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Abstract: The advantages of low-impact development approaches, such as green walls in an urban
environment, are numerous. These systems can be applied for managing stormwater, saving energy
consumption, decreasing noise pollution, improving runoff quality, improving life quality, and so
forth. Besides, atmospheric water harvesting methods are considered a nonconventional water source.
There are many studies about the analysis and advantages of green walls and atmospheric water
harvesting conducted separately. However, the use of a combined system that uses fog harvesting
in the irrigation of green walls has received less attention in previous studies, and therefore in this
research, the feasibility of a novel green wall platform was investigated. At first, the potential of
using green walls and atmospheric water harvesting in different climates was analyzed. Then a new
combined system was proposed and explained. The study results determined that atmospheric water
harvesting can be applied as a source of irrigation for green facilities, particularly in the dry season
and in periods with lower precipitation. In the Mediterranean climate, summer fog harvesting yields
1.4–4.6 L/m2/day, and the water consumption of green walls is about 4–8 L/day/m2. This can improve
one issue of green walls in an urban environment, which is irrigation in summer. Furthermore,
the novel system would protect plants from severe conditions, improve buildings’ thermal behavior
by decreasing direct sunlight, and increase conventional green walls’ efficiency and advantages.
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1. Introduction

Buildings are responsible for about 40% of the total energy consumption in cities, and the
impact of greening systems is evident [1,2]. In addition, greening systems are known as natural
cooling systems [3] and have a high potential to reduce energy consumption in buildings [4–6].
The advantages of low-impact development (LID) systems, such as green walls, green roofs [7,8],
and rainwater harvesting systems, have been determined in many studies [9,10]. In the design
of these systems, many elements need to be considered [11], mainly including statistical analysis
of hydrological parameters [12], hydrological effectiveness [13], flow measurement devices [14],
and thermal impacts [15,16]. The other potentials of green walls are improvement of ecosystem
services, reduction of urban noise, and improvement of air quality [17].

Reitano [18] analyzed the water conditions in Mediterranean countries. The analysis showed that
due to geographical and topographical positions, there are different climate types in the Mediterranean
region, and thus the water conditions and design solutions may be different. Therefore, to meet
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the growing water demand, systems such as fog and dew harvesting, rainwater harvesting, reverse
osmosis (RO), and any other low-energy system may have some advantages. Jarimi et al. [19] analyzed
sustainable methods for harvesting water from atmospheric fogs and dew. They showed that for fog
harvesting analysis, the studies could be divided according to the mesh topology, mesh wettability,
and collector efficiency and feasibility of the methods. The analysis categories could include a radiative
cooling condenser (passive systems), regenerated solar desiccant, and active cooling condensation
for dew harvesting. The study results determined that there are several methods for atmospheric
water collectors that can produce water at different levels of humidity and geographical locations.
Abdul-Wahab and Lea [20] analyzed fog water collection worldwide through a review analysis and
presented a theory and application in different locations, such as the Middle East, Africa, and South
America. The study explained the fog characteristics, standard fog collectors, and collector materials
and design. The collected data from countries in arid regions showed the fog collection’s potential as a
supplementary water supply. Batisha [21] evaluated the sustainability and feasibility of fog harvesting
using a nonconventional method, including analyzing the physical process and different meshes and
collectors and cost in comparison with those of other water resources. The analysis of different elements
determined the necessity of building a pilot system before investing in a fog water harvesting system.

There could be a long dry period(s) in which green walls (GWs) need supplemental water, and with
high-speed winds, GWs are facing problems such as soil loss [22]. To reduce the use of potable water
in GWs, an alternative water source is greywater, which needs a specific design and consideration for
greywater treatment [23], such as secondary piping with filtering and pump [17].

According to literature reviews, the advantages of green walls and atmospheric water harvesting
methods are plenty, and there are many published papers in each of these areas. The knowledge
gaps for further studies have been identified in several works, such as those of Medl et al. (2017),
Segovia-Cardozo et al. (2019), Koch et al. (2020), and Manso et al. (2021) [17,24–26]. However, still the
main focuses of GWs are economic analysis, energy savings, and use of greywater as an alternative
water source, and fog harvesting methods are analyzed separately for other purposes, such as potable
water resources. A combined method, meaning using fog harvesting for irrigation of green walls in
urban environments, has received less attention in previous studies.

Therefore, in this research, the feasibility of a novel platform of green walls was investigated to
gain atmospheric water without consuming energy and increase the efficiency and advantages of green
walls, particularly in summer with lower precipitation. The main aim of the study was to investigate the
potential of fog harvesting and water consumption of green walls in different climates and correlated
factors. The second aim was to propose a combined green wall system with less dependence on an
urban water resource. The third aim of the study was to address the issues of conventional green walls
through an innovative design to improve the usage of the system and increase its advantages in an
urban environment.

The design parameters of green walls and atmospheric water harvesting systems would depend
on several elements. In this regard, first, the potential of different green wall types and the main design
elements was analyzed. Then, fog water harvesting methods and water harvesting amount in different
climates were investigated. Finally, a new combined system was proposed and explained.

2. Materials and Methods

In this study, the potential of fog water harvesting methods and green walls in different climates
would be determined based on different case studies, and a novel system for improving the efficiency
of green walls would be presented with an explanation of its application and advantages. An analysis
diagram is presented in Figure 1.

As can be seen in the analysis diagram, first, we analyzed green walls and their water consumption
in different climates besides their advantages and the issues with conventional green walls. The result
of this section could determine the amount of irrigation in summer and the thermal advantages of
irrigation and other useful information for the next section. Second, we explored atmospheric water
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harvesting methods in different climates, and the outcomes could show the water harvesting potential
per m2 in fog days, especially in summer, in which irrigation of green walls is necessary. Therefore,
we evaluated the possibility of applying atmospheric water harvesting methods to irrigate green walls
in an urban environment. The bases of these sections of the analysis are previous case studies and
literature reviews. Finally, based on the three previous sections, we proposed a novel design for green
walls with a higher efficiency in an urban environment, as well as the main usage of the new system.
Then, we explained the main issues with conventional GWs and how the new system is supposed to
solve them.Water 2020, 12, x FOR PEER REVIEW 3 of 17 
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Figure 1. Analysis diagram of the study.

3. Results

3.1. Green Walls in Different Climates

Greening systems, such as green walls and green roofs, have several advantages, including
environmental [7,27,28], social, and economic benefits [29–32]. These systems are widely used in
different climates, and their benefits can change in different contexts. Many studies have emphasized
the environmental benefits of green systems in the Mediterranean climate, which are more evident
in the hot season than in the cold season [33–40]. In these regions, energy savings can reach 84% in
the hot season. In the tropical climate, the adoption of a greening solution has demonstrated that
environmental benefits have less impact compared with that in the Mediterranean climate, but they
were also relevant [41–45]. The rate of energy savings in these regions can reach an average of 65%.
In the arid climate, the results were not promising, but energy savings can reach the rate of 52% in the
cold season, while energy savings in the hot season are very low [46,47]. The same behavior can be
assumed for the Continental climate, where no relevant energy savings were recorded in the literature,
especially in the hot season [48].

3.1.1. Different Types of Green Walls and the Main Design Elements

Green wall (GW) systems are generally divided into two typologies: green facades (GFs) and
living walls (LWs), which are different from each other as regards constituent elements and design
features. GFs, which are divided into direct and indirect systems, support the natural growth of
climbing plants that can achieve up to 25 m of height and cover a whole wall surface in a few years.
The main difference between direct and indirect GFs is the use of a structural support for plant growth.
In this regard, direct systems are characterized by plants directly developed on the wall, while in
indirect systems, a structural support (continuous or modular guides) sustains the plant’s growth.
Generally, GFs are easy to install and light and present low costs [29,49]. On the other hand, LWs,
the most recent innovation in terms of GW, based on specific climate conditions, can support a wide
variety of vegetations (succulents, perennial plants, grasses, etc.). Just like the former category, LWs can
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also be subdivided into continuous and modular LWs, whose main difference is in the substrate soil.
In continuous LWs, the plants are put in a pocket obtained by cutting absorbent and lightweight
screens (as felt). While modular LWs are generally prevegetated panels with vessels, flexible bags,
trays, and planter tiles as supporting elements for the plant’s growth, they are characterized by organic
and inorganic growing media adequate for retention capacity [29,49].

3.1.2. Water Consumption of Green Walls

The water consumption of green walls is essentially due to irrigation, and it may depend on
several factors, such as (a) the climate of the area where they are installed, (b) the type of planted
vegetation, (c) the type of installed system, (d) the average annual rainfall, (e) the distribution of
precipitations, (f) the trend of daytime and nighttime temperatures, and (g) the relative humidity (RH)
in the air [50]. Moreover, one advantage of green walls is their thermal impacts on buildings and
total energy consumption, and this, especially in summer, would depend on the irrigation. However,
water scarcity and precipitation periods could affect irrigation and efficiency, particularly in arid and
semiarid areas [15]. Ottelé et al. [51] quantified a green wall’s water consumption in a Continental
climate with an average wind speed of 5.8 m/s, which ranged from 1 to 3 L/day per m2 depending on the
system investigated. Pérez-Urrestarazu et al. [52] analyzed the water consumption of an experimental
LW system with a size of 5.9 m2 in Spain, Seville (Mediterranean climate), and the results determined a
range from 4.0 to 8.0 L/d/m2.

3.1.3. The Relative Humidity in the Air and the Area near Green Walls

Several studies have demonstrated that GW use contributes to the stable relative humidity of
a building, improving climate conditions. Chen et al. [53] investigated RH’s role in two identical
thermal labs built for this purpose. Their study concluded that the use of green walls provided a more
stable relative humidity condition in the air layer next to the wall surface without increasing the mean
relative humidity of the indoor space. Widiastuti et al. [54] found in their study an increase in RH from
65% to 72%.

RH is an important factor for atmospheric water harvesting as explained in the next section.
The results of a study that analyzed two case studies showed that the potential of water harvesting
depends on relative humidity, and it would be near zero with RH at less than 69% [55].

3.2. Fog Water Harvesting Methods and Their Potential in Different Climates

Sabino [56] analyzed fog harvesting pilot sites in the archipelago of Cape Verde, which has a
desert climate and an altitude between 750 and 1400 m. The daily collected water was reported to
be between 3 and 75 l/m2/day. Cereceda et al. [57] investigated the fog harvesting potential in Chile,
which has a desert climate. The analysis determined that fog is frequently observed in the coastal area
(0–12 km seashores) with a harvesting capacity of about 7 L/m2/day. Estrela et al. [58] analyzed fog
harvesting using a passive cylindrical collector in four locations in Spain. Their results indicated the
significant potential of the method in the selected regions. The water produced was between 2 and
7 L/m2/day. The maximum summer fog was also determined, which was 4.6 L/m2/day. Harb et al. [59]
explored the possibility of fog harvesting to improve the situation of water shortage in Egypt, and the
results showed the effectiveness of the method. Lekouch et al. [60] analyzed fog and dew harvesting
performance by using a passive condenser and mesh collector in Morocco, which has an arid climate,
and the results showed the effectiveness of the method. Dodsona and Bargach [61] explored the
possibility of fog water harvesting in the southern region of Morocco, which has a semiarid climate.
Their pilot site’s annual yield with a mesh size of 600 m2 was 2.3 million liters (10.5 L/m2/day).

Park et al. [62] studied the role of surface wettability on the efficiency of fog harvesting.
Their analysis determined that in a mild fog with a wind speed of 2 m/s, an average radius of
droplets of about 3 µm, and a liquid water content of 0.1 g/m3, the water harvesting capacity could be
about 2 L/m2/day if the used mesh is dip-coated. Almasian et al. [63] analyzed the role of modified
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nanofiber in the capacity of fog harvesting. The analysis showed that by increasing the hydrophobic
nature of the material, the harvesting capacity increases. Therefore, they investigated a new type
of fluorinated nanofibers with a super-hydrophobic nature, which means lower surface energy,
higher water contact angle, and higher surface roughness. The capacity of the treated nanofibers was
about 10 times more than that of the untreated nanofibers. In another study by Zhou et al. [64], a new
hybrid surface was prepared and fog harvesting ability was investigated. Analysis of the new hybrid
hydrophobic–hydrophilic surface integrated with a Janus copper foam system (HB-HL + JCF) showed
that the efficiency of fog collection compared with untreated copper foam increased by 209%.

Ghosh et al. [65] explored the fog harvesting from a thermal power plant’s cooling tower since it is
considered a major industrial water consumer. The pilot analysis results determined that a recovery of
about 40% could be possible by using fog harvesting (10.5 m3 per hour in a 500 MW power plant). In a
more recent study, Ghosh et al. [66] investigated the use of a coating mesh to increase the efficiency
of a metal mesh for fog harvesting and contaminants. The results showed that coated metal meshes
made of TiO2/ZnO could be applied for this purpose. Bagheri [67] developed an experimental setup
for analyzing water harvesting in commercially atmospheric water harvesting systems. The results
showed that the average water harvesting in a cold and humid climate is about 0.05 L/h (with an
energy consumption of 6.23 kWh/L), and in warm and humid climates, around 0.65 L/h (with an energy
consumption of 1.02 kWh/L).

Standard collectors from polypropylene mesh nets can be classified as follows [68,69]:

• Standard fog collectors (SFCs): 1 × 1 (1–1.5 m2) and 2 m above the ground
• Large fog collectors (LFCs): 4 × 10 (40 m2) or 12 × 4 (48 m2) and 2 m above the ground, and the

ratio of width to height is usually 2.5 and 3.

The analysis showed that the efficiency of fog harvesting depends on the moisture capture by
the mesh and the captured water removal from the mesh [70]. In estimating the potential Fog Water
Collection (FWCp), two critical factors are visibility and wind speed [71]. SFCs can harvest fog
when winds are present; however, the efficiency can be decreased by winds parallel to the panel [58].
Contact angle is another important factor, allowing small captured droplets to easily slide down
into the collector [62]. Furthermore, water harvesting capacity would depend on the geometrical
shapes of the Raschel mesh [72]. Another factor that needs to be considered is the sustainability of the
techniques [73,74] and, in this case, the sustainability of the used mesh and installation structures [75].

The efficiency of fog collection depends on wind velocity, fog liquid water content, droplet size
distribution, and mesh characteristics, which can be calculated as follows [76]:

ηcoll =

.
Wcoll

v0LWC
(1)

ηcoll—the water collector efficiency
.

Wcoll—the collected water flow rate per unit of mesh area (
kg
s

m2 )

vo—the wind flow velocity ( m
s )

LWC ( kg
m3 )—the liquid water content of the airflow

Some of the maintenance issues that currently exist in LFCs are as follows [75]:

• The wind pressure on the mesh can break the supporting structures;
• The mesh and other components can be damaged by UV radiation.

The potential of fog harvesting in different case studies and climates is presented in Table 1.



Water 2020, 12, 3524 6 of 16

Table 1. The potential of fog water harvesting in different case studies and climate types.

Climate Type Location Type Size (m2) EL (m) WH in Summer (L. Day) WH (L. Fog Day) Cost Year Ref.

Different
climates

Different sites
LFSs 48 - - 150–750 400

2011 [18]
SFCs 1 - - - 100–200

Desert Alto Patache, Chile SFC 1.1 700 - 6 - 1987 [77]
SFC 1 700 - 7.8 - 2000 [78]

Tropical Tojquia, Guatemala 35 LFCs 1680 3300 - 6300 - 2006 [68]

Tropical Tojquia, Guatemala 40 LFCs 1920 3300 - 8000 - 2006 [79]

Tropical Yemen (Hajjah mountains) 25 LFCs 28 1800 - 4.5 - 2004 [80]

Subtropical
Dry arid Abadan, Iran SFC 1 3 - 6.7 - 2013 [55]

Hot desert Chabahar, Iran SFC 1 7 - 8.6 - 2012 [81]

Mediterranean
(Coastal area)

Valencia Peñagolosa
Cylindrical

collector
(D: 26 cm,
H: 46 cm)

1

1193 2.5 2.9

- 2004 [58]
Valencia Monduver 843 1.6 7.3

Valencia Bartolo 763 1.4 2

Valencia Montgo 670 4.6 7

Mediterranean Morocco LFCs 600 1225 - 6300 200 2015 [61]

Subtropical Kathmandu, Nepal LFCs 80 1400 - 500 - 2010 [82]

Arid tropical Peru SFC 1 800 - 11.8 - 1999 [83]

Mediterranean South Africa SFC 1 1600 - - 4.6 2001 [84]

Different
climate

Different sites
SFC 1 - - - 25–50 2015 [85,86]

LFCs 40 - - - 1000–2000
2018 [87]

LFCs 48 - - - 1200–2400

EL: elevation; WH: water harvested; SFC: Standard fog collectors; LFC: Large fog collectors.
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3.3. The New Proposed Green Wall System

The new green wall (living wall) platform with an atmospheric water harvesting and collector
system is presented in Figures 2 and 3, and the installation of the platforms in buildings in Figure 4.
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Figure 4. The view of the combined living wall system after installation of all platforms. 12—water
storage tank with filters, D1—direction of water droplets to the downside collector pipe, D2—direction
of the water droplets on the slopped rods, D3—the way of using harvested water for irrigation or other
usages in the buildings.

As can be seen in the figures, the water harvesting mesh (2) produces droplets (6) that move
through the sloped rod (4) and then enter the collector pipes (3), and the collected water drops from
each living wall platform (1) and discharges on the next one on the downside.

3.3.1. The Main Elements in the Novel Living Wall System

• Green wall (living wall) platform, H (height) and L (length): 50 to 200 cm, T (thickness): 15 to
35 cm;

• Fog harvesting mesh that is a coated double-layer transparent mesh (polypropylene ribbon) with
hydrophobic materials, such as BaSO4, TiO2, and ZnO;

• Metal rod for fog convey (the collected fog droplets can move on the sloped rod and reach the
collector pipe);

• Water collector pipe (the water drops can pour from each green wall panel to another);
• Metal base for mesh installation to the living wall platform and metal clamps to fix the mesh to

the base;
• Water storage tank with filters can store the collected water for the green wall’s irrigation and

other nonpotable purposes.

3.3.2. Different Uses of the New Proposed Living Wall System

• For atmospheric water harvesting in an urban environment;
• For improving the thermal impact of buildings;
• For improving the efficiency of green walls in water consumption and noise and air

pollutions reduction;
• For improving the sustainability of municipalities, factories, and buildings in different climates.
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4. Discussion

Green walls are widely used in different climates, and their benefits can change in different
contexts. The environmental benefits of green systems in different climates are more evident in the
hot season than in the cold season as energy savings in summer can reach 84% in the Mediterranean
climate, 65% in the tropical climate, and 52% in the arid climate. The water consumption of green
walls, which affects thermal impacts, would depend on the irrigation, especially in summer. According
to previous studies, the water consumption is 4 to 8 L/day/m2 in the Mediterranean climate and 1 to
3 L/day/m2 in the Continental climate. The analysis shows the irrigation demands for green walls,
specifically in the dry seasons. However, in dry and semidry climates and even in the Mediterranean
climate, whereas the annual rainfall may exceed 1000 mm, the dry period (July to September) could
have no, or in some years low, precipitation.

One way to provide the required water for GWs could be to use a fog harvesting mesh. The potential
of fog harvesting based on previous studies, which also depends on altitude, is 2 to 7 L/m2/day in the
Mediterranean climate (maximum summer fog from 1.4 to 4.6 L/m2/day), 11.8 L/m2/day in the arid
tropical climate, 10.5 L/m2/day in the semiarid climate, 7 L/m2/day in the desert climate, and 8.6 L/m2/day
in the hot desert climate. Furthermore, there are some techniques for improving the efficiency of a
fog harvesting mesh. The efficiency of a fog harvesting mesh depends on hydrophobic–hydrophilic
conditions, which means the moisture captured by the mesh and the captured water removal from the
mesh. This efficiency can be improved by using coated meshes made of TiO2/ZnO.

Comparisons have determined that in the Mediterranean climate, summer fog harvesting,
which yields 1.4–4.6 L/m2/day, could be an appropriate source of irrigation as the water consumption of
green walls is about 4 to 8 L/day/m2. In addition, GWs increase the relative humidity in the surrounding
area, and the potential of atmospheric water harvesting depends on the RH. While the result of a study
showed that the fog harvesting potential is low in RH less than 69%, the analysis of another study
showed that the use of green walls can increase RH from 65% to 72%, which could be enough to use
atmospheric water harvesting methods.

4.1. The Advantages of the New Proposed Living Wall System

The main advantages of the new living wall platforms compared with conventional ones are
as follows:

• In conventional green wall systems for installation, many in-site construction works were required,
but in the new system, the platforms, with a specific design (shape, size, and installation method),
make installation easy, and in several stages based on budget.

• In conventional green wall systems, all systems could be stopped for a repair, but in the new
system, the repair can be done just on the damaged platform very fast (by removing and replacing
the damaged platform with a new one), which decreases the maintenance cost. In addition,
a combination of a sloped rod and a pipeline in the fog water collecting system decreases the total
cost. In this system, the water droplets (fog/precipitations) move through the sloped rod through
gravity and reach the water collector pipe, and from each platform to the downside platform.

• In conventional green wall systems, the focuses are landscape, thermal impacts (confronted
with issues), and in some cases, runoff management. However, in the newly designed platform,
the transparent mesh keeps the landscape of plants in the living wall and improves the thermal
impacts and stormwater management and reduces noise and air pollution besides protecting the
plants from direct sunlight, high wind speed, and snow.

• Green walls can reduce the total runoff volume and reduce and delay the peak discharge into the
sewer system [7,13,88–90]. The performance would be improved in the new system since part of
the precipitation can be collected by the installed mesh.

• According to literature analysis, green walls can increase the surrounding air’s relative humidity
through its wet substrate and the evapotranspiration of plants. This can improve atmospheric
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harvesting systems’ efficiency since it directly depends on the RH%, and the relative humidity in
the site of green walls is more than that in the adjacent area. Thus, this phenomenon undoubtedly
increases the possibility of generating water with the systems mentioned in this study, but also,
the excessive increment of this parameter could be critical considering the alteration of the climatic
condition, especially in the humid climate.

• In the new system, the necessity of irrigating green walls, particularly in dry periods, is decreased
by a transparent fog harvesting mesh and, as a result, reduces the pressure on the water resource.

• Green walls can reduce energy consumption in buildings [15,39,91–93] and mitigate the urban
heat island [94–97]. In conventional green wall systems, the thermal efficiency of green walls
decreases in dry periods due to water issues for irrigation, but in the new proposed system with a
transparent mesh in the front, thermal efficiency is increased and water consumption is decreased
in several ways. First, the mesh absorbs fog/precipitation and parts of the evapotranspiration
of the plants. The thermal performance would increase due to the increase in irrigation in the
summer. Second, the installed mesh decreases the plants’ direct exposure sunlight and decreases
the total water consumption.

• In conventional green wall systems, the plants could be damaged by high wind speed and snow
conditions, but these two problems are solved in the new platform with an installed transparent
mesh in front of the plants.

• Green walls can enhance the water quality [89,98,99], improve the air pollution concentration,
and decrease the noise levels in urban environments [100–102]. In the new system, the performance
improved due to the installed mesh.

• Green walls can improve the wildlife and biodiversity conditions [103–105]. The same performance
would be available in the new systems.

• Green walls can improve the building’s aesthetic and property values and quality of life [106–108].
The same results would be achieved in the new systems. However, the total cost of water and
energy demand in the new systems are less than those of previous systems.

• A main part of the cost of the fog harvesting mesh belongs to the supporting structures that stop
collapse owing to winds, which affects the final price [75]. However, in the new system, the mesh
is installed to the living walls’ platform and does not need separate structures, which decreases
the entire coast.

4.2. Recommendation for Future Works

The fog mesh’s efficiency would depend on the type and distance from the green wall, and therefore,
the place of the fog harvesting mesh is recommended for future analysis. In addition, to be confident
about the exact impact of the mesh on total water reduction or thermal impact, an experimental analysis
is necessary and thus is recommended for future studies. Finally, the evaluation of the mentioned
advantages and the analysis of the performance in each point (cost analysis, water quality, etc.) could
be done by experimental analysis.

5. Conclusions

Different studies have determined the application, properties, and advantages of green walls
in an urban environment, which are mainly managing stormwater, saving energy consumption,
decreasing noise pollution, improving runoff quality, and improving life quality. Green walls’ daily
water consumption depends on the climate type and ranges from 1 to 8 L/m2/day, and their thermal
impacts, especially in summer, depend on the irrigation. However, analysis showed that in dry and
semidry climates and even in the Mediterranean climate with annual rainfall of more than 1000 mm,
the dry period (July to September) could have no, or in some years low, precipitation.

In addition, analysis of different case studies determined the potential of fog harvesting as a
supplementary water supply even in arid regions. The average daily fog-collected water in different
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climates was between 2 and 15 l/m2 in fog days, including 2–7 L/m2/day in the Mediterranean climate,
3.75–4.5 L/m2/day in the tropical climate, 6.7 L/m2/day in the subtropical dry arid climate, 10.5 L/m2/day
in the semiarid climate, 5.5–7.8 L/m2/day in the desert climate, and 8.6 L/m2/day in the hot desert
climate, which also depends on the elevation, wind speed, and mesh characteristics. The analysis
determined that one way to provide the required water for GWs could be to use a fog harvesting mesh
as in the Mediterranean climate, summer fog harvesting, which yields 1.4–4.6 L/m2/day, could be an
appropriate source of irrigation as the water consumption of green walls is about 4 to 8 L/day/m2.

Therefore, a new platform of living walls that benefits from a fog harvesting mesh is developed
and analyzed. The analysis shows that, compared with conventional green wall systems, the new
system may require less installation time and maintenance costs and could be more economical.
Furthermore, the newly designed platform gains atmospheric water without consuming energy and
could increase the efficiency and advantages of green walls, particularly in summer with lower
precipitation. The transparent mesh used in the new living wall could keep the landscape of the plants;
improve thermal performance, stormwater management, and water quality; reduce noise and air
pollution; decrease water consumption; and protect the plants from direct sunlight, high wind speed,
and snow. In conclusion, it seems that the new proposed systems for living walls would improve the
advantages of green walls and may decrease conventional systems’ negative points. However, future
experimental analysis is required to determine the exact impact on each sector. This idea, after further
experimental investigations, could be added to the new energy policies, such as nearly zero-energy
buildings (NZEBs).

6. Patents

The manuscript’s idea is submitted as a patent in Italy’s Ministero dello sviluppo economico,
with application number 102020000027038.
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