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Abstract: Runoff modeling of glaciated watersheds is required to predict runoff for water supply,
aquatic ecosystem management and flood prediction, and to deal with questions concerning the impact
of climate and land use change on the hydrological system and watershed export of contaminants of
glaciated watersheds. A widely used pollutant loading model, Annualized Agricultural Non-Point
Source Pollution (AnnAGNPS) was applied to simulate runoff from three watersheds in glaciated
geomorphic settings. The objective of this study was to evaluate the suitability of the AnnAGNPS
model in glaciated landscapes for the prediction of runoff volume. The study area included Sugar Creek
watershed, Indiana; Fall Creek watershed, New York; and Pawcatuck River watershed, Rhode Island,
USA. The AnnAGNPS model was developed, calibrated and validated for runoff estimation for these
watersheds. The daily and monthly calibration and validation statistics (NSE > 0.50 and RSR < 0.70,
and PBIAS ± 25%) of the developed model were satisfactory for runoff simulation for all the studied
watersheds. Once AnnAGNPS successfully simulated runoff, a parameter sensitivity analysis was
carried out for runoff simulation in all three watersheds. The output from our hydrological models
applied to glaciated areas will provide the capacity to couple edge-of-field hydrologic modeling with
the examination of riparian or riverine functions and behaviors.
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1. Introduction

Excess nutrient (primarily nitrogen and phosphorus) losses from agricultural watersheds in
glaciated settings of the Midwest and Northeast of USA are one of the greatest water quality problems
tied to modern agriculture [1–6]. These water quality problems include eutrophication, harmful algae
blooms, and fish kills in the Gulf of Mexico, the Chesapeake Bay, the Hudson River Estuary, and other
coastal areas [7–10]. A substantial body of research on riparian zone hydrology and biogeochemistry
has shown that riparian zones can serve as efficient best management practices (BMPs) for nutrient
removal [11,12].

The functional efficiency of nutrient removal in a riparian zone can vary widely depending on
the characteristics within the riparian zone (e.g., vegetation, soil texture, depth to water table) and
on its location in the landscape, timing, characteristics and extent of contaminant and hydrologic
loading and its hydrogeomorphic setting [11–19]. Thus, it is significant to explore the relationships
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between the landscape-generated “edge-of-field” waterborne losses and riparian functioning to
improve riparian design and to better quantify the extent of treatment within riparian zones [20].
Given the expense and time associated with empirical studies, simulation models offer the capacity
to examine riparian zone performance across many different soils, topography settings, agricultural
practices and climatic conditions.

The Riparian Ecosystem Management Model (REMM) [21,22] has been used in non-glaciated
settings, primarily in a region extending from Texas to the Atlantic coast to explore the pollution
abatement of riparian zones. In companion studies we are examining the efficacy of the REMM
model for use in glaciated settings of the Northeast and Midwest, USA. Over the past two decades,
the authors of this manuscript have generated an extensive, empirically derived data base on riparian
zone structure and functions from three glaciated watersheds—located over a 1400 km east–west band
encompassing about 3 degrees of latitude (39.72◦ to 42.44◦ N). All of these watersheds lack empirical
data on edge-of-field overland runoff. In contrast to the piedmont and coastal plains where REMM
has been used, the flux of water and water-borne contaminants in these glaciated regions are driven
by differences in the magnitude and timing of snowmelt, the frequency of freeze–thaw phenomena,
lower evapotranspiration and the varied soils and geomorphology (e.g., hilly, low permeability till
that co-occur with flat, high permeability stratified drift landforms and narrow bands of alluvial soils)
that often exist within small watersheds. [23] demonstrated that there were higher average annual
runoff and higher seasonal (winter, spring, fall) runoff loads in northeastern glaciated watersheds than
non-glaciated watersheds.

Here, we evaluate the AnnAGNPS (Annualized Agricultural Non-Point Source) [24,25] model for
its efficacy to predict runoff from glaciated, upland areas to riparian buffers—a key requirement for
riparian zone models such as the REMM model. AnnAGNPS is a distributed model that can assess
the continuous hydrologic and water quality responses of watersheds to daily weather conditions in
a variety of soils, land uses and land covers. AnnAGNPS has been successfully used in several states
of USA, such as Illinois [26], Indiana [27], Mississippi [28,29], Georgia [30], Kansas [31], New York [32].
Globally, AnnAGNPS has been effectively used in numerous parts of the world in recent years,
including Brazil [33], Spain [34], Nigeria [35], Italy [36–38], Canada [39], Australia [40], Nepal [41],
China [42], Belgium [43], Malaysia [44], and Saint Lucia [45]. AnnAGNPS has been implemented in
all of these studies to predict runoff, sediment, and pollutant loadings under various environmental
conditions representing different watersheds. AnnAGNPS model was selected for this study since
the model can generate estimates of “edge-of-field” losses to specific downgradient cells, such as
riparian zones, which enables the output of AnnAGNPS to serve as input to riparian buffer models.
AnnAGNPS divides a watershed into a number of cells (characterized by similar land and soil
properties) of various sizes, and runoff and contaminants are routed from these cells into the associated
reaches, and the model either deposits pollutants within the stream channel system or transports
them out of the watershed. The cell-based structure was not available in a number of other commonly
used water quality models (e.g., Chemicals, Runoff, and Erosion from Agricultural Management
Systems (CREAMS), Groundwater Loading Effects on Agricultural Management Systems (GLEAMS),
Hydrological Simulation Program—FORTRAN (HSPF) and Soil & Water Assessment Tool (SWAT),
which lack or are limited in the extent of spatially explicit simulations within and between locations at
the field and watershed scale. For example, the SWAT model divides a watershed into sub-watershed
or hydrological response units (HRUs) exhibiting homogenous land, soil and slope characteristics
instead of a fine-resolution grid network. This limits its incorporation of spatial variability (very crucial
for riparian zone) in simulating the hydrologic dynamics that drive many functions of riparian buffers.

Based on the review of literature, we found that AnnAGNPS has not been applied in watersheds
of glacial geomorphic settings, such as our studied watersheds, to model runoff generation and other
hydrological processes. The objective of this study was to evaluate the suitability of the AnnAGNPS
model in glaciated landscapes for the estimation of runoff quantity. The geomorphic setting, i.e.,
the glaciated landscape, makes the AnnAGNPS model application unique in this study. Our study
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area included Sugar Creek watershed in Indiana, Fall Creek watershed in New York and Pawcatuck
River watershed in Rhode Island. All the watersheds are located in a glacial geomorphic setting.

Specifically, this paper aims to: (i) evaluate the performance of the AnnAGNPS model in simulating
the runoff volume at three separate watersheds with glacial setting; (ii) improve the model’s runoff

prediction capacity through calibration; (iii) validate the model’s runoff prediction with the improved
calibrated parameters; (iv) conduct a parameter sensitivity analysis for runoff simulation; (v) conduct
an analysis of the spatial distribution of runoff depth for three watersheds; (vi) provide a discussion of
the model’s performance in order to estimate event peak discharge.

2. Materials and Methods

2.1. Study Area

Three watersheds from three different states were modeled for this study. Sugar Creek watershed
(39◦43′21” N, 85◦53′23” W), a part of the White River watershed in central Indiana, is about 69 km2

(Figure 1). The elevation of the watershed ranges from 241 m to 280 m, and the topography is nearly
flat. The watershed consists largely of tile-drained agricultural lands (88% of the total watershed area,
representative of agro-ecosystems of the glacial till plains from US Midwest [46]. This watershed
is dominated by poorly drained soils where artificial drainage is usually used to lower the water
table [47]. For the past 20 years, agricultural practices have been dominated by a corn/soybean rotation
with either conventional or conservation tillage systems [48]. The temperature in the watershed is
moderate, ranging from a 30-year (1982–2011) mean of 22.7 ◦C in summer to a mean of −1.4 ◦C in winter
(Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group, accessed
on 4 May 2019). The 30 years (1982–2011) average annual precipitation is approximately 1105.0 mm,
about 51% of which occurs during the summer and the fall months. The 14 years (2000–2013) average
annual snowpack is 32.3 mm.

Figure 1. Three Study Watersheds.



Water 2020, 12, 3525 4 of 20

Fall Creek watershed has an area of about 328 km2 is located within the Finger Lakes region of
New York State (42◦28′ N, 76◦27′ W) (Figure 1). The most extensive source of parent material is glacial
till, with additional parent materials that consist of glacio-lacustrine sediments and glacio-fluvial
(outwash) deposits. The watershed is a mixed land use landscape located at the southern terminus
of the Wisconsin glaciation [49]. The watershed is 4.8% urban/developed land use (residential,
commercial and service, industrial, etc.), 45.3% forest (evergreen forestland, mixed forestland),
and 49.4% agriculture (cropland and pasture, other agricultural land, shrub and brush rangeland) [50].
Soils in the watershed are dominated by Gravelly silt loam and Channery silt loam. These are typically
very deep, well-drained soils. Elevations range from 270 m above mean sea level to 600 m [51].
The temperature in the watershed ranges from a 30-year (1982–2011) mean of 19.7 ◦C in summer
to a mean of −3.6 ◦C in winter (PRISM Climate Group, accessed on 13 January 2019). The 30 years
(1982–2011) average annual precipitation is approximately 930.3 mm, about 52.8% of which occurs
during the spring and the fall months. The 14 years (2000–2013) average annual snowpack is 32.2 mm.

The Pawcatuck River watershed in Washington County is located in the New England Hydrologic
Region of southern Rhode Island (41◦32′30” N, 71◦35′ W) (Figure 1). The area of this watershed is
about 258 km2. It consists mainly of forests (above 65% of the total watershed area) and agricultural
fields (about 32% of the entire watershed area). The soil parent materials in the watershed are
comprised mostly of glacial till, glacial outwash, and organic and alluvial deposit [52]. Agricultural
lands (mostly turf farms) are predominately located on loess soils over glacial outwash. Forested
settings are usually on till. The elevation of the watershed ranges from 16 m (shoreline) to 144 m
(to gently rolling hills inland). It has a humid continental climate, with warm summers and cold winters.
The temperature in the watershed ranges from a 30-year (1982–2011) mean of 20.8 ◦C in summer
to a mean of −0.4 ◦C in winter (PRISM Climate Group, accessed on 21 March 2019). The 30 years
(1982–2011) average annual precipitation is approximately 1291.7 mm, about 50.8% of which occurs
during the spring and the fall months. The 14 years (2000–2013) average annual snowpack is 44.8 mm.

2.2. Description of The AnnAGNPS Model

The Annualized Agricultural Non-Point Source Pollution Model (AnnAGNPS) [24] refers to
a watershed scale, batch process, continuous and distributed simulation, daily time step, surface runoff,
and pollutant loading computer model. The model has been designed to quantify and identify the source
of pollutant loadings anywhere in the watershed for optimization and risk analysis. Hydrology,
sediment, nutrient, and pesticide transportation are essential modeling components. This continuous
version of the model is an improvement to the previously developed single-event Agricultural NonPoint
Source model (AGNPS) watershed model [53]. The model uses and combines many modules of
other commonly used models, such as Revised Universal Soil Loss Equation (RUSLE) [54], Chemicals,
Runoff, and Erosion from Agricultural Management Systems (CREAMS) [55], Erosion Productivity
Impact Calculator (EPIC) [56], and Groundwater Loading Effects on Agricultural Management Systems
(GLEAMS) [57]. In this article, AnnAGNPS version 5.45 (United States Department of Agriculture
(USDA)-Agricultural Research Service (ARS), National Sedimentation Laboratory, Oxford, MS, USA)
(Official Release-21 December 2016) was used for all simulations. A full description of this model and
its associated components are available in [58].

2.3. Hydrological Modeling Component in AnnAGNPS

The main components within AnnAGNPS are the combination of the Soil Conservation Service
(SCS) curve number (CN) technique [59] used to generate daily runoff and RUSLE 1.05 tool (USDA-ARS,
Washington, DC, USA) [54] to produce daily sheet and rill erosion from fields [60]. AnnAGNPS divides
the watershed into drainage areas called ‘cells’ that can have any shape, and each cell is assumed to
have homogenous management and soil [28]. These cells portray the spatial variability of land use, soil,
and topography within the watershed. These simulated cells are then integrated by simulated streams
and rivers, which route the runoff and pollutants from every single homogeneous area downstream.
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2.4. AnnAGNPS Data Input

For the execution of an AnnAGNPS model, the major input data are climate, land characteristics
(e.g., topography, soils), field operations, chemical characteristics, and feedlot operations. Topography
information about the three studied watersheds was acquired from the United States Geological
Survey (USGS)—The National Map Viewer (TNM Viewer version 2.0, USGS, Washington, DC, USA)
7.5-min digital elevation models (DEMs)—with a 10-m horizontal, 7-m vertical resolution. It was
used to obtain the necessary input data for running the TOPAGNPS (Topographic AGNPS) program
version 5.45.a.011 (United States Department of Agriculture (USDA)-Agricultural Research Service
(ARS), National Sedimentation Laboratory, Oxford, MS, USA), a Geographic Information System
(GIS)-based landscape analysis component of AnnAGNPS that is used to generate the input parameters
of the model. TOPAGNPS requires a user-selected watershed outlet location to produce the prerequisite
model input files from the DEM dataset. The DEM was used to identify and measure the topographic
features, to define surface drainage channels, to subdivide watersheds into cells along drainage divides
and also to calculate representative cell parameters (cell area, slope, and length). The size of the cells
depends on the values of the Critical Source Area (CSA) and Minimum Source Channel Length
(MSCL) [34]. The CSA is defined as the minimum upstream drainage area required for a channel
to form, while the MSCL is the minimum acceptable length of concentrated flow in a cell before
a stream channel can be defined [61]. The CSA and MSCL values are critical to determining the extent
of the stream network and resulting AnnAGNPS cells. Various combinations of CSA and MSCL
values were applied until an accurate representation of the stream network and of the land use of
the studied watersheds was acquired. For the three sites, CSA ranged from 5–170 ha and MSCL
from 30–130 m (Figure 1). The number of cells per watershed ranged from 185 to 1800. The soil data
are directly populated from United States Department of Agriculture (USDA)-Natural Resources
Conservation Service (NRCS) Soil Survey Center’s National Soil Information System (NASIS) data.
NASIS data are associated with The Soil Survey Geographic (SSURGO) soil map. This soil map was
overlaid onto the delineated watershed using the AGNPS GIS tool, and the dominant soil type for
each subwatershed cell was determined. Then land use map obtained from National Land Cover
Database (NLCD 2011)—United States Geological Survey (USGS) was also overlaid onto the delineated
watershed using the AGNPS GIS tool. The six daily climate parameters needed for AnnAGNPS are
(1) minimum air temperature; (2) maximum air temperature; (3) precipitation; (4) dew point; (5) solar
radiation; and (6) wind speed. The data for three daily climate parameters—minimum air temperature,
maximum air temperature, and precipitation—were acquired from the PRISM website at 4km spatial
resolution (Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group,
Oregon State University, created 4 February 2004). The remaining three daily climate parameters—dew
point, solar radiation, and wind speed—were acquired from Texas A&M University’s global weather
data site [60].

2.5. Observed Data

For stream flow data used in the calibration and validation, we used the daily observations
from USGS gauging stations. These included USGS 03361650 Sugar Creek at New Palestine, Indiana
(39◦42′51 ”N, 85◦53′08” W) for Sugar Creek watershed, the USGS 04234000 Fall Creek near Ithaca,
New York (42◦27′12” N, 76◦28′22” W) for the Fall Creek watershed, and the USGS 01117500 Pawcatuck
River at Wood River Junction, Rhode Island (41◦26′42” N, 71◦40′53” W) for the Pawcatuck watershed.
The traditional manual baseflow filtering approach was applied to the streamflow record to obtain
runoff by removing baseflow from streamflow before comparison with AnnAGNPS output, as baseflow
is not considered in the model [29].
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2.6. Model Assessment

The performance of model was evaluated by comparing observed and AnnAGNPS modeled
data at the watershed outlet. The assessment of the model was accomplished for runoff on both daily
and monthly time scales. Assessment of model performance for runoff included both qualitative and
quantitative methods. Qualitative methods included comparing graphs of observed and modeled data.
We followed the recommendation of [62] and used three quantitative statistics: Nash–Sutcliffe efficiency
(NSE), percent bias (PBIAS), and ratio of the root mean square error to the standard deviation of
measured data (RSR), along with the graphical techniques, to model performance evaluation. Generally,
model simulation can be judged as satisfactory when NSE > 0.50 and RSR < 0.70, and also when
PBIAS ± 25% for streamflow [62]. We also used the coefficient of determination (R2) for quantitative
evaluations; R2 represents the variation in measured data explained by the model [62]. Values can range
from 0 to 1, with 1 indicating that all variations in the measured data are explained by the model. Values
greater than 0.5 are normally considered acceptable [62]. According to Nash and Sutcliffe [63], NSE is
a normalized statistic that defines the relative magnitude of the residual variance when compared to
the variance in the measured data. The statistic denotes how well the observed data fit the modeled
data in the 1:1 line. The NSE value ranges from −∞ to 1 with 1 representing a perfect fit. Values between
0 and 1 are considered an acceptable performance level for the model [62].

NSE is computed as shown in Equation (1):

NSE = 1−


∑n

i=1

(
Yobs

i −Ysim
i

)2

∑n
i=1

(
Yobs

i −Ymean
)2

 (1)

where Yobs
i is the ith observation for the constituent being evaluated, Ysim

i is the ith simulated value for
the constituent being evaluated, Ymean is the mean of observed data for the constituent being evaluated,
and n is the total number of observations.

PBIAS is computed as shown in Equation (2):

PBIAS =


∑n

i=1

(
Yobs

i −Ysim
i

)
× (100)∑n

i=1

(
Yobs

i

) , (2)

RSR is computed as shown in Equation (3):

RSR =


√∑n

i=1

(
Yobs

i −Ysim
i

)2√∑n
i=1

(
Yobs

i −Ymean
)2

 (3)

2.7. Model Calibration, Validation and Sensitivity Analysis for Runoff Simulation

The SCS-CN, the most important parameter in the AnnAGNPS model for simulating runoff,
is utilized in many studies to calibrate runoff [34–37]. For that reason, the SCS curve number was
also used to calibrate runoff in this study. For Sugar Creek watershed, the AnnAGNPS model was
calibrated for runoff from 1 January 2000 to 31 December 2007 (average annual 1178.1 mm precipitation)
and validated from 1 January 2008 to 31 December 2013 (average annual 1199.2 mm precipitation).
For Fall Creek watershed, the AnnAGNPS model was calibrated for runoff from 1 January 2000 to
31 December 2007 (average annual 994.4 mm precipitation) and validated from 1 January 2008 to 31
December 2013 (average annual 969.3 mm precipitation). For Pawcatuck watershed, the AnnAGNPS
model was calibrated for runoff from 1 January 2000 to 31 December 2004 (average annual 1247.1 mm
precipitation) and validated from 1 January 2008 to 31 December 2013 (average annual 1340.6 mm
precipitation). Before performing the watershed simulation, the model was initialized for two years.
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In this study, we also evaluated the sensitivity value of the most sensitive parameter (SCS-CN) used
for runoff estimation. The sensitivity analysis for CN was performed by the modification or adjustment
of the curve number within the recommended range (30–100). The lower numbers indicate low runoff

potential, whereas higher numbers signify increasing runoff potential. We utilized the integration of
a local method into a global sensitivity method (the random one-factor-at-a-time) design proposed
by [64]. This method consists of repetitions of a local method whereby the derivatives are calculated
for each parameter by adding a small change to the parameter. The change in model outcome can
then be measured by some lumped measure such as total mass export, sum of squares error between
modeled and observed values or sum of absolute errors. The sensitivity analysis and the calibration of
streamflow for the AnnAGNPS model were manually calibrated as in other studies [36].

Based on [65], the selection of initial SCS CNs for the different land use types was completed.
Sugar Creek watershed consists of various land uses like cropland (only corn), cropland (corn–soybean
rotation), fallow land, forested and urban area. Initially, the CN for a straight row crop with poor
hydrological conditions was used for both corn and corn–soybean rotation during the growing season,
while the CN for a fallow field with crop residue and good hydrological conditions was used after
harvest during the non-growing season. The CN for woods with good hydrological conditions was
used for forested areas. The CN for urban areas with 85% impervious cover was used for urban areas
(Table 1). The sensitivity analysis was done only for croplands. The CN for Row Crop (SR—Poor) was
adjusted by running the model a number of times and by relatively changing the value of CN from its
initial value by ± 9.8% to ± 2.8% during the calibration phase.

Table 1. Curve numbers (CN) used for model calibration, Sugar Creek watershed.

Cover Description

Curve Number for Hydrological Soil Groups

Initial Values Values After Calibration

A B C D A B C D

Row Crop (SR—Poor) 72 81 88 91 74.02 83.27 90.46 93.55
Fallow (CR—Good) 74 83 88 90 Not changed
Woods (Good) 30 55 70 77 Not changed
Urban (85% imp) 89 92 94 95 Not changed

SR—straight row, CR—crop residue cover.

Fall Creek watershed consists of various land uses like urban (developed), forested, some cropland
(tall grass, squash, potato), and hay/pasture. At the start of the calibration, the CN for a straight row
crop with poor hydrological conditions was used for potato, while the CN for a contoured row crop
with poor hydrological conditions was used for tall grass and squash fields. The CN for woods with
poor hydrological conditions was used for forested areas. The CN for urban land use with the newly
graded condition was used for urban areas (Table 2). For this watershed, we focused our sensitivity
analysis on the croplands (tall grass and squash fields). The CN for Row Crop (C—Poor) was adjusted
by running the model for a number of times by relatively changing the value of CN from its initial
value by ± 13.6% to ± 2.6% during the calibration phase.

The Pawcatuck watershed consists mostly of forested areas, some urban areas and agricultural
fields (turf). At the beginning of the calibration the CN for woods with good hydrological conditions
was used for forested areas. The CN for a straight row crop with good hydrological conditions was
used for turf during the growing season, while the CN for crop residue cover with good hydrological
conditions was used after harvest during the non-growing season. The CN for urban area with 85%
impervious cover was used for urban areas (Table 3). We performed our sensitivity analysis for cropland
and forested area for this watershed. The CN for Row Crop (SR—Good), Row Crop (C—Poor) and
Woods (Good) were adjusted by running the model a number of times by relatively changing the value
of CN from its initial value by ± 10% to ± 30% during the calibration phase.
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Table 2. Curve Numbers (CN) used for model calibration, Fall Creek watershed.

Cover Description

Curve Number for Hydrological Soil Groups

Initial Values Values After Calibration

A B C D A B C D

Row Crop (SR—Poor) 72 81 88 91 Not changed
Urban (Newly graded) 77 86 91 94 Not changed
Woods—Grass (Poor) 57 73 82 86 Not changed

Fallow (CR—Poor) 76 85 90 93 Not changed
Row Crop (C—Poor) 70 79 84 88 74.62 84.21 89.54 93.81

SR—straight row, CR—crop residue cover, C—contoured.

Table 3. Curve Numbers (CN) used for model calibration, Pawcatuck River watershed.

Cover Description

Curve Number for Hydrological Soil Groups

Initial Values Values After Calibration

A B C D A B C D

Row Crop (SR—Good) 67 78 85 89 35.8 45.7 50.5 62.3
Row Crop (C + CR—Good) 64 74 81 85 58.13 68 74.05 78.98

Urban (85% imp) 89 92 94 95 Not changed
Woods (Good) 30 55 70 77 31.5 49.5 66.5 75

SR—straight row, CR—crop residue cover, C—contoured.

After the initial run of the model without calibration, the model was calibrated to support a better
estimation of runoff. The model performance improved for both daily and monthly runoff calculations
after calibration. The results were evaluated using both graphical and statistical methods [64] until
the best simulation results were obtained. For runoff validation, all model parameters after calibration
were kept the same, and the simulated data were compared with the observed runoff data. Following
calibration in the Pawcatuck watershed, the CN for the turf crop was substantially lower than for
a straight row crop with good hydrological conditions, reflecting the higher infiltration rates of turf
grass (Table 3).

3. Results

3.1. Runoff Calibration and Validation

According to the classification tabulated in [31] for model correlations and efficiencies modified
from [62], our calibrated model for the Sugar Creek watershed predicted the daily runoff volume of
the watershed with good correlation and good agreement (R2 = 0.57, NSE = 0.57 for daily and R2 = 0.67,
NSE = 0.63 for monthly calibration) between daily observed and daily modeled runoff volume (Table 4,
Figure 2a). The calibrated model, when applied to the same watershed for the validation phase,
predicted a daily runoff volume with good correlation and good agreement for both daily and monthly
scales (R2 = 0.58, NSE = 0.57 for daily and R2 = 0.72, NSE = 0.68 for monthly) (Table 4, Figure 2b).
Total runoff estimation by the model during the calibration phase differed from the observed runoff by
only about 6.44%, whereas it differed by about 20.5% during validation. The calculated PBIAS value
for calibration was less than 10, which indicated an excellent calibration performance rate. The model
was biased to overestimate runoff volume during both calibration and validation phases. The observed
runoff volumes from January 2000 to December 2013 at the watershed outlet were used for model
calibration and validation at daily and monthly scales. The model over-predicted some runoff volumes
during the drier months (December to February), whereas it under-predicted some during the wetter
months (May to August) (Figure 2).



Water 2020, 12, 3525 9 of 20

Table 4. Runoff calibration and validation results for Sugar Creek watershed.

Parameter
Calibration Period

(1 January 2000 to 31 December 2007)
Validation Period

(1 January 2008 to 31 December 2013)

Daily Monthly Daily Monthly

R2 0.57 0.67 0.58 0.72
NSE 0.57 0.63 0.57 0.68

PBIAS −6.44% −6.47% −20.56% −20.36%
RSR 0.66 0.61 0.65 0.57

Figure 2. Graphical comparison between daily modeled and observed runoff (a) after calibration and
(b) validation phase for Sugar Creek Watershed.

In the case of Fall Creek watershed, the statistical evaluation of model performance for calibration
and validation is presented in Table 5. The value of NSE for both daily and monthly time scales is
greater than 0.5, so the model calibration performance can be rated as good. The positive PBIAS
indicated the overall underestimation of runoff by the model compared to the observed runoff

volume (calibration phase) and the negative PBIAS indicated the overall overestimation of runoff by
the model compared to the observed runoff volume (validation phase). Total runoff estimation by
the model during the calibration phase differed from the observed runoff by about 16.5%, whereas it
differed by about 5.5% during validation. The calculated PBIAS value for validation was less than 10,
which pointed to an excellent model performance. Figure 3a,b graphically illustrates observed and
modeled daily runoff volume at the USGS 04234000 for calibration and validation phase, respectively,
for Fall Creek watershed. The model over-predicted some runoff volumes during the months in which
less precipitation occurred (December to March), whereas it under-predicted some during the months
in which more precipitation occurred (April to August) (Figure 3). This tendency of the model could
be improved by adjusting the evaporation rate associated with the interception of precipitation events.
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Table 5. Runoff calibration and validation results for Fall Creek watershed.

Parameter
Calibration Period

(1 January 2000 to 31 December 2007)
Validation Period

(1 January 2008 to 31 December 2013)

Daily Monthly Daily Monthly

R2 0.54 0.64 0.66 0.66
NSE 0.51 0.60 0.52 0.64

PBIAS 16.48% 16.59% −5.50% −5.51%
RSR 0.70 0.63 0.69 0.60

Figure 3. Graphical comparison between daily modeled and observed runoff after (a) after calibration
and (b) validation phase for Fall Creek Watershed.

In the case of Pawcatuck River watershed, graphical comparisons of daily observed and modeled
runoff volumes at the USGS 01117500 were presented in Figure 4a,b for the calibration and validation
phase, respectively. The statistical evaluation of model performance for calibration and validation is
presented in Table 6. The range of NSE (0.51 to 0.54 for daily and 0.68 to 0.83 for monthly) showed
a good agreement between daily observed and modeled runoff volume. The positive PBIAS indicates
the overall underestimation of runoff by the model compared to the observed runoff volume for
both calibration and validation. Total runoff estimation by the model during the calibration phase
differed from the observed runoff by about 21.5%, whereas it differed by about 5.8% during validation.
The calculated PBIAS value for validation was less than 10, which pointed to an excellent model
performance. The results show a general tendency for AnnAGNPS to overestimate spring (March–May)
and summer (June–August) runoff volumes compared to observed data for both calibration and
validation periods (Figure 4).
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Figure 4. Graphical comparison between daily modeled and observed runoff (a) after calibration and
(b) validation phase for Pawcatuck River Watershed.

Table 6. Runoff calibration and validation results for Pawcatuck River watershed.

Parameter
Calibration Period

(1 January 2000 to 31 December 2004)
Validation Period

(1 January 2008 to 31 December 2013)

Daily Monthly Daily Monthly

R2 0.62 0.75 0.63 0.86
NSE 0.51 0.68 0.54 0.83

PBIAS 21.56% 21.15% 5.81% 5.79%
RSR 0.70 0.56 0.68 0.41

The estimated RSR values varied from 0.65 to 0.70 for daily (fair) and 0.41 to 0.63 for monthly
(very good to fair) for all three watersheds during calibration and validation periods.

3.2. Sensitivity Analysis

After the sensitivity analysis, it was quite clear how sensitive the CN was for runoff simulation in
AnnAGNPS model. The sensitivity analysis demonstrated differences between sites in the response of
modeled runoff to changes in CN. In Sugar Creek, the percent change in runoff volume (2000–2007 or
7-year average) from its initial condition was found to be up to 5.5 due to 9.8% changes in the CN
(Figure 5).
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Figure 5. Sensitivity analysis for CN for a straight row crop with poor hydrological conditions;
Sugar Creek watershed.

In the case of Fall Creek watershed, during the entire phase of modification of CN, the percent
change in runoff volume (2000–2007 or 7-year average) from its initial condition ranged from 11 to 149
due to 2.6% to 13.6% changes in the CN (Figure 6).

Figure 6. Sensitivity analysis for CN for a contoured row crop with poor hydrological conditions;
Fall Creek watershed.

In the case of Pawcatuck River watershed, during the entire phase of modification of CN for Row
Crop (SR—Good), the percent change in runoff volume (2000–2004 or 5-year average) from its initial
condition ranged from 1.4 to 180 due to −30% to 30% changes in the CN (Figure 7a). The percent
change in runoff volume (2000–2004 or 5-year average) from its initial condition ranged from 0.41 to
9.5 due to −10% to 30% changes in the CN for Row Crop (C + CR—Good) (Figure 7b). The percent
change in runoff volume (2000–2004 or 5-year average) from its initial condition ranged from 9 to 82
due to −10% to 30% changes in the CN for Woods (Good) (Figure 7c).

3.3. Spatial Distribution of Runoff Depth

Since the AnnAGNPS model is able to provide landscape spatial variability by representing
a watershed with a number of land areas (cells), we also evaluated the average annual runoff depth
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for all the watersheds (Figure 8). In this figure, the different shades of color indicate different average
annual runoff depths in mm/year for each individual cell in a watershed. The darker shades in
the figure represent higher runoff depths. At the outlet of the Sugar Creek Watershed, the average
annual runoff depth is 755.1 mm and 830.5 mm for calibration period (2000–2007) and validation period
(2008–2013), respectively. The runoff depth for each cell (mm/year) for this watershed ranged from 1.45 to
955 mm/year. At the outlet of the Fall Creek Watershed, the average annual runoff depth is 174.0 mm and
185.5 mm for calibration period (2000–2007) and validation period (2008–2013), respectively. The runoff

depth for each cell (mm/year) for this watershed ranged from 3.51 to 326 mm/year. At the outlet
of the Pawcatuck River Watershed, the average annual runoff depth is 97.1 mm and 135.9 mm for
calibration period (2000–2004) and validation period (2008–2013), respectively. The runoff depth for
each cell (mm/year) for this watershed ranged from 0.0 to 475.8 mm/year.

Water 2020, 12, x FOR PEER REVIEW 13 of 20 

 

  

 

Figure 7. Sensitivity analysis for (a) CN for Row Crop (SR—Good), (b) CN for Row Crop (C + CR—

Good), (c) CN for Woods (Good), Pawcatuck River Watershed. 

3.3. Spatial Distribution of Runoff Depth 

Since the AnnAGNPS model is able to provide landscape spatial variability by representing a 

watershed with a number of land areas (cells), we also evaluated the average annual runoff depth for 

all the watersheds (Figure 8). In this figure, the different shades of color indicate different average 

annual runoff depths in mm/year for each individual cell in a watershed. The darker shades in the 

figure represent higher runoff depths. At the outlet of the Sugar Creek Watershed, the average annual 

runoff depth is 755.1 mm and 830.5 mm for calibration period (2000–2007) and validation period 

(2008–2013), respectively. The runoff depth for each cell (mm/year) for this watershed ranged from 

1.45 to 955 mm/year. At the outlet of the Fall Creek Watershed, the average annual runoff depth is 

174.0 mm and 185.5 mm for calibration period (2000–2007) and validation period (2008–2013), 

respectively. The runoff depth for each cell (mm/year) for this watershed ranged from 3.51 to 326 

mm/year. At the outlet of the Pawcatuck River Watershed, the average annual runoff depth is 97.1 

mm and 135.9 mm for calibration period (2000–2004) and validation period (2008–2013), respectively. 

The runoff depth for each cell (mm/year) for this watershed ranged from 0.0 to 475.8 mm/year. 

Figure 7. Sensitivity analysis for (a) CN for Row Crop (SR—Good), (b) CN for Row Crop (C + CR—Good),
(c) CN for Woods (Good), Pawcatuck River Watershed.

3.4. Model Performance to Estimate Event Peak Discharge

After the successful calibration and validation of runoff volumes, the model performance for
the estimation of event peak discharge was done. For this purpose, we first looked at the gage height
data for the selected USGS gauging stations. Then, we picked only the events when the gage height
exceeded the existing flood stage (determined by USGS) for the particular station. The existing
flood stage is 2.4 meters, 1.8 meters and 1.5 meters at USGS 03361650, USGS 04234000 and USGS
01117500, respectively. Figure 9 presents a graphical comparison between observed and model
simulated event peak discharge (cubic meter per second) for only those selected events for all three
watersheds. The model generally underestimated the peak discharge compared to few overestimations
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(calibration period) for Sugar Creek Watershed. On the other hand, in the case of Fall Creek Watershed,
the model performed well to capture the highest peak discharge from tropical storm Lee in September
2011 based on the entire simulation period (2000–2013). Pawcatuck River Watershed showed a similar
model performance. The record peak discharge in Rhode Island from the historic flood in March 2010
was captured by the model.

Figure 8. Spatial distribution of average annual runoff depth in mm/year for: (a) calibration period,
Sugar Creek Watershed; (b) validation period, Sugar Creek Watershed; (c) calibration period, Fall Creek
Watershed; (d) validation period, Fall Creek Watershed; (e) calibration period, Pawcatuck River
Watershed; (f) validation period, Pawcatuck River Watershed.
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Figure 9. AnnAGNPS model estimation of event peak discharge (cubic meter per second) for: (a) calibration
period, Sugar Creek Watershed; (b) validation period, Sugar Creek Watershed; (c) calibration period,
Fall Creek Watershed; (d) validation period, Fall Creek Watershed; (e) calibration period, Pawcatuck River
Watershed; (f) validation period, Pawcatuck River Watershed.

4. Discussion

AnnAGNPS performed satisfactorily for runoff prediction and simulation. Both daily and monthly
calibration and validation statistics (NSE > 0.50 and RSR < 0.70, and PBIAS ± 25% based on [62]) of
the developed AnnAGNPS model was satisfactory for runoff simulation for all the watersheds in
the study. The model is categorized as satisfactorily performing when the range of the NSE value falls
between 0.36 and 0.75 [66].

This study tested the applicability of the AnnAGNPS model on a glaciated landscape, which is
why the three chosen watersheds are located in a glacial geomorphic setting. The area of the studied
watersheds varied from 69 to 328 km2. After the evaluation of developed model performance, it was
learned that the range of NSE varied from 0.51 to 0.57 and 0.60 to 0.83 for daily and monthly scale,
respectively. This range is quite similar or even better than the 0.69 to 0.75 (on a monthly scale) found
by [34] for a Mediterranean agricultural watershed (2.07 km2) in Spain, 0.73 (on a monthly scale)
by AnnAGNPS found by [26] for a 289.3 km2 watershed in Illinois, USA, 0.65 (on a monthly scale)
by SWAT and 0.48 to 0.58 (on a monthly scale) by AnnAGNPS found by [36] for a Mediterranean
watershed (506 km2) in Southern Italy, 0.53 (on a daily scale) by SWAT found by [67] for a large 1110 km2

agricultural watershed in southwest France, 0.67 to 0.84 (on a monthly scale; calibration phase) found
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by SWAT for a large 4000 km2 watershed in the North Carolina coastal plain [68], and the 0.53 to 0.62
(on a daily scale) found by SWAT for two watersheds in a semiarid region of Iraq [69]. Even, if we
look at the value of R2 from our study, it ranged from 0.54 to 0.66 (daily) and 0.64 to 0.86 (monthly).
This range is also better than the one (0.50 to 0.80 by AnnAGNPS and 0.62 to 0.81 by SWAT on a monthly
scale) found by [31] for an agricultural watershed in south–central Kansas. We also compared our
developed AnnAGNPS model evaluation results with the results found from another water quality
model, GLEAMS, in a study by [70] for agricultural watersheds in Indiana. The runoff calibration
results were reported by [70] as NSE = 0.62 and R2 = 0.70 for a monthly scale, which is quite similar
to our results (NSE = 0.63 and R2 = 0.67 for Sugar Creek; NSE = 0.60 and R2 = 0.64 for Fall Creek;
NSE = 0.68 and R2 = 0.75 for Pawcatuck) for our studied watersheds.

Simulated runoff followed a similar trend (seasonal fluctuation) to observed runoff. In general,
the model performed better in capturing event peak discharge for Fall Creek and Pawcatuck River
watersheds rather than Sugar Creek Watershed. This poor performance of the model at the Sugar Creek
Watershed could be improved by testing the effect of different storm types for rainfall distribution.
As the regression coefficients for calculating the unit peak discharge are determined by storm type,
the storm type within the AnnAGNPS model significantly influences peak discharge [71]. Simulated
peak runoff was underestimated during some flood periods such as a major January 2005 flood event,
record December 2013 flooding in Sugar Creek watershed, and a major April 2005 flood in Fall Creek
watershed. In most cases, the model could not accurately simulate the flood runoff when the river
overflowed. This characteristic of a hydrological model such as, AnnAGNPS is similar to that found
in studies carried out by other studies (AnnAGNPS and SWAT performed poorly due to several
extraordinary floods recorded during the study period in [36]; the SWAT model underestimated
the largest flood in the study of [67]). However, the model was able to capture the historic September
2011 flood caused by tropical storm Lee in the case of Fall Creek watershed. In addition to that,
the model even successfully captured the peak runoff volume (3815724.36 m3 on 30 March 2010)
generated from the historic 2010 flood in Rhode Island during the validation phase. Daily simulated
runoff was also overestimated for some periods. Larger errors occurred when simulated peak runoff

and average runoff differed significantly from the observed runoff volume. The spatial variability of
the runoff depth (Figure 8) could be attributed to the differences in land use, topography, soil type,
and soil physical characteristics [58]. The output (spatial variability, i.e., cell wise runoff depth within
the watershed) of the AnnAGNPS model contributes the riparian model field input data required for
further research.

5. Conclusions

Model performance during calibration and validation phases shows that AnnAGNPS can be
successfully used to predict runoff from watersheds in the glaciated settings of the Northeast and
Midwest United States. This provides the capacity to couple edge-of-field hydrologic modeling with
models that examine riparian or riverine functions and behaviors. The AnnAGNPS model effectively
estimated runoff volume and portrayed the seasonal pattern of runoff in all the studied watersheds.
The developed AnnAGNPS model could not capture some peak runoff events during wet periods and
formed some unnecessary over-prediction of runoff during dry periods of the year. This characteristic
of the model could be improved by the readjustment of the evaporation rate in association with
the interception of precipitation events. The sensitivity analysis was limited to one specific contributing
land use only, which could be extended by considering all possible combinations of CN based on
the mixed land use of the watershed.
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