the study watershed.

Table 1. Summary of study areas.

Study Areas Land Cover

Water Urban Barren Pasture Forest Paddy Upland Wetland Total

JJ
(Study area 1)

Area
(km2) 2.6 5.8 5.2 19.2 207.5 4.4 13.5 2.4 260.6

Proportion
(%) 1.0 2.2 2.0 7.4 79.6 1.7 5.2 0.9 100.0

HC
(Study area 2)

Area
(km2) 2.3 6.5 2.9 22.5 235.8 20.8 19.6 3.7 314.1

Proportion
(%) 0.7 2.1 0.9 7.2 75.1 6.6 6.2 1.2 100.0

BH
(Study area 3)

Area
(km2) 1.6 11.7 4.0 18.2 41.6 50.9 49.7 3.5 181.1

Proportion
(%) 0.9 6.5 2.2 10.1 23.0 28.1 27.4 1.9 100.0

2.2. Data Collection

The data required in this study were four items: precipitation, discharge, land-use map, and soil
map. The data collection period was 10 years from 1 January 2010 to 31 December 2019. The precipitation
data, discharge and soil map, and land-use map were collected from the Korea Meteorological
Administration [25], Water Resources Management Information System [26], and Environmental
Geographic Information Service [27], respectively. Discharge data were daily average data (m3/s),
wherein gauge points are as shown in Figure 1, and precipitation data involved the daily data of
34 precipitation gauge stations inside and outside the study area (mm/day) as shown in Figure 1.
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A grid-format land-use map and soil map were used, with the resolution of 30 m × 30 m and a data
scale of 1:5000. The land-use map comprised eight items—water, urban, barren, pasture, forest, paddy,
upland, and wetlands—and the soil map included data with 59 physical properties (these 59 physical
properties are afa, fba, mab, etc., as classified by the National Institute of Environmental Research of
South Korea).

2.3. Research Method

This study can be divided into three stages: (1) construction of input data for CNN model training,
(2) training of CNN model, and (3) review of prediction results. The training of a CNN requires a
labeled dataset training as it uses supervised training. The dataset required for the prediction and
training of the CNN model was constructed by setting the hydrological image as an input feature
and the corresponding discharge value as a target. The fully connected layer of the CNN model was
improved to simulate the discharge, and the predicted results derived through this were compared
with the historical records of discharge of the study areas to evaluate the model performance.

2.3.1. Building the Dataset for the CNN Model

(1) Hydrological Image as a Feature

Most CNN models use RGB (red, green, blue) photographs for the purpose of predicting what
is represented in the picture; however, predicting runoff using general RGB photographs can deny
the premise of the empirical model (the relationship between independent and dependent variables)
used herein. In other words, as an RGB photograph is similar to representing an arbitrary shape (the
object and background in photograph) in a color value, the relationship between the feature and the
prediction target becomes meaningless even if an extremely accurate prediction is derived for an RGB
photograph. Therefore, the features for the CNN model require data having the property of a causal
relationship with the data type and runoff (m3/s) required by CNN.

The hydrological image proposed by Song [28] is defined as a set of grids with dimensionless
hydrological properties in a two-dimensional grid space for an arbitrary watershed. The hydrological
image has merit in that it can reflect the hydrological phenomenon in the watershed. However,
the characteristic of hydrological images allows image generation only for the event, and there is
a limitation that they are not suitable for continuous discharge simulations. Moreover, because of
its noncontinuous data, the lag time cannot be considered. Nevertheless, this study judged that the
hydrological image is suitable for using the data of the development model of discharge because it can
reflect the hydrologic condition.

The hydrological properties of each grid point in the image was based on the hydrological
curve number (CN) [29], as shown in Equations (1)–(3), published by the SCS, formerly known as
the National Resource Conservation Service. The CN is a value derived using conditions such as
precipitation, soil map, and land use, and it is used to simulate direct runoff (mm), as well as for
evaluating hydrological effects such as direct runoff caused by land-use change [30,31].

Q =
(P− 0.2S)2

(P + 0.8S)
(P > Ia, Ia = 0.2S), (1)

Q = 0 (P < Ia, Ia = 0.2S), (2)

S =
25400
CN

− 254, (3)

where Q denotes the amount of direct runoff (mm), P is the amount of precipitation (mm), Ia means
the initial loss (mm), and S is the amount of residual storage (mm).

The CN in Equation (3) was allocated according to the physical properties and land use of the
four soils divided into hydrologic soil groups (HSGs) A, B, C, and D. In South Korea, this method can
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be used as it is. However, the estimated discharge had an enormous error because the proposed CN
in the SCS was built using the result of an experiment in United States (US) terrain. Consequently,
South Korea re-manufactured the CN for the topographic conditions of South Korea. For this reason,
the CN proposed in the Design Flood Estimation Techniques [32] by the Ministry of Land, Transport,
and Maritime Affairs of South Korea was used in this study. The hydrological properties of each grid
to generate hydrological images were calculated using Equations (1)–(3) proposed by the SCS, where Q
in Equations (1) and (2) is the proxy of hydrological property [29].

The Thiessen polygon method [33] was proposed as a method of based on measurements of
precipitation. However, this method has a disadvantage of generating distortions or differences in
precipitation due to the discontinuity of numerical change at the polygonal boundary. Moreover,
if the same precipitation is applied to calculate the hydrological properties for each grid as done
herein, the hydrological image becomes very monotonous, making it unsuitable as training data for
the CNN model. In this study, two-dimensional data of precipitation in grid units were constructed
using inverse distance weighting (IDW) without using the Thiessen polygon method. As IDW is
an interpolation method based on Tobler’s law [34], it can estimate continuous precipitation change
in grid units, thereby compensating for the disadvantages of the Thiessen polygons. In addition,
the SCS proposed a modification of CN [29] considering the effect of precipitation in order to take into
account the change in runoff due to antecedent precipitation. SCS introduced the concept of antecedent
moisture condition (AMC), which is the cumulative precipitation for 5 days, and proposed dividing
it into three stages—AMCI, II, and III—according to the dry and wet seasons. Moreover, the CN in
Equation (3) represents the AMCII condition. Through this, the SCS proposed that CN can be adjusted
according to conditions such as AMC changes, as shown in Equations (4) and (5). This adjustment was
done and reflected in the calculation of the hydrological properties of each grid. However, in terms of
the dry and wet seasons, the dry season was classified as from October to May and the wet season
was classified as from June to September according to the climatic characteristics of South Korea,
where precipitation is concentrated from June to September (Table 2).

CNI

= 4.2CNII
10−0.058CNII

∑5
i=1 Pi, Space in front of summation for sum P

{
< 12.7 mm (dry season)
< 35.6 mm (wet season)

,
(4)

CNIII

= 23CNII
10+0.13CNII

∑5
i=1 Pi, Space in front of summation for sum P

{
> 27.9 mm (dry season)
> 53.3 mm (wet season)

,
(5)

where CNI is the CN for the AMCI condition and CNIII is the CN for the AMCIII condition.

Table 2. Classification of antecedent soil moisture condition [29].

Antecedent Soil
Moisture Condition (AMC)

Sum Pi (mm)

Dry Season Wet Season

AMC I
(Dry condition) P5 < 12.7 P5 < 35.6

AMC II
(Normal condition) 12.7 ≤ P5 ≤ 27.9 35.6 ≤ P5 ≤ 53.3

AMC III
(Wet condition) P5 > 27.9 P5 > 53.3

As the image of the non-precipitation condition was fixed, the data were excluded from the dataset
composition, and only the data in the event of precipitation were collected. The collected data were
converted into a TIF format file, an image file format that has the same two-dimensional structure as
the land-use and soil map to be constructed as a feature. The TIF format file was used as the runoff
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data, which is the property value of the grid, and it was converted into meaningful color values in the
integer range of 0–255, resulting in information loss if formats such as JPG, BMG, and PNG were used.

Consequently, the building process was as shown in Figure 3. Hydrological attributes were
calculated using the CN value and precipitation value of each grid. The bottom grid plot of the Figure 3
corresponds to the final hydrological image. The grid color becomes whiter as the grid value increases
and becomes darker as the grid value decreases. Here, the hydrological images were built using Python
3.7 which is an open-source language.
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(2) Target Data

In this study, three discharge data corresponding to the entire study area—JJ, HC, and BH—were
used as target data that were subsequently built into a CSV format file to be recognized by the CNN
model. The target data were for supervised training of the CNN model, and the CNN model herein
was trained using hydrological images. The error was calculated through the difference between the
estimated value derived on this basis and the target data, and the process of reducing the error through
training was iterated. In this study, the target data were the discharge data corresponding to the date
of the hydrological image.

(3) Dataset Setting
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The previously built hydrological image and target data were used as a dataset for the prediction
and training of the CNN model. Basically, the dataset was divided into an input dataset and a test
dataset. The input dataset was divided into a training dataset for model training and a validation
dataset for verification of model training. As a method of setting the dataset, the datasets corresponding
to two watersheds were used to train the model and the datasets corresponding to one watershed were
used to examine the prediction performance of the model. The datasets of the three cases were set as
shown in Table 3.

Table 3. Dataset setting.

Model Watershed Dataset Classification

Case 1
JJ, HC Input dataset

(training dataset, validation dataset)

BH Test data

Case 2
JJ, BH Input dataset

(training dataset, validation dataset)

HC Test data

Case 3
HC, BH Input dataset

(training dataset, validation dataset)

JJ Test data

2.3.2. CNN Structure Configuration

The development of the CNN algorithm was accelerated by LeCun et al. [35], mimicking the
visual processing of object recognition in organisms. CNN has been applied to image classification,
speech recognition, and image semantic segmentation [36]; CNN has also been very quickly evaluated
as a core technology in the image classification field owing to its advantages such as reliable results
and outstanding efficiency [37–39]. CNN can process two-dimensional or three-dimensional input
data instead of the one-dimensional input data used in the conventional ANN. In particular, it learns
the spatial information of the input data and can efficiently understand spatial attributes. The CNN
model can be mainly divided into two parts. Part 1 comprises repetition of the convolution layer and
the pulling layer, and Part 2 comprises a flatten layer, a dense layer, and an output layer in a fully
connected layer connected after Part 1.

Part 1 is the core function of CNN that maintains the shape of the input/output data of each
layer and spatial data of the image while effectively recognizing the attribute of the adjacent images.
The convolution layer of Part 1 performs extraction of the image’s characteristics by using the image
searching window called the kernel while maintaining the shape of the image. Figure 4a shows the
scheme of the convolution layer. The kernel moves on the input image and makes a new image of a
different size from the input image. This image is called the feature, and the size of the feature depends
on the kernel’s moving distance, which is called the stride. The kernel acts like a weighted value in the
ANN and is optimized by the CNN model training. The pooling layer reduces the size of the feature
by down-sampling and has the function of inhibiting overfitting. Since the pooling layer also has a
kernel and a stride, the size of the feature changes when the feature passes through the pooling layer
(Figure 4b).
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Figure 4. Scheme of the convolution neural network (CNN) model.

Part 2 refers to a DNN composed of several hidden layers or dense layers between the flatten layer
and the output layer that derives the simulation results [40,41]. Figure 4c shows the flatten layer and
the dense layer of Part 2. The flatten layer has the function of converting features into one-dimensional
data as shown in Figure 4c. Furthermore, the dense layer in Figure 4c is the same as the hidden layer
in ANN, where each dense layer is optimized by updating the weight of each node in dense layer.

As mentioned above, as the CNN model was operated for the purpose of solving the classification
issue, the current CNN model is unsuitable for simulating unspecified continuous variables such
as discharge rate. Therefore, the CNN model was improved herein as shown in Figure 5. Part 1
was designed in a structure wherein the convolution layer and the pulling layer are repeated five
times, and Part 2 was designed in a structure wherein a flatten layer, two density layers, and a batch
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normalization layer are arranged, and a density layer is re-connected. Here, the batch normalization
layer is characterized by improving the gradient vanishing and local minima, enabling stable model
training [42].
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Figure 5. Improvement of CNN model for simulation of the discharge.

The CNN model uses the Softmax or Sigmoid function as the activation function to solve
classification problems. However, a linear function has frequently been used in the regression model
instead of the Softmax or Sigmoid function. Because this paper aimed to simulate the discharge,
the activation function in the last dense layer of this CNN model was set as a linear function. Keras [43],
which uses the function of Tensorflow [44] (a machine training library released by Google), was used
as the environment for CNN model design, implementation, and operation, which was subsequently
implemented and experimented in Python. Keras is a high-level DNN application programming
interface written in Python that supports all special functions of Tensorflow and has very high flexibility
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in implementing DNN models. In addition, fast experiments can be conducted as it can efficiently use
the central and graphics processing units (CPU and GPU) [43].

2.3.3. Detailed Modified Configuration

CNN uses a separate 2D plane function called a kernel, a type of image filter, which is in the
convolution layer and plays the role of a parameter to obtain the image features. The size of the
kernel is defined in a square shape, wherein the size and number can be arbitrarily set. In this study,
all kernels were set to a size of 3 × 3, and the number of kernels was set to 32, 64, 128, 256, and 512 in
the order of five convolution layers. In addition, this kernel extracted image features while searching
the input image. The interval of this movement is called the stride, which was set to move by one
space. The image was reduced while extracting the image features via the kernel, and the method to
prevent this is called padding. Padding was also set herein to prevent information loss of output data.
A rectified linear unit (ReLu) function was set as the convolution layer had an activation function as
shown in Equation (6). The ReLu function is commonly used in CNN models. It can avoid gradient
vanishing, and the optimization efficiency of the model is high [45,46].

ReLu = max(0, x). (6)

The pooling layer is a sub-sampling method wherein only important information is left while
reducing the size of the data received from the convolution layer as input data. It has an effect of
preventing overfitting as the computer memory can be efficiently used and the calculated data are
reduced. There are max pooling and average pooling methods for pooling. Max pooling was used
in this model as average pooling can cause loss of information. The size of the pooling can also
be arbitrarily set. In this study, the size of the convolution layer was set to 3 × 3 as the kernel size.
The neural network using supervised training optimizes the model by continuously updating the
parameters to minimize errors between the predicted values and target values of the model derived
during training. The error is called loss in neural networks, and the purpose of supervised training
can be described as minimizing loss. The change in loss can be used as an index to determine the
result of model training, and the change in loss can be monitored using the loss function. Mainly,
the CNN model uses loss functions such as binary cross-entropy, categorical cross-entropy, and sparse
categorical cross-entropy. These are loss functions for the purpose of classification and are unsuitable
for a model predicting continuous variables as done herein. Therefore, mean square error (MSE),
which is widely used in regression problems, was used as the loss function in this study, as shown
in Equation (7), and the training degree (optimization) of the model was determined on this basis.
The item to be examined together with model training was the predictive performance of the trained
model. As an examination metric, the mean absolute error (MAE) was applied herein, as shown in
Equation (8).

MSE =
1
n

∑n

i=1

(
y′i − yi

)2
, (7)

MAE =
1
n

n∑
i=1

∣∣∣y′i − yi

∣∣∣, (8)

where yi and y′i denote a measured value and a predicted value, respectively. In addition, as MSE
and MAE converge to 0, the performance of the model can be considered to be higher. Even if the
result of the loss function and the predictive performance of the model are moderate or good, it is the
result of training between the input data and the target data for model training. Therefore, it should
be verified that smooth prediction is derived even for new data (or unseen data) not used in model
training. This is also called model generalization. In this study, some of the collected data were selected
as a validation dataset to evaluate the generalization of the model. The results of model training were
determined using loss, MAE, validation loss (Val loss), and validation MAE (Val MAE), where loss
and MAE refer to training indices for input data, and Val loss and Val MAE refer to validation indices
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in the validation dataset. In terms of the algorithm for optimization, the stochastic gradient descent
(SGD) [47] was considered to be the most basic methodology. Whenever the weight is updated,
the SGD measures the slope through differentiation and subsequently updates toward a lower slope
to reduce loss. To improve the shortcomings of SGD in recent years, optimization algorithms such
as Momentum [48], Nesterov Accelerated Gradient [49], Adagrad [50], Nadam [51], AdaDelta [52],
RMSProp [53], and Adam [54] were used to improve training speed and accuracy based on SGD.
Adam, referring to adaptive momentum estimation, is a combination of the concepts of momentum
optimization and RMSProp, which follows the exponential decaying average of the gradient similar
to momentum optimization and follows the exponential decaying average of the square of the last
gradient similar to RMSProp [55]. Adam with these characteristics has a function enabling stable and
fast optimization of the model, leading to better results than other optimization methods. Adam was
herein set as the weight optimization algorithm of the model, whereby the learning rate was set to
0.0001 and the training epoch was set to 500. The CNN model training herein was performed on a
desktop using an Intel® Core™ i9-9900K CPU @ 3.60 GHz, 32 GB random-access memory (RAM),
NDIVIA® GEFORCE RTX™ 2080Ti GPU, and Windows operating system (OS).

2.4. Evaluation of Model

For the evaluation of the model, its performance was determined by comparing the measured
value and the predicted value. Three methods were used to evaluate the model: Pearson correlation
coefficient (r), Nash–Sutcliffe efficiency (NSE), and root-mean-square error (RMSE); r ranged from −1
to 1 and was a method to examine the linearity relationship between the measured and predicted
values. The value of r was measured as shown in Equation (9), with values closer to 1 denoting stronger
linearity between the predicted value and the measured value, according to which the performance of
the model was determined to be good.

γ =

∑n
i=1

(
yi − y

)(
y′i − y′i

)
√∑n

i=1

(
yi − y

)2(
y′i − y′i

)2
. (9)

The NSE is presented in Equation (10). NSE ranges from 0 to 1, with the model results being in
perfect agreement when the measured values of NSE are 1. On the other hand, the model performance
degrades as it converges to zero.

NSE = 1−

∑n
i=1

(
yi − y′i

)2

∑n
i=1

(
yi − y

)2 . (10)

RMSE shows how close the model predicts to the measured value, as shown in Equation (11),
and the value ranges from 0 to infinity within the range of the data. In general, RMSE follows the unit
of the target to be simulated; thus, the RMSE of this study was equal to the discharge rate unit of m3/s.
Although the evaluation criteria for the RMSE itself are not clear, a closer value to 0 denotes that the
model results are closer to the measured values.

RMSE =

√√
1
n

n∑
i=1

(
yi − y′i

)2
, (11)

where yi and y′i denote the measured values and predicted values, respectively, while y and y′i present
the average measured values and predicted values.
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3. Result and Discussion

3.1. Precipitation and Discharge by Watershed

The number of precipitation events in the period of 10 years from 2010 to 2019 during the study
period was 566, 571, and 554 for JJ, HC and BH, respectively. For JJ, the precipitation range was 0.5–358.0
mm, and the range of discharge was 0.8–774.0 m3/s (Figure 6a). For HC, the precipitation range was
0.3–218.6 mm, and the range of discharge was 0.2–603.2 m3/s (Figure 6b). For BH, the precipitation
was 0.5–178.8 mm, and the range of discharge was 0.9–299.5 m3/s (Figure 6c). All three watersheds
showed the highest discharge rate in 2011, possibly due to the highest precipitation in 2011 (1.581.6 mm)
compared to other years. In addition, the average value of discharge was 18.5 m3/s for BH, 25.5 m3/s for
HC, and 23.1 m3/s for JJ, which is considered to be the effect of the watershed area as shown in Table 1.Water 2020, 12, x FOR PEER REVIEW 13 of 22 

 

 
Figure 6. Precipitation and discharge data on the date of precipitation during the data collection 
period: (a) JJ; (b) HC; (c) BH. 

3.2. Result of Building the Hydrological Image 

As explained in Section 3.1, the number of hydrological images was 554 for JJ, 571 for HC, and 
566 for BH, like the number of days of precipitation in the three study areas. Figure 7 shows one of 
the three hydrological images of the study areas. All hydrological images of all study areas were built 
according to equations 1–3 using a 30 m × 30 m resolution Precipitation Image and CN Image. JJ, HC 
and BH were images with grids of 670 × 819, 1014 × 632 and 513 × 872, respectively. The CNN model 
is required to have the same size for all input data images. Hence, they cannot be used for CNN 
model training as each study area had a different size as shown in Figure 7b. Therefore, the 
hydrological images of all study areas were rebuilt to 1014 × 1014 herein based on 1014, which is the 
largest size of the study area as shown in Figure 7c. In terms of the method, Pillow’s linear 
interpolation method [56], an image module of Python, was used in this study. 

Figure 6. Precipitation and discharge data on the date of precipitation during the data collection period:
(a) JJ; (b) HC; (c) BH.

3.2. Result of Building the Hydrological Image

As explained in Section 3.1, the number of hydrological images was 554 for JJ, 571 for HC, and 566
for BH, like the number of days of precipitation in the three study areas. Figure 7 shows one of the
three hydrological images of the study areas. All hydrological images of all study areas were built
according to equations 1–3 using a 30 m × 30 m resolution Precipitation Image and CN Image. JJ, HC
and BH were images with grids of 670 × 819, 1014 × 632 and 513 × 872, respectively. The CNN model
is required to have the same size for all input data images. Hence, they cannot be used for CNN model
training as each study area had a different size as shown in Figure 7b. Therefore, the hydrological
images of all study areas were rebuilt to 1014 × 1014 herein based on 1014, which is the largest size of
the study area as shown in Figure 7c. In terms of the method, Pillow’s linear interpolation method [56],
an image module of Python, was used in this study.
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Although the readjusted hydrological images were used for the training and testing of the CNN
model and the data were used for training, verification, and testing of the model, there is no standard
set for the data ratio. However, training and verification data were used in the ratio of 7:3 or 8:2 in
several previous studies [57–60]. Therefore, the data were divided as shown in Table 4, and the model
was divided into Cases 1, 2, and 3, used herein for training, verification, and testing, respectively.Water 2020, 12, x FOR PEER REVIEW 14 of 22 
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Table 4. Dataset for CNN model.

Model Dataset Number of Data Remark

Case 1
Input dataset Training dataset 735 HC–BH

Validation dataset 402 HC–BH

Test dataset Test date set 554 JJ (whole study period)

Case 2
Input dataset Training dataset 724 JJ–BH

Validation dataset 396 JJ–BH

Test dataset Test date set 571 HC (whole study period)

Case 3
Input dataset Training dataset 719 HC–JJ

Validation dataset 406 HC–JJ

Test dataset Test date set 566 BH (whole study period)

3.3. Model Structure and Training Results

The CNN model used herein is as shown in Table 5. As designed, it comprised a structure wherein
the convolution layer and the pooling layer were repeated five times with a structure followed by a fully
connected layer. The total number of parameters, which is the number of weights in the CNN model,
was 27,850,241, the number of trainable parameters was 27,849,985, and the number of nontrainable
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parameters was 256, as shown in Table 5. The nontrainable parameters are shown due to the batch
normalization layer having 285 nodes. For the purpose of this study, only one value was allowed to
be the output from the last layer, i.e., dense layer 4 of Table 5, and a linear function was set as the
activation function to simulate unspecified continuous variables.

Figure 8 shows the CNN model training results of our study. Loss, MAE, Val loss, and Val MAE
decreased in all three study areas. Loss in JJ reduced from 3.824.9 m3/s to 28.1 m3/s, and MAE reduced
from 23.4 m3/s to 2.9 m3/s. Loss in Val reduced from 3.314.0 m3/s to 555.1 m3/s, and MAE in Val reduced
from 23.7 m3/s to 9.0 m3/s (Figure 8a). Loss in HC reduced from 9.529.1 m3/s to 70.6 m3/s, and MAE
reduced from 27.0 m3/s to 4.2 m3/s. Loss in Val reduced from 1.570.8 m3/s to 124.5 m3/s, and MAE in Val
reduced from 20.0 m3/s to 5.8 m3/s (Figure 8b). In addition, the loss in BH reduced from 11.629.8 m3/s
to 118.6 m3/s, and MAE reduced from 25.4 m3/s to 4.7 m3/s. Loss in Val reduced from 1.997.9 m3/s to
527.9 m3/s, and MAE in Val reduced from 21.5 m3/s to 9.4 m3/s (Figure 8c). Loss, MAE, Val loss, and Val
MAE were referred to for determining the model training results. As mentioned above, loss and MAE
refer to the training of the model for input data, and Val loss and Val MAE refer to metrics representing
the degree of generalization of the model. All metrics appear as an exponential function graph with a
base of 0 or less as the epoch progresses when the model is stably trained. However, the degree of
training of the CNN model herein rapidly decreased at the beginning of training as shown in Figure 8.
Loss and MAE should also be stably reduced, but high performance of the model can be guaranteed
if the Val loss and Val MAE representing the generalization of the model are sufficiently reduced.
However, as there is no clear criterion for decision, it was herein determined that both model training
and model generalization were in progress as all metrics decreased with the epoch progression.

Table 5. Summary of the study model.

Convolution
Layer

Output Shape
(Row_Size, Column_Size,

Image_Channel)
Parameter Activation

Function

Conv2D 1 507, 507, 32 320 ReLu
MaxPooling 1 253, 253, 32 0

Conv2D 2 127, 127, 64 18,496 ReLu
MaxPooling 2 63, 63, 64 0

Conv2D 3 63, 63, 128 73,856 ReLu
MaxPooling 3 31, 31, 128 0

Conv2D 4 31, 31, 256 295,168 ReLu
MaxPooling 4 15, 15, 256 0

Conv2D 5 15, 15, 512 1,180,160 ReLu
MaxPooling_5 7, 7, 512 0

Fully connected
layer (Number of nodes)

Flatten layer 25,088 0
Dense layer 1 1024 25,691,136 ReLu
Dense layer 2 512 524,800 ReLu
Dense layer 3 128 65,664 ReLu

Batch normalization layer 128 512 ReLu
Dense layer 4 1 129 Liner

Total parameters: 27,850,241
Trainable parameters: 27,849,985

Nontrainable parameters: 256

Optimizer function: RMSprop (training ratio = 1 × 10−4); loss function: mean square error (MSE; see Equation (7));
metrics: mean absolute error (MAE; see Equation (8)); epoch: 500 iterations.
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3.4. Model Prediction Results and Model Evaluation

3.4.1. Model Prediction

Using the classified data in Table 5 and Cases 1–3 of the model for estimating the discharge in the
ungauged watershed, the prediction results of the precipitation for the entire study period are shown
in Figure 9. The result of simulating the discharge of JJ using the Case 1 model, the discharge of HC
using the Case 2 model, and the discharge of BH using the Case 3 model are shown in Figure 9a–c,
respectively. The measured and predicted values of the discharge are as shown on the left graph in
Figure 9a–c and the distribution of the measured versus predicted values is as shown on the right
graph. The predicted value in Cases 1–3 tended to show a lower value than the actual value, and this
can also be seen on the graphs to the right where the slope is much less than 1. However, it followed
the measured value overall. In the case of the dispersion, a linear relationship between the measured
value and the predicted value was shown in all models.
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3.4.2. Model Evaluation

To evaluate this model, Equations (9)–(11) were used to determine r, NSE, and RMSE, as shown
in Table 6. In general, when evaluating the model using r, it was seen as weak when the value of
r was in the range of 0.1–0.3, as moderate in the range of 0.4–0.6, as strong in the range of 0.7–0.9,
and as perfect when it was 1 [61]. When evaluating the model using NSE, it was seen as moderate if
the value of NSE was in the range of 0.6–0.8 and as good if it was above 0.8 [62]. In this model, r of
Cases 1–3 was 0.9, showing a strong correlation, and NSE of Cases 1–3 was 0.7, indicating that all cases
were moderate. In terms of the RMSE, Case 3 was 16.1 m3/s, Case 1 was 27 m3/s, and Case 2 was 28.5
m3/s, indicating that the RMSE in Case 1 was the lowest. These results determined that the discharge
simulation methodology of ungauged watershed using hydrological images and that the CNN model
has moderate predictive performance overall. Case 3 had a singular point unlike other cases. The BH
simulated by Case 3 showed moderate discharge prediction results similar to Cases 1 and 2, which are
forest-dominant areas, even though it had more agricultural areas than forest areas compared to other
study areas. This model reflected the land use of the study area through hydrological images.
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Table 6. Result of model evaluation.

Contents Predicted Study Area r NSE RMSE (m3/s)

Case 1 JJ (study area 1) 0.9 0.7 27.0
Case 2 HC (study area 1) 0.9 0.7 28.5
Case 3 BH (study area 1) 0.9 0.7 16.1

This study tried to compare the results of this paper and similar papers. This was difficult because
few studies were conducted on the discharge simulation of an ungauged watershed using the CNN
model. Instead, this paper compared results with a previous paper using the ANN model. The CNN
model using a hydrological image with spatial attribute could derive moderate results for the discharge
simulation of the ungauged watershed, and the hydrological image had sufficient utility as input data
for the CNN model. In addition, considering the aspect of not using the watershed data for CNN
model training to simulate the discharge of ungauged watersheds, our CNN model had sufficient
function as a discharge prediction model for ungauged watersheds. However, the prediction results
such as the RMSE of this model were observed to be similar or lower than the results of the preceding
studies mentioned in Section 1. Therefore, even if r or NSE showed moderate results, this model has
limitations in terms of quantitative numerical prediction. This was attributable to the structure of the
CNN model used herein designed in a relatively simple structure, and the data used depend only
on hydrological images, whereby the number of images was extremely small as mentioned earlier.
However, our study is meaningful in that a new methodology for estimating the discharge rate in
the ungauged watershed was proposed by developing a CNN model using hydrological images,
and moderate results were derived.

4. Conclusions

The CNN model is a neural network model developed to solve the classification issue; however,
it is unsuitable for simulating continuous variables such as discharge rate estimation. Therefore,
we improved the CNN model to simulate a continuous variable by adjusting the structure of
the fully connected layer while maintaining the function of the convolution layer. In addition, a
hydrological image instead of a simple RGB photograph was used as the input data of the CNN
model. The discharge estimation of the ungauged watershed was performed on this basis; accordingly,
the prediction performance of the model was shown to be moderate. Likewise, a new methodology for
estimating the discharge in the ungauged watershed was proposed herein, and the results showed that
the discharge in the ungauged watershed can be estimated through a simple model. Furthermore,
this model reflected the land use of the study area through hydrological images.

However, this study could not determine if the CNN model predicted the discharge using some
spatial characteristic of the hydrological image. For an improvement of this limitation, the manner in
which this CNN model recognizes the attributes of land use in the study area through hydrological
images will be investigated in future studies. Moreover, the accuracy of the quantitative model
prediction was low owing to the use of only hydrological images as input data, unlike previous studies
that used the input data of several items, and the simplicity of the CNN model structure. In addition,
this study had a limitation in terms of the lag time, because this study could only present a result for
the event. The lag time is an important factor associated with estimating discharge. In this regard,
we would like to overcome the limitations of this study by improving the lag-time problem or by
improving the hydrological image.

Nevertheless, if the CNN model structure is expanded and the hydrological image is improved,
or if a new image is developed using the methodology presented throughout this study, there is room
for improvement in the prediction performance of the model. The CNN model is expected to be
applicable to the field of remote sensing or the field of real-time discharge simulation in a global or
wide area using satellite imagery. In particular, the technology for discharge estimation using the
CNN model is considered to be in its infancy. However, it is believed that not only a higher model
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performance can be derived but also its application range can be greatly expanded considering the
speed of technological development of the current CNN algorithm.
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