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Abstract: Water conservation forests significantly contribute to the stability of mountain agricultural
ecosystems in Hani Terrace. In this study, we analyzed the relationship between the stable isotopic
composition of soil water and precipitation to determine the mechanisms of soil water movement
in the small watershed of Quanfuzhuang. We observed significant seasonal variations in soil water
sources: antecedent precipitation was the dominant supply during the dry season, and current
precipitation dominated during the rainy season. The recharge ratio of precipitation to soil water
in the grassland was significantly higher than that in the arbor land and shrubland. The influence
of water infiltration, old and new soil water mixing, and soil evaporation on the soil water stable
isotopes gradually decreased from the surface (0–20 cm) to the deep (60–80 cm) soil. We observed
significant seasonal variability in average soil water δ18O in the upper 0–60 cm and lower variability
at 60–100 cm. The average soil water δ18O was generally higher in the dry season than in the rainy
season. The mixing of old and new water is a continuous and cumulative process that is impacted by
soil structure, soil texture, and precipitation events. We therefore identified a significant time delay in
soil water supply with increasing soil depth. Moreover, the piston flow of soil water co-occurred with
preferential flow, and the latter was the dominant supply during the rainy season.

Keywords: soil water; stable hydrogen and oxygen isotopes; evaporation; water movement;
Hani Terrace

1. Introduction

Water resource shortages are a worldwide concern. Soil water is a dominant water resource
and is intrinsically linked to atmospheric precipitation, surface water, groundwater, biogeochemical
cycles, and the water cycle [1]. The study of soil water movement is important for assessing soil
water supplies, water redistribution mechanisms, soil nutrient and pollution transport processes,
and areal water resource potential [2–5]. Hydrogen and oxygen stable isotopes, as elements of H2O,
can accurately reflect water movement in soil. Isotopic measurements can identify the soil water
source, infiltration, evaporation, and other water movement processes to infer the dynamic changes,
movement features, and supply mechanisms of soil water. As a result, stable isotopes can be applied to
assess basin-scale water cycles [6–8]. In recent years, many studies have assessed soil water movement
processes using stable isotope techniques. For example, Lee et al. [9] found that the index piston
flow model, which incorporated the deuterium excess (d) of rainfall and soil water, could accurately
simulate water retention time. Using the stable isotope tracer method, Brinkmann et al. [10] found
that the retention time of rainfall in soil ranged from days to months and increased with soil depth.
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Mueller et al. [7] also applied stable isotopes to trace the soil water movement pathways in the slope
zone. According to the component features of soil water stable isotopes, Gazis et al. [11] found that
rainfall infiltrated the soil surface by piston flow, while the water in deeper soil was renewed by
long-term continuous snowmelt or heavy rainfall. Tian et al. [12] analyzed stable isotopes of rainfall
and soil water in the central region of the Qinghai–Tibet Plateau and assessed their relationships with
water movement at different depths in the soil profile. Based on the stable isotopic features of three
typical vegetation types in the Taihang Mountains, Hou et al. [13] found that the temporal variations
and vertical distributions of soil water stable isotopes reflected the tradeoff between rainfall infiltration
and evaporation. Cheng et al. [14] found that artificial grass glades with high water consumption
did not create priority flows due to the formation of a soil dry layer from a negative water balance.
However, rainfall easily infiltrated farmland and wild grass via priority flow, which supplied water to
the deep soil and/or groundwater. Ma et al. [15] detected soil water priority flow in forests, grasslands,
and farmlands by analyzing the soil water δ2H of aeration zones in different land use types. Ji et al. [16]
found that low rainfall supplied water in farmlands and grasslands, while summer and autumn
rainstorms supplied landscapes dominated by Salix and Populus. Many studies have assessed soil
water hydrogen and oxygen stable isotopic characteristics to determine the vertical movements of
soil water and the rainfall infiltration processes in different areas; however, few studies to date have
investigated the soil water movement mechanisms in the water source regions of Hani Terrace.

Hani Terrace is a typical mountain farming ecosystem. The region is known for its water flow in
irrigated areas, which remains consistent throughout the year. However, Yunnan Province experienced
a severe one-hundred-year drought event in 2010. The ecosystem’s landscape structure consists of
four elements: forests, villages, terraces, and rivers [17]; as a result, forests significantly regulate the
hydrological cycle in Hani Terrace. Studying the conservative water content of forests and identifying
and adjusting the areal structures of forests, villages, and croplands can help to balance terrace
conservation and regional sustainable development [18]. It is therefore crucial to identify the soil
water movement characteristics of the headwater forest to evaluate rainfall infiltration processes
and soil water source stability. In this study, we investigated the water migration in arbor land,
shrubland, and grassland located above the small Quanfuzhuang watershed. We analyzed the soil
water, underground water, and rainfall stable isotopes in the three land types over one year to determine
the dynamic movements and stable isotopic composition of soil water. Our results elucidate the soil
water movement processes and their spatiotemporal variations in the headwater forests. We also
provide suggestions for future quantitative research on water cycle processes to improve the sustainable
development of forest–terrace ecosystems in Hani Terrace.

2. Materials and Methods

2.1. Study Site

The small Quanfuzhuang watershed (102◦45′–102◦53′ E, 23◦03′–23◦10′ N) is located in the Bada
district (Yuanyang County) in Honghe State, Yunnan Province. Hani Terrace, located in the Bada
district, is classified as a World Cultural Heritage site. The Bada district is the upstream water source
region of the Malizhai River—a first-level tributary of the Honghe River. The watershed has an area of
approximately 13.92 km2, and its altitude ranges between 1500 and 2000 m. The watershed consists of
moderate- to low-level mountains with a hilly topography and an obvious three-dimensional climate.
The area above 1800 m primarily consists of forests and experiences northern subtropical and temperate
climate; the region is also dominated by yellow and yellow–brown soils covered by evergreen broad-leaf
moss forests (mist forest; mainly Alnus cremastogyne and Camellia pitardii), with grasslands occurring in
damaged areas. The area below 1800 m has a central or southern subtropical climate and is mainly
dominated by terraced fields. The region mainly consists of yellow and paddy soils, and the vegetation
predominantly comprises evergreen broad-leaved forest or coniferous forest (mainly Cyclobalanopsis
glauca or Schima superba); secondary forests and plantations also occur in damaged zones [19,20].
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The multi-year average temperature and precipitation is 20.5 ◦C and 1397.6 mm, respectively. The region
experiences notable seasonal rainfall variability, with the rainy season occurring from May to October
(maximum rainfall from July to August). The annual evaporation is 1184.1 mm, and the annual average
sunshine hours is 1820.8 h [21]. The study site is located in the water conservation forest above the
terraced region in the small Quanfuzhuang watershed. The forest has a water source conservation of
77 hm2 and an altitude range of 1720–2073 m.

2.2. Research Site and Standard Plots

We established a gauging station and recorded the site type and land use characteristics (arbor
land, shrubland, and grassland) in the watershed; three standard runoff communities were also laid out
(specification: 5 × 20 m). Three standard plots with areas of 100 m2 were established in the watershed
(Figure 1 and Table 1).
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Figure 1. Sketch map of the study area and sample plots.

Table 1. The basic information of the sampling plots.

Vegetation Types Sample Plot Latitude and Longitude Altitude (m) Aspect Major Plant Species Cover Degree (%)

Arbor land

A-1 102◦46′11′′ E
23◦5′37′′ N 2069.2

E

Camellia pitardii,
Schima khasiana,

Castanopsis
orthacanthus Franch,

Alnus nepalensis
D.Don

80

A-2 102◦46′10′′ E
23◦5′37′′ N 2068.2 90

A-3 102◦46′11′′ E
23◦5′37′′ N 2057.1 85

Shrubland

S-1 102◦46′17′′ E
23◦5′44′′ N 1976.5

E

Melastoma candidum,
Clerodendrum bungei,
Neolitsea homilantha,
Melodinus suaveolens

Champ. ex Benth.

98

S-2 102◦46′18′′ E
23◦5′44′′ N 1968.1 98

S-3 102◦46′18′′ E
23◦5′45′′ N 1966.8 96

Grassland

G-1 102◦46′16′′ E
23◦5′57′′ N 1924.2

E
Rostellularia
procumbens,

Phyllanthus urinaria,
Achnatherum splendens

90

G-2 102◦46′16′′ E
23◦7′27′′ N 1923.8 85

G-3 102◦46′16′′ E
23◦5′51′′ N 1921.5 90
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2.3. Sample Collection and Stable Isotope Determination

2.3.1. Sample Collection

Soil samples from 0 to 100 cm depth in the standard plots and samples of precipitation, surface water,
and groundwater near the plots were collected every month from March 2019 to February 2020.

For rainwater samples, a polyethylene bottle was placed in a rainwater collection device located
in an open area of the woodland, and a funnel was added to the mouth of the bottle. A table tennis ball
was then placed at the mouth of the funnel to prevent the water from evaporating. Water samples were
collected immediately after each rainfall event. If rainfall occurred during the evening, samples were
collected on the following morning. Groundwater samples were collected at the dew point in a spring
of constant flowing water once a month. The water samples were placed in a 50 mL centrifugal tube
and immediately sealed with Parafilm. The samples were then stored in a cryopreservation box for
transport to the laboratory for frozen storage. A total of 99 precipitation samples and 13 groundwater
samples were collected during the study period.

Three quadrats were randomly placed in the three typical plots (arbor land, shrubland,
and grassland) in the study area. A soil drill was used to sample the soil once a month at 0–10,
10–20, 20–40, 40–60, 60–80, and 80–100 cm depth; the average depth of each soil layer was used as
the standard depth during the analysis: i.e., 5, 15, 30, 50, 70, and 90 cm. The soil samples were
placed in a centrifuge tube and immediately sealed with Parafilm. The samples were then stored in
a cryopreservation box and transported to the laboratory for refrigeration storage (1–4 ◦C). A total
of 648 soil samples (216 soil samples from each woodland type) were collected. The final soil water
isotope values of each forest type were determined as the average of three quadrats during the analysis,
resulting in 72 soil samples for each forest type.

2.3.2. Stable Isotope Determination

We used a vacuum-distilled extraction apparatus to extract soil water from the soil samples [22].
All samples were analyzed for hydrogen and oxygen isotopes using a liquid water isotope analyzer

(model: DLT-100, Los Gatos Research, Mountain View, CA, USA) and off-axis integrated cavity output
spectroscopy (OA-ICOS) at the State Key Laboratory of Cryospheric Science, Northwest Institute
of Eco-Environment and Resources, Chinese Academy of Sciences. The hydrogen and oxygen
measurements were a thousand points lower than the Vienna Standard Mean Ocean Water (VSMOW):

δ(‰) = (
Rsample

RV−SMOW
− 1)× 1000 (1)

where Rsample is the natural abundance ratio of hydrogen or oxygen isotopes in the tested sample (‰),
and RV-SMOW is the natural abundance ratio of stable oxygen or hydrogen isotopes in VSMOW (‰).
The analytical accuracies of the δ2H and δ18O measurements were ±1‰ and ±0.2‰, respectively.

2.4. Soil Water and Meteorological Data Acquisition

In each standard runoff plot, 1 m deep drivepipes were buried in three slope positions (uphill,
mid-slope, and downslope), and a high-precision soil moisture content analyzer (model: ML2X,
DELTA-T, Cambridge, Massachusetts, England) was used to observe the soil volumetric water content
at different depths (10, 20, 30, 40, 60, and 100 cm). The observation period ranged from March 2019
to February 2020, and the observation frequency was three times a month (at 10 day intervals) and
twice a day (at 08:00 and 17:00). In this study, soil water content refers to the soil volumetric water
content (θ), and meteorological data—such as rainfall (P) and temperature (Ta)—at the research site
were provided by the Xinjie Weather Station in Yuanyang County.
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2.5. Data Processing

The soil water storage capacity can reflect the water condition within a period and within a
certain soil depth in the studied district. Using the observational data of soil volumetric water content,
the soil water storage content of different land use types can be calculated hierarchically using the
following formula:

W = h× θi × 10/100, (2)

where W is the soil moisture content (mm), h is the thickness of the soil layer (cm), and θi is the
volumetric water content of the i-th soil layer (%).

In this study, the average stable isotope value of precipitation was calculated by weighting the
rainfall in the corresponding periods. The average value of all other elements refers to the arithmetic
average of the elements during each period. The weighted average precipitation isotope values (δw)
were calculated as follows:

δw =
n∑

i=1

δiPi/
n∑

i=1

Pi, (3)

where Pi and δi are the precipitation and isotope values of each precipitation event, respectively.
The linear relationship between δ2H and δ18O of precipitation is called the meteoric water line

(MWL), which is highly useful in the study of water cycle stable isotope variability [23]. The lc-excess
(the difference between the value of δ2H and the location of the MWL (LMWL)) of a particular water
body represents the degree of evaporation relative to local precipitation [24–26] and is expressed by
the following:

lc-excess = δ2H − a × δ18O − b, (4)

where a and b are the slope and intercept of LMWL, and δ2H and δ18O are the stable isotope values
of the water sample. Generally, the variation of lc-excess in local precipitation is mainly affected by
different water vapor sources, and the annual average value is 0. The average lc-excess is usually
below 0 if the stable isotopes of the water body is enriched by evaporation. However, lc-excess is
positive if the water sample is affected by non-precipitation water sources [27,28].

The data analysis was performed using Microsoft Excel 2016, and the significance analysis was
performed using IBM SPSS Statistics 26.0. All charts were formed using Microsoft Excel 2016 and
OriginPro 2019.

3. Results

3.1. Dynamic Changes in Soil Moisture

Changes in soil moisture are mainly affected by rainfall and evapotranspiration [29]. The study
region experiences notable seasonal variation in rainfall, with distinct dry and rainy seasons. The soil
water storage capacity exhibited regular fluctuations, coinciding with fluctuations in temperature
and precipitation (Figure 2). Precipitation reached 984.5 mm in the rainy season (May to October),
accounting for 76.5% of the total annual precipitation; 111 precipitation days also occurred during the
rainy season, accounting for 66.9% of the total annual precipitation days. The highest temperature
was recorded in June, with a monthly average of 22.1 ◦C. The soil moisture content of the arbor land
showed large fluctuations, ranging between 136.20 and 359.20 mm (average of 258.13 mm), with a
variation coefficient of 26.35%. The soil moisture content of the shrubland ranged between 140.50
and 283.00 mm, with an average value of 230.44 mm and a variation coefficient of 20.58%. The soil
moisture content of the grassland ranged between 138.45 and 294.00 mm, with an average value of
220.51 mm and a variation coefficient of 17.32%. The overall fluctuation in the grassland was smaller
than that in the other two woodland types. The soil moisture content in the arbor land and grassland
was the highest in October, with monthly averages of 314.58 and 266.05 mm, respectively. In contrast,
the highest soil moisture content in the shrubland occurred in September, with a monthly average
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of 266.85 mm. The soil water storage of the three woodland types showed the highest fluctuation in
June, with variation coefficients of 37.39%, 23.68%, and 11.74%. Woodland vegetation enters the peak
growing season in June, with high rates of transpiration. During this period, the high temperature and
low rainfall increases evaporation, and the soil water storage capacity is predominantly dependent
on rainfall amount [30], leading to large fluctuations in soil moisture content. Transpiration of forest
vegetation is generally higher during the growing season (May to October); however, the soil moisture
content notably increased due to the sufficient soil moisture supply from precipitation. The soil water
storage capacity of the three woodland types occurred in the following order: arbor land > shrubland
> grassland.
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The dry season (March to April and November to February of the following year) precipitation
was 302.0 mm, accounting for only 23.5% of the annual precipitation. Moreover, the dry season
comprised a total of 55 precipitation days, accounting for 33.1% of the total annual precipitation days.
Temperature was the lowest in January, with a monthly average value of 10.8 ◦C. The soil moisture
content of the arbor land showed large fluctuations, ranging between 126.80 and 246.00 mm (average of
199.01 mm), with a variation coefficient of 14.87%. The soil moisture content of the shrubland ranged
between 139.30 and 258.00 mm, with an average of 210.65 mm and a variation coefficient of 14.40%.
The soil moisture content of the grassland ranged between 153.35 and 258.70 mm, with an average
value of 222.46 mm and a variation coefficient of 9.59%; the overall fluctuation was also much smaller
than that of the other two woodland types. Generally, forest vegetation growth and transpiration
significantly reduce during the dry season. The low temperature also weakens soil water activity
and soil evaporation. The soil water storage volume showed little fluctuation and generally declined
with time. The soil moisture content of the three woodland types occurred in the order of grassland >

shrubland > arbor land.
The annual soil moisture content of the arbor land showed large variability, ranging between

143.53 and 314.58 mm (annual average of 228.57 mm), with a variation coefficient of 24.73%. The annual
soil moisture content of the shrubland ranged between 146.78 and 266.85 mm, with an average value
of 220.54 mm and a variation coefficient of 17.47%. The annual soil moisture content of the grassland
ranged between 151.86 and 266.05 mm, with an average value of 221.48 mm and a variation coefficient
of 13.15%; the overall fluctuation was also much smaller than that of the other two woodland types.
The annual average soil moisture content of the three woodland types occurred in the order of arbor
land > grassland > shrubland.

3.2. Stable Isotope Characteristics of Precipitation

The δ18O of precipitation ranged from −18.93‰ to −3.56‰, with an average value of −10.69‰
and a standard deviation of 3.65‰ (Figure 3). Precipitation δ18O is affected by the water vapor source
and monsoon climate variability. Precipitation δ18O was higher during the dry season (−7.38‰) than in
the rainy season (−11.71‰), but the standard deviation was higher in the rainy season (3.56‰) than in
the dry season (2.42‰). This indicates the large stable isotope variability of precipitation, likely related
to the region’s complex and diverse weather system. Precipitation water vapor sources and seasonal
meteorological conditions are the dominant causes for the seasonal variation in precipitation δ18O
in the study area. δ18O is typically lower during the rainy season, as precipitation water vapor
is mainly transported from the low-latitude ocean, which has high air humidity and rainfall and
lower evaporation; precipitation is also continuously depleted during transport. The study region
is typically affected by continental air masses during the dry season, and the water vapor in the
southwestern region mainly transforms the westerly belt and the water vapor supply from inland
re-evaporation. Air humidity and precipitation is low and evaporation is strong, resulting in heavy
isotope enrichment [31]; this phenomenon is widespread across low- and mid-latitude monsoon
regions [32]. The lc-excess value of precipitation ranged from −19.11‰ to 15.05‰, with an annual
average value of 0 and a standard deviation of 7.25‰, which was consistent with the seasonal variation
of precipitation δ18O. The precipitation lc-excess value was higher in the dry season (1.25‰) than in the
rainy season (−0.96‰). This is because in the dry season, 18O enriches relatively more rapidly than 2H
as water evaporates, and the positive intercept of the water line for evaporated water tends to increase.
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The ordinary least squares method was used to obtain the LMWL of the study site (Table 2):
δ2H = 7.67 δ18O + 7.87 (R = 0.968, n = 99). The slope and intercept of this equation are smaller than
those of the global meteoric water line (GMWL: δ2H = 8 δ18O + 10) and the China meteoric water line
(CMWL: δ2H = 7.9 δ18O + 8.2) [33]. This suggests that precipitation in the study area originates from a
region with different stable isotope ratios and is also affected by other environmental factors such as
evaporation [34].

Table 2. The relationship between δ2H and δ18O in different water bodies.

Water Bodies Relationship between the
Hydrogen and Oxygen Isotopes R P Number of Samples

Precipitation δ2H = 7.67 δ18O + 7.87 0.968 0.000 99
Groundwater δ2H = 5.96 δ18O − 6.55 0.968 0.001 13

Soil water
Arbor land δ2H = 7.19 δ18O + 1.11 0.968 0.003 216
Shrubland δ2H = 7.19 δ18O + 0.36 0.973 0.002 216
Grassland δ2H = 7.23 δ18O + 1.21 0.984 0.001 216

3.3. Stable Isotope Characteristics of Soil Water

We analyzed soil water samples from three forest types during the sampling period (Table 3).
The soil water δ18O in the arbor land ranged from −12.52‰ to −6.26‰, with an average of −9.92‰
and a standard deviation of 1.42‰. The soil water δ18O in the shrubland ranged from −13.12‰ to
−4.62‰, with an average value of −9.86‰ and a standard deviation of 1.78‰. Finally, the soil water
δ18O in the grassland ranged from −12.54‰ to −3.49‰, with an average value of −9.94‰ and a
standard deviation of 2.09‰. Soil water δ18O is typically influenced by numerous factors, including
the stable isotopic composition of precipitation, infiltration of precipitation, the mixing of new and
old water, and differences in soil evaporation. The soil water δ18O in the three woodland types
showed significant seasonal variability, with higher values in the dry season than in the rainy season.
In addition, the soil water δ18O was also much higher in the shrubland than in both the arbor land and
grassland. This may be due to secondary rainfall interception in the shrubland, which prolongs the
supply of precipitation to the soil water. Evaporative fractionation also increased, which coincided
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with the impacts of soil evaporation, leading to the enrichment of isotopes in the shrubland soil water.
The differences between the soil water isotopes of the three woodland types also showed notable
seasonal changes. During the rainy season, soil water isotopes occurred in the order of arbor land >

shrubland > grassland. In contrast, soil water δ18O in the dry season occurred in the order of grassland
> shrubland > arbor land.

Table 3. Statistics list of stable isotopes in precipitation, soil water, and groundwater.

Items
Annual Dry Season Wet Season

δ18O (‰) lc-Excess (‰) δ18O (‰) lc-Excess (‰) δ18O (‰) lc-Excess (‰)

Precipitation −10.69 ± 3.65 0 ± 7.25 −7.38 ± 2.42 1.25 ± 6.78 −11.71 ± 3.56 −0.96 ± 7.52

Soil water

Arbor land

0–10 cm −8.79 ± 1.94 −3.41 ± 2.49 −7.77 ± 1.40 −3.65 ± 3.30 −9.82 ± 1.96 −3.18 ± 1.62
10–20 cm −9.59 ± 1.92 −2.52 ± 2.88 −8.66 ± 1.55 −2.38 ± 2.32 −10.53 ± 1.91 −2.65 ± 3.59
20–40 cm −10.13 ± 1.42 −1.91 ± 1.55 −9.46 ± 1.21 −1.78 ± 2.98 −10.84 ± 1.19 −2.07 ± 1.93
40–60 cm −10.26 ± 0.67 −1.92 ± 2.40 −9.83 ± 0.73 −1.82 ± 5.22 −11.06 ± 0.73 −2.64 ± 1.69
60–80 cm −10.64 ± 0.54 −1.41 ± 2.43 −10.44 ± 0.15 −1.75 ± 2.62 −10.44 ± 0.47 −1.08 ± 2.42

80–100 cm −10.11 ± 0.70 −1.07 ± 3.92 −9.86 ± 0.95 −1.18 ± 1.06 −10.36 ± 0.21 −0.33 ± 2.30
average −9.92 ± 1.42 −2.06 ± 2.74 −9.34 ± 1.36 −2.09 ± 3.04 −10.51 ± 1.24 −2.03 ± 2.44

Shrubland

0–10 cm −8.24 ± 2.62 −3.61 ± 3.64 −6.54 ± 2.11 −3.98 ± 5.50 −9.94 ± 1.94 −3.56 ± 3.25
10–20 cm −9.29 ± 2.26 −3.27 ± 4.25 −7.96 ± 1.78 −3.94 ± 3.52 −10.81 ± 1.97 −2.96 ± 2.99
20–40 cm −10.20 ± 1.32 −3.16 ± 2.71 −9.60 ± 0.87 −3.67 ± 4.31 −10.86 ± 1.29 −2.55 ± 2.88
40–60 cm −10.41 ± 1.15 −3.07 ± 2.95 −9.97 ± 1.52 −3.17 ± 3.19 −11.00 ± 0.79 −2.38 ± 1.52
60–80 cm −10.60 ± 0.58 −1.62 ± 3.15 −10.40 ± 0.21 −2.12 ± 2.15 −10.62 ± 0.26 −1.11 ± 4.07

80–100 cm −10.44 ± 0.57 −2.10 ± 1.74 −10.20 ± 0.53 −2.58 ± 2.36 −10.47 ± 0.82 −1.61 ± 0.70
average −9.86 ± 1.78 −2.80 ± 3.14 −9.11 ± 1.89 −3.24 ± 3.48 −10.62 ± 1.28 −2.36 ± 2.72

Grassland

0–10 cm −7.58 ± 2.88 −4.10 ± 4.86 −5.71 ± 2.45 −5.24 ± 6.49 −9.45 ± 1.98 −3.15 ± 2.87
10–20 cm −8.89 ± 2.28 −2.29 ± 2.02 −7.31 ± 2.09 −2.96 ± 2.58 −10.47 ± 1.04 −2.17 ± 0.85
20–40 cm −10.21 ± 1.48 −2.16 ± 2.58 −9.33 ± 1.49 −2.70 ± 2.08 −11.10 ± 0.83 −1.88 ± 2.06
40–60 cm −11.28 ± 0.50 −1.86 ± 1.64 −11.02 ± 0.47 −2.11 ± 1.69 −11.54 ± 0.40 −1.52 ± 2.56
60–80 cm −10.86 ± 0.60 −1.82 ± 2.09 −10.37 ± 0.41 −2.03 ± 2.20 −11.39 ± 0.85 −1.56 ± 2.24

80–100 cm −10.84 ± 0.85 −1.40 ± 2.70 −10.28 ± 0.35 −1.17 ± 2.00 −11.34 ± 0.22 −0.77 ± 3.19
average −9.94 ± 2.09 −2.27 ± 2.88 −9.00 ± 2.35 −2.42 ± 2.21 −10.88 ± 1.22 −2.12 ± 3.45

Groundwater −9.16 ± 0.55 1.19 ± 1.27 −8.94 ± 0.66 1.55 ± 0.67 −9.35 ± 0.38 0.78 ± 1.72

Note: The value is mean ± standard deviation.

3.3.1. Soil Water δ18O Variability with Depth

During the observation period, the surface soil (0–20 cm) δ18O of the three woodland types showed
large variability and predominantly reflected the isotopic fractionation effect of soil evaporation.
The standard deviation of soil water δ18O gradually decreased and the δ18O stability increased with
increasing soil depth. Moreover, the δ18O remained stable below the 60–80 cm layer. However,
we observed notable differences in the soil profile characteristics of soil water δ18O between the three
types of woodland. In arbor land and shrubland, the δ18O of soil water first decreased with soil depth
to the 60–80 cm layer and then increased. The minimum soil water δ18O at the 60–80 cm soil layer was
−10.64‰ and −10.60‰ for the arbor land and shrubland, respectively. Soil water δ18O of the grassland
showed a decreasing trend to the 40–60 cm soil layer, followed by an increasing trend with soil depth.
The minimum soil water δ18O (−11.28‰) at 40–60 cm was lower than the minimum observed in
the arbor land and shrubland. We observed significant differences in the seasonal variation of soil
water δ18O at different depths in the three woodland types. For example, the soil water δ18O from
0 to 60 cm showed the most significant seasonal variability, while that at 60 to 100 cm showed the
lowest seasonal change. Overall, the dry season values were generally higher than those of the rainy
season. We observed significant seasonal differences in the soil water δ18O profile characteristics of
both arbor land and shrubland. In the dry season, the δ18O of soil water first decreased to 60–80 cm
and then increased with increasing soil depth. In the rainy season, the trend in soil water δ18O shifted
at 40–60 cm (Table 3 and Figure 4a,c,e).



Water 2020, 12, 3520 10 of 17

Water 2020, 12, x  10 of 18 

Groundwater −9.16 ± 0.55 1.19 ± 1.27 −8.94 ± 0.66 1.55 ± 0.67 −9.35 ± 0.38 
0.78 ± 

1.72 

Note: The value is mean ± standard deviation. 

3.3.1. Soil Water δ18O Variability with Depth 

During the observation period, the surface soil (0–20 cm) δ18O of the three woodland types 

showed large variability and predominantly reflected the isotopic fractionation effect of soil 

evaporation. The standard deviation of soil water δ18O gradually decreased and the δ18O stability 

increased with increasing soil depth. Moreover, the δ18O remained stable below the 60–80 cm layer. 

However, we observed notable differences in the soil profile characteristics of soil water δ18O between 

the three types of woodland. In arbor land and shrubland, the δ18O of soil water first decreased with 

soil depth to the 60–80 cm layer and then increased. The minimum soil water δ18O at the 60–80 cm 

soil layer was −10.64‰ and −10.60‰ for the arbor land and shrubland, respectively. Soil water δ18O 

of the grassland showed a decreasing trend to the 40–60 cm soil layer, followed by an increasing trend 

with soil depth. The minimum soil water δ18O (−11.28‰) at 40–60 cm was lower than the minimum 

observed in the arbor land and shrubland. We observed significant differences in the seasonal 

variation of soil water δ18O at different depths in the three woodland types. For example, the soil 

water δ18O from 0 to 60 cm showed the most significant seasonal variability, while that at 60 to 100 

cm showed the lowest seasonal change. Overall, the dry season values were generally higher than 

those of the rainy season. We observed significant seasonal differences in the soil water δ18O profile 

characteristics of both arbor land and shrubland. In the dry season, the δ18O of soil water first 

decreased to 60–80 cm and then increased with increasing soil depth. In the rainy season, the trend 

in soil water δ18O shifted at 40–60 cm (Table 3 and Figure 4a,c,e). 

-13

-12

-11

-10

-9

-8

-7

-6

-12

-10

-8

-6

-4

-2

0

2

4
δ
1
8

O
/‰

a

Time (month)
Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb.

L
c
-e

x
c
e
ss

 (
‰

)

Time (month)

Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb.

b

 

-14

-12

-10

-8

-6

-4

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

δ
1
8
O

 (
‰

)

Time (month)

Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb.

c

lc
-e

x
ce

ss
 (

‰
)

Time (month)

Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb.

d

 
Water 2020, 12, x  11 of 18 

-12

-10

-8

-6

-4

-14

-12

-10

-8

-6

-4

-2

0

2

4

δ
1
8
O

 (
‰

)

Time (month)

Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb.

e

 l
c-

ex
ce

ss
 (

‰
)

SW0−10 cm SW10−20 cm SW20−40 cm SW40−60 cm SW60−80 cm SW80−100 cm groundwater

Time (month)

Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb.

f

 

Figure 4. Temporal variations of δ18O and lc-excess in soil water at different depths and groundwater 

(Arbor land: (a,b); Shrubland: (c,d); Grassland: (e,f)). 

3.3.2. Evaporation Effects on Soil Water Stable Isotopes 

Water evaporation is a dominant cause for the observed differences in the distribution of soil 

water stable isotope profiles (Table 3 and Figure 4b,d,f). The average lc-excess of each water body 

occurred in the order of groundwater (1.19‰) > precipitation (0) > arbor forest soil water (−2.06‰) > 

unused grassland soil water (−2.27‰) > shrub forest soil water (−2.80‰). The soil water lc-excess 

values of the three woodland types were less than 0, which suggests that the soil water stable isotopes 

experienced different degrees of evaporation and enrichment. The lc-excess of groundwater was 

greater than 0, inferring the influence of non-precipitation water sources on groundwater in the study 

site. The δ18O of the surface soil (0–20 cm) showed the highest variability in all three woodland types. 

The soil water δ18O stabilized below 60–80 cm in all three sites, indicating a weaker evaporation effect 

on the δ18O of deeper soil water. For the three woodland types, the soil water lc-excess ranges were 

11.66‰–3.41‰, −13.77‰–5.44‰, and −13.07‰–2.62‰; the annual average values were −2.04‰, 

−2.80‰, and −2.27‰; and the standard deviations were 2.72‰, 3.14‰, and 2.88‰, respectively. The 

arbor land values were larger than the shrubland and grassland values, inferring weaker soil 

evaporation in the arbor land. Soil evaporation decreased and soil water lc-excess increased with 

increasing depth. The average soil water lc-excess in the 0–10 cm layer was significantly lower than 

the average values of the other soil layers in all woodland types (−3.41‰, −3.61‰, −4.10‰), 

indicating the highest evaporation in the surface soil layer (0–10 cm). The soil water lc-excess in the 

0–10 cm layer of the grassland site was significantly lower than that of the arbor land and shrubland, 

inferring stronger surface soil evaporation in the grassland. The soil water lc-excess of the three 

woodland types also showed significant seasonal variability, with lower values in the dry season 

than in the rainy season; this infers higher surface soil evaporation during the dry season. 

The soil water δ2H and δ18O of all three woodland types were distributed below the LMWL. 

Moreover, the slope and intercept of the soil waterline (SWL) of each woodland type were lower than 

those of the LMWL, which may reflect the seasonal changes in the evaporative stable isotope 

enrichment of soil water (Figure 5). The change in groundwater δ18O was different to that of 

precipitation and soil water. Groundwater δ18O showed low variability (standard deviation of 

0.55‰), ranging from −7.91‰ to −10.17‰, with an average value of −9.16‰; this was larger than the 

δ18O of soil water and precipitation, which suggests that groundwater values may reflect the average 

precipitation value of previous years and/or the influence of non-precipitation water sources [35]. 

The slope and intercept of the SWL of the grassland were higher than those of the arbor land and 

shrubland, indicating weaker soil water evaporation in the grasslands; this suggests that the 

grassland was predominantly replenished by precipitation, while arbor land and shrubland were 

predominantly replenished by previous soil water. 

Figure 4. Temporal variations of δ18O and lc-excess in soil water at different depths and groundwater
(Arbor land: (a,b); Shrubland: (c,d); Grassland: (e,f)).

3.3.2. Evaporation Effects on Soil Water Stable Isotopes

Water evaporation is a dominant cause for the observed differences in the distribution of soil
water stable isotope profiles (Table 3 and Figure 4b,d,f). The average lc-excess of each water body
occurred in the order of groundwater (1.19‰) > precipitation (0) > arbor forest soil water (−2.06‰) >

unused grassland soil water (−2.27‰) > shrub forest soil water (−2.80‰). The soil water lc-excess
values of the three woodland types were less than 0, which suggests that the soil water stable isotopes
experienced different degrees of evaporation and enrichment. The lc-excess of groundwater was
greater than 0, inferring the influence of non-precipitation water sources on groundwater in the study
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site. The δ18O of the surface soil (0–20 cm) showed the highest variability in all three woodland types.
The soil water δ18O stabilized below 60–80 cm in all three sites, indicating a weaker evaporation effect
on the δ18O of deeper soil water. For the three woodland types, the soil water lc-excess ranges were
11.66‰–3.41‰, −13.77‰–5.44‰, and −13.07‰–2.62‰; the annual average values were −2.04‰,
−2.80‰, and −2.27‰; and the standard deviations were 2.72‰, 3.14‰, and 2.88‰, respectively.
The arbor land values were larger than the shrubland and grassland values, inferring weaker soil
evaporation in the arbor land. Soil evaporation decreased and soil water lc-excess increased with
increasing depth. The average soil water lc-excess in the 0–10 cm layer was significantly lower than the
average values of the other soil layers in all woodland types (−3.41‰, −3.61‰, −4.10‰), indicating the
highest evaporation in the surface soil layer (0–10 cm). The soil water lc-excess in the 0–10 cm layer of
the grassland site was significantly lower than that of the arbor land and shrubland, inferring stronger
surface soil evaporation in the grassland. The soil water lc-excess of the three woodland types also
showed significant seasonal variability, with lower values in the dry season than in the rainy season;
this infers higher surface soil evaporation during the dry season.

The soil water δ2H and δ18O of all three woodland types were distributed below the LMWL.
Moreover, the slope and intercept of the soil waterline (SWL) of each woodland type were lower than
those of the LMWL, which may reflect the seasonal changes in the evaporative stable isotope enrichment
of soil water (Figure 5). The change in groundwater δ18O was different to that of precipitation and
soil water. Groundwater δ18O showed low variability (standard deviation of 0.55‰), ranging from
−7.91‰ to −10.17‰, with an average value of −9.16‰; this was larger than the δ18O of soil water and
precipitation, which suggests that groundwater values may reflect the average precipitation value of
previous years and/or the influence of non-precipitation water sources [35]. The slope and intercept of
the SWL of the grassland were higher than those of the arbor land and shrubland, indicating weaker soil
water evaporation in the grasslands; this suggests that the grassland was predominantly replenished by
precipitation, while arbor land and shrubland were predominantly replenished by previous soil water.Water 2020, 12, x  12 of 18 
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3.3.3. Influence of Infiltration Processes on Soil Water Stable Isotopes

Infiltrated precipitation mixes with the original soil water and only replaces a part of the old
water. Soil water stable isotope values generally stabilize with increasing depth [35]. The soil water
infiltration depth increases under heavy rainfall, which facilitates the mixing of precipitation and deep
soil water. Following several large precipitation events in the rainy season (29 of the 56 precipitation
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samples with precipitation of ≥10 mm), the degree of new and old water mixing was significant. In the
arbor land and shrubland, the soil water at 0–60 cm fully mixed with precipitation, while that at
60–100 cm showed partial mixing. In contrast, we observed full mixing of soil water and precipitation
at 0–100 cm in the grassland. The degree of new and old water mixing was low during the dry season
due to the low occurrence of heavy precipitation events (seven of the 43 precipitation samples with
precipitation ≥10 mm). Only the surface soil water (0–10 cm) in the arbor land reflected the stable
oxygen isotopic signature of precipitation, while soil water at 20–100 cm still retained the isotopic
signature of the rainy season. In the shrubland and grassland, soil water in the upper 0–20 cm reflected
the stable oxygen isotopic signature of precipitation, while that at 40–100 cm still retained the isotopic
signature of the rainy season (Table 3 and Figure 4). In summary, the infiltration of soil water and
the subsequent mixing of new and old water is a continuous accumulative process, resulting in the
gradual replacement of old soil water with infiltrated water. Soil water infiltration also replenishes soil
water and is affected by the structure and texture of soil, the previous water content, the efficiency of
infiltration, and different precipitation events. Soil water replenishment therefore shows a time lag in
the soil profile. Soil water at 0–20 cm mixes well with precipitation and has a short renewal time, and the
occurrence of precipitation events therefore renews its isotopic value. The renewal time at 20–60 cm is
several months, while that at 60–100 cm is >1 a (Figure 4a,c,e) and shows minimal variability.

4. Discussion

4.1. Soil Water Source and Movement Mechanisms

Soil water movement mainly comprises two processes: soil water replenishment and
dissipation [36–41]. Soil water is mainly sourced from atmospheric precipitation, groundwater,
and irrigation water, with minor influences from water vapor condensation. The main soil moisture
dissipation pathways are soil evaporation, vegetation utilization and transpiration, water leakage,
and runoff [5]. We found that the isotopic values of the soil water samples in all woodland types
were close to or less than the average value of atmospheric precipitation. The recharge source
of soil water was mainly precipitation, which is consistent with the findings of Mou et al. [42].
During the dry season, the soil water isotopic values in all woodland types were lower than the
precipitation isotopic values, except for the surface layer (0–20 cm). In contrast, the soil water
isotopic values were higher than the precipitation isotopic values in the rainy season, which indicates
significant seasonal differences in the soil water source in the study area: i.e., the supply of current
precipitation was relatively low and the supply from the previous precipitation was relatively high
during the dry season. Seasonal precipitation was the dominant supply of soil water during the
rainy season, as soil water is generally a mixture of original soil water and other supplementary
water sources [43]—including the seasonal replenishment of precipitation [44]. According to the
source and sink theory, water with depleted isotopic compositions generally flows toward water with
enriched isotopic compositions [16]. For example, Awaleh et al. [45] found that wadi-rivers in arid
volcanogenic areas recharged alluvium via downward circulation through major faults toward the
basalt, which mixed with a more geochemically evolved groundwater. The stable isotopic composition
of groundwater in the study area was more enriched than most soil water isotopic values; this suggests
that, rather than the groundwater replenishment of soil water, soil water affected by evaporation was
instead the dominant source of groundwater. Adomako et al. [46] found that soil water was of meteoric
origin that had undergone fractionation-controlled evaporation. Moreover, soil water below 3 m depth
had recharged groundwater mainly via piston flow. In agreement, we found that precipitation and
groundwater recharge were the dominant sources of soil water in this study. However, Li et al. [47]
found that the local precipitation was not a dominant source of groundwater in the Mogao Grottoes and
suggested that underground phreatic water was a likely source of evaporative soil water, indicating a
clear supply channel. This finding contrasts with our results, which may be due to the influence of
meteorological conditions and other factors on soil water transport [48–50]. Our study area located in
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the monsoon region, which experiences higher rainfall and lower evaporation than arid regions; it is
therefore less likely for evaporative soil water to be sourced from phreatic water.

Water in the soil profile mainly has two forms of movement: plug flow and preferential flow.
Plug flow refers to the gradual downward movement of “old soil water” (relatively enriched hydrogen
and oxygen stable isotopes) by the infiltration of “new water” (relatively depleted hydrogen and
oxygen stable isotopes) without axial mixing in the vertical direction; preferential flow refers to the
rapid movement of infiltrating water through open channels, such as wormholes, vegetation roots,
and fissures [51]. The migration of soil water is affected by factors such as soil texture, vegetation type,
micro-topography, and climate [43,52–54]. The soil water δ18O in all woodland types generally showed
an initial decreasing trend with depth, followed by an increasing trend; this indicates the occurrence of
top–down piston infiltration of precipitation. Soil water δ18O showed large seasonal variability, with a
gradual decrease during the rainy season. The minimum soil water isotope value at 40–60 cm confirms
that preferential precipitation infiltration was the dominant mechanism of soil water movement. This
is consistent with previous findings in the karst forest–lake basin of southeastern Yunnan Province [42]
and in the Loess Plateau [14]. However, Ji et al. [16] found that the piston flow of precipitation was the
dominant supply of soil water and the main water movement mechanism in the deep loess profiles
under different land use types in northern Shaanxi, China. We observed different water movement
characteristics in the shallow and deep soil layers. Precipitation infiltrated the shallow soil layer in the
form of plug flow, and some of the rainwater rapidly reached the deep soil via preferential flow [11].
Germann et al. [55] found that macropore preferred flow was the only water source channel to the deep
soil, while Adomako et al. [45] found that the piston flow of soil water below 3 m was the dominant
contributor to groundwater recharge.

4.2. Influence of Stand Type on Soil Water Stable Hydrogen and Oxygen Isotopes

The soil water isotopic composition is influenced by many factors, such as the precipitation isotopic
composition, surface evaporation, soil water (horizontal and vertical) movement, vegetation type,
and human activity [56–59]. Precipitation characteristics were similar throughout the study area,
and root water uptake did not alter the stable hydrogen and oxygen isotopic compositions. Therefore,
the difference in soil water stable isotopes between the different vegetation types was likely caused by
evaporation differences influenced by vegetation. Oerter et al. [60] also identified the influence of plants
on soil water variability and its isotopic ratios. The slope of the soil waterline of the different vegetation
types occurred in the order of grassland > arbor land > shrubland (Table 2), and the soil water lc-excess
occurred in the order of arbor land (−2.06‰) > grassland (−2.27‰) > shrubland (−2.80‰); this suggests
that the soil moisture evaporation fractionation occurred in the order of grassland < arbor land <

shrubland. The annual average soil water storage in the arbor land and grassland (228.57 and 221.48 mm,
respectively) was higher than that of the shrubland (220.54 mm), with larger and faster water infiltration.
This is likely due to the presence of larger pores from developed root systems, which facilitated the
generation of preferential flow. Vegetation coverage and human disturbance in shrubland enhances
soil compaction and reduces the number of macropores; this slows the rate of precipitation infiltration,
resulting in the dominance of plug flow [20,61]. Yu et al. [62] identified infiltration coefficients of 0.91,
0.64, and 0.74 in shifting dunes, shrub-dominated communities, and herb-dominated communities,
respectively. Cumulative infiltration and soil texture were the two vital factors affecting the depth of
rainfall penetration. Rainfall events larger than 35.0 mm had recharged the soil water at the 60–80 cm
layer in the herb-dominated community, which is consistent with the results of this study. Vegetation
types therefore have a dominant impact on soil water movement. Amani et al. [63] also confirmed
the influence of vegetation and field conditions on the variability of soil water flow mechanisms. In
addition, the slope and intercept of the SWL in the wild grassland were higher than those of the
arbor and shrub forests; this suggests that precipitation was the dominant supply of soil water in the
grassland, while early soil water predominantly replenished soil water in the arbor land and shrubland.
Studies in the loess region showed that vegetation type had a dominant impact on the soil water cycle.
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Ji et al. [16] found that farmland and grassland were predominantly replenished by low-intensity
precipitation events, while land dominated by Salix cheilophila and Populus sp. was mainly replenished
by heavy rainfall in summer and autumn. Ma et al. [64] found that precipitation mainly recharged
grassland soil water, while deep soil water mainly recharged the surface soil water in black locust
forests. These findings are consistent with the results of our study and further highlights the influence
of vegetation type on soil water supply.

5. Conclusions

In this study, we analyzed the stable hydrogen and oxygen isotopes of soil water to determine
the dominant soil water sources and migration processes in the upper 0–100 cm. We assessed the
soil water movements under three woodland types in a forested water source region above the small
Quanfuzhuang watershed and concluded the following:

Soil moisture showed significant seasonal variability in Hani Terrace, and soil water content and
its stability increased from the surface to the deep soil. The annual average soil moisture content of the
three woodland types occurred in the order of arbor land > grassland > shrubland. We also observed
notable seasonal differences in the soil water sources: early precipitation was the dominant supply
during the dry season, while atmospheric precipitation was the dominant supply during the rainy
season. The proportion of soil water supplied by precipitation was higher in the grassland than in the
arbor land and shrubland.

The standard deviation of soil water δ18O gradually decreased and its stability increased from
the surface (0–20 cm) to the deep layer (60–80 cm), while lc-excess increased with increasing soil
depth; this indicates elevated soil evaporation with decreasing depth, with highest soil evaporation
at 0–10 cm. Soil evaporation was higher during the dry season than in the wet season in all three
woodland types. The arbor land and shrubland showed the weakest and strongest soil evaporation,
respectively, while highest evaporation was observed in the 0–10 cm soil layer in the grassland.

The mixing of new and old soil water during infiltration is a continuous accumulative process.
Based on the precipitation and soil water stable isotope changes at different depths, plug flow and
preferential flow were the dominant precipitation infiltration mechanisms in the study site, and the
latter was mainly recharged during the rainy season.
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