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Abstract: Lake evaporation is an important link connecting the water cycle and the surface
energy cycle and remains one of the most uncertain terms in the local catchment’s water
balance. Quantifying lake evaporation and its variability is crucial to improve water resource
management and understand the response of the lake system towards climate change. In this study,
we evaluated the performances of nine evaporation methods at different timescales and calibrated
them by using the continuous eddy covariance (EC) observation data during 2015–2018 over
Erhai Lake, a highland open freshwater lake situated in the Dali valley, China. The nine
evaporation methods could be classified into combination methods (Bowen-ratio energy budget,
Penman, Priestley–Taylor, DeBruin–Keijman and Brutsaert–Stricker), solar radiation-based methods
(Jensen–Haise and Makkink) and Dalton-based method (mass transfer and Ryan–Harleman) based
on their parameterization schemes. The Dalton-based Ryan–Harleman method is most suitable
for estimating evaporation at daily to weekly scales, while the combination methods and solar
radiation-based method had good estimates at monthly timescale. After calibration, the biases of the
Jensen–Haise and Ryan–Harleman method were slightly reduced, while the biases of the Makkink
and mass transfer methods were reduced substantially. The calibrated Jensen–Haise method with
small annual bias (−2.2~2.8%) and simple input variables was applied to estimate the long-term trend
of evaporation during 1981–2018. The annual total evaporation showed an insignificant increasing
trend of 0.30 mm year−1, mainly caused by the significant rising air temperature. This study showed
the performance of evaporation methods over water bodies had large discrepancies on different
time scales, which indicated the importance of the choice of evaporation methods and provided
instruction for water resource management of this region under climate change.

Keywords: evaporation; combination methods; solar radiation-based methods; Dalton-based methods;
a highland lake

1. Introduction

Evaporation is a major water loss term in the water budget of inland water bodies, such as lakes
and reservoirs [1]. As an important source of atmospheric moisture, nearly 60% of annual precipitation
is returned to the atmosphere via evaporation on a global scale over land [2], and the proportion
has increased to about 74% under climatic variability [3]. An increase in air and lake water surface
temperature [4,5] and a decrease in the extent and duration of lake ice cover [6] have been observed
under the background of global warming, therefore leading to an acceleration in lake evaporation [7].
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By the end of the century, the global annual lake evaporation is about to increase by 16%, and the
enhancement is much greater for lakes at low latitudes [8]. Quantifying the variability of evaporation
from inland lakes under climate change is critical for water resource management and modeling the
feedbacks between the lake and climate [9–11].

Evaporation from a water body is difficult to measure directly compared with traditional
meteorological variables (e.g., wind speed, air temperature, humidity). In reality, pan evaporation
collected at the adjacent land station has been used to estimate evaporation over most water bodies
for a long time despite its physical limitation, e.g., heat storage in the pan, additional radiative
energy intercepted by the pan wall, and different environmental conditions between the water
body and the pan [12]. In recent decades, the eddy covariance (EC) technique has been applied
to measure evaporation for water bodies from different climate zone [13–17]. However, due to
the difficulty in setting up the platform above the lake surfaces, in-situ EC measurement is only
available for limited lakes and lasted for short time periods. There are lots of alternative methods
for estimating the evaporation over water body by using basic meteorological variables since the last
century, such as the Bowen ratio energy budget method [18,19], Penman method [20], mass transfer
method [21] and so on. These methods have been reviewed in previous studies [22–26], etc., and were
often grouped into combination methods, solar radiation-based methods and Dalton-based methods.
The combination methods are based on surface energy balance, which is the most widely used
formula to estimate evaporation from water bodies worldwide [12]. One of the disadvantages of
the combination methods is the requirements of a large number of variables that some are hard
to obtain, i.e., heat storage change of the water body. In most studies, heat storage is often neglected or
considered as the residual of the surface energy budget instead [11,27]. The solar radiation-based and
temperature-based methods estimated lake evaporation through the simple empirical relationship
with solar radiation and air temperature, which are sensitive to the climatic condition and usually
required a site-specific calibration [23]. The Dalton-based methods, e.g., the mass transfer method,
calculated evaporation by using wind speed, the vapor pressure difference between the lake surface
and the atmosphere, as well as mass transfer coefficient, which is affected by lake size, local climatic and
topography conditions [21,26]. Several researchers had evaluated these methods over different lakes by
comparing with the results of pan evaporation or the Bowen ratio energy budget method concerning
different time intervals [24,25,28–30]. However, there are still few studies using EC measurement as
a reference [31–34]. Differences in lake properties, surrounding environments, and climatic conditions
would bring uncertainties into evaporation estimation and thus make it difficult to choose the most
appropriate parameterization scheme of lake evaporation at different timescales.

The Erhai Lake is an open freshwater lake over the whole year, located at the southeast margin
of the Tibet Plateau in the Cangshan mountain basin. EC measurements were conducted over the
lake surface and provided realistic lake evaporation data at a high temporal resolution that is crucial
for testing and improving the model performances. Nine widely used methods, which could be
classified into the combination methods, solar radiation-based methods and Dalton-based methods,
were selected in this study and evaluated by comparing with EC measurements. Based on the 4-y
continuous EC measurement data from 2015–2018, the objectives of this paper are to (1) evaluate
the performance of evaporation methods over low latitude highland lake at different timescales and
(2) choose a suitable method to establish the long term series of evaporation during the period 1981–2018
by forcing with long term meteorological dataset and reveal the factors contributing to the changes
in lake evaporation. The first objective is important for evaluating and improving water resource
management over this basin, and the second objective is helpful to improve our understanding of lake
response to the changing climate.
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2. Materials and Methods

2.1. Observation Site and Instruments

Erhai Lake is located in the city of Dali, Yunnan Province in China. It is surrounded by the
Cangshan Mountains to the west and the Yu’an Mountains to the east (Figure 1). The Lake covers
an area of 252.2 km2, with a south-north length of about 42.6 km and an east-west length of about
3–9 km. The average and maximum depths are 10 m and 20.7 m, respectively. This region lies in
a subtropical monsoon climate zone, which is characterized by a warm-wet season from May to October
and a cold-dry season from November to April [35]. According to the local climatology record [36],
the monthly mean air temperature ranges from 8.4 ◦C in December to 20.3 ◦C in June, and the annual
mean precipitation is 1055 mm, with 85% of precipitation concentrated in the wet season. There are
mainly 18 rivers and streams from the foothills of Cangshan mountain flowing into the lake, and exists
only one natural outlet-Xi’er River in the south. The water level is controlled artificially due to the
agricultural irrigation for cropland during dry season, and ranges from 1971.1 m to 1974.1 m [37].
The water body is ice-free all year round and well mixed without obvious thermal stratification [38].

Figure 1. (a) Terrain condition around the Erhai Lake, (b) image of the platform of eddy covariance
system above the lake surface, and (c) cumulated footprint area over Erhai Lake site during 2015–2018.
The outermost contour line means the footprint area contributed to 95% of turbulent flux. The red
pentagram represents the location of the Erhai Lake site. The green–cross denotes the location of the
Dali National Climatic Observatory (DNCO) site. The terrain image is downloaded from Google Earth.

The platform (25.46◦ N, 100.10◦ E) is established approximately 70 m away from the west bank
of Erhai Lake (Figure 1). The height between the platform and the water surface ranged from
1.5 m to 3 m with the changing water level. The EC instruments were mounted at 2 m above the
platform. The fluctuations of wind velocity components (u, v and w) and sonic temperature are
captured by a three-dimensional sonic anemometer (CSAT3, Campbell Scientific, Logan, UT, USA).
The water vapor and carbon dioxide density fluctuation are measured by an open-path infrared
gas analyzer (IRGA, LI-7500, LI-COR, Lincoln, NE, USA). The data sampling frequency is 10 Hz.
Sensors measured incoming and outgoing shortwave/longwave radiation (CNR1, Kipp and Zonen,
Delft, The Netherlands) and active photosynthetic radiation (PAR, LI-190SB, Cambell Scientific,
Logan, UT, USA) were mounted at 1.5 m above the platform. Air temperature and relative humidity
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are measured by HMP45C (Vaisala, Vantaa, Finland), and wind speed/direction was measured by 034B
(Met One Instruments, Grants Pass, OR, USA) at 2.5 m above the platform. The water temperature
profile at 0.05, 0.2, 0.5, 1, 2, 4, 6 and 8 m under the water surface are measured by water temperature
sensors (CS616, Campbell Scientific, Logan, UT, USA). Measurement of basic meteorological variables
and water temperature profile are taken every minute and recorded as 30-min averaged values. More
information on the observation site and instruments is already documented in our previous study [39].

2.2. EC Data PostProcessing

The EC measurement dataset during the period from 2015 to 2018 was analyzed in this study.
The raw 10 Hz, time-series data were processed into 30-min average values with the EddyPro software,
Version 6.1 (LI-COR, Inc. 2015, Lincoln, NE, USA). The raw data point was considered as a spike when
its magnitude exceeded the mean values 3.5 times the standard deviations within a certain moving
time window and was further replaced through linear interpolation [40]. The double rotation method
was adopted to align the x-axis wind component to the local streamline and turn the vertical and
crosswind component into zero [41]. The block average based on the Reynolds decomposition rule
was applied to remove a trend in the raw time series and obtain the fluctuations. Therefore, Latent and
sensible heat fluxes were calculated from 30-min to mean covariances between the fluctuations of the
scalars and the vertical wind speed component. Correction for density fluctuations was applied to
latent heat and CO2 fluxes using the method developed by [42]. The data quality control was applied
to EC 30-min fluxes using the 0-1-2 flag system [43], which the fluxes with flag = 0 have the best quality,
with flag = 1 is suitable for general analysis, and with flag = 2 do not pass the steady-state test and the
developed turbulent conditions test and needed to be abandoned. Moreover, the data points were
also removed when active gain control (AGC) values larger than 40 indicated the low-quality data
caused by precipitation, dust, or other contamination on the sensor optics. Because the EC observation
site is located near the west side of the lake, the flux footprint area is calculated by the footprint
model [44]. As shown in Figure 1c, direction 225–315◦ contains fluxes from the land surface is removed
to eliminate the influence of the surrounding land area. After the data filtering as described above,
the remaining 30-min data for sensible and latent heat fluxes are 69.8% and 74.3% in 2015, 67.1% and
70.8% in 2016, 69.7% and 72.0% in 2017, and 68.9% and 75.2% in 2018, respectively. To estimate the
annual budgets of evaporation, an artificial neural network (ANN) method [38] is applied to fill the
data gap in the daily timescale. The network was trained with four observed meteorological variables,
including wind speed, air temperature, vapor pressure difference, and net radiation. The annual total
evaporation losses are 1264.0 mm, 1214.6 mm, 1266.1 mm, and 1299.6 mm during 2015, 2016, 2017,
and 2018, respectively.

To obtain the interannual variation of lake evaporation, a long term dataset (1981–2018) from
measurements in the neighboring Dali National Climatic Observatory (DNCO, [36]) site and gridded
China Meteorological Forcing Dataset (CMFD, [45,46]) are selected in this study. The DNCO site is
about 15 km away from the Erhai Lake site (Figure 1a). The CMFD dataset was made through a fusion
of remote sensing products, a reanalysis dataset and in situ observation data at the weather station,
with a spatial resolution of 0.1◦ and temporal resolution of three hours. Variables of wind speed,
air temperature, relative humidity and precipitation are obtained from the DNCO measurements
dataset. Incoming solar radiation is obtained from the long-term CMFD dataset. Using the land-based
forcing data will likely introduce errors in calculating lake evaporation. Corrections of input variables
were made to reduce systematic errors by comparing the land-based data with in situ measurements of
Erhai Lake.

2.3. Introduction of Evaporation Methods

Nine evaporation methods based on different physical constraints and data requirements were
selected for the estimation of open-water evaporation and classified into three categories, including the
combination methods, solar radiation-based methods and Dalton-based methods.
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2.3.1. Combination Methods

The Bowen ratio energy budget (BREB) method was first introduced by [18] and was generally
regarded as a standard method for estimating evaporation over water surfaces in the absence of in situ
observation [1,25]. The formula of the BREB method is given as follows:

E =
Rn − ∆Q

ρw
(
λ(1 + β) + Tscpw

) ×D (1)

β =
cpP(Ts − Ta)

ελ(e∗s − ea)
(2)

e∗s = 0.611exp
17.27Ts

237.3+Ts (3)

e∗a = 0.611exp
17.27Ta

237.3+Ta (4)

ea =
e∗aRH
100

(5)

∆Q = ρwcpw
∆Tw

∆t
zd (6)

where E is the estimated evaporation rate (mm d−1), Rn is the net radiation (W m−2), ∆Q is the heat
storage change in the water body (W m−2), ρw is the water density (1000 kg m−3), λ is the latent
heat of vaporization (2.45 × 106 J kg−1), β is the Bowen ratio (dimensionless), Ts is the water surface
temperature (◦C), Ta is the air temperature (◦C), P is the atmospheric pressure (kPa), ε is the ratio
of molecular weight of the water to that of the dry air (0.622, dimensionless), e∗s is the saturated
vapor pressure at the water surface temperature (kPa), e∗a is the saturated vapor pressure at the air
temperature (kPa), ea is the vapor pressure at the air temperature (kPa), RH is the relative humidity (%),
cpw is the specific heat of water at constant pressure (4192 J kg−1 ◦C), cp is the specific heat of air at
constant pressure (1004 J kg−1 ◦C), D is the multipliers that convert the unit of evaporation into mm d−1

(86.4 × 106), ∆Tw
∆t is the mean water temperature change during the time interval ∆t (◦C s−1), zd is the

largest depth at the profile measurement (m).
The Penman (PM) method [20] combined the surface energy budget and aerodynamic components,

which was developed to calculate the potential evaporation from an open water surface. The PM
equation is expressed as:

E =

(
∆

∆ + γ

Rn − ∆Q
λρw

+
γ f (u)(e∗a − ea) × 10

(∆ + γ)λρw

)
×D (7)

∆ =
4098

(
0.611exp

17.27Ta
Ta+237.3

)
(Ta + 237.3)2 (8)

γ =
cpP
ελ

(9)

f (u) = 3.6 + 2.5U (10)

where ∆ is the slope of saturated vapor pressure–air temperature curve (kPa ◦C−1), γ is the psychometric
constant (kPa ◦C−1), f (u) is the wind function (W m−1 hPa−1), U is the wind speed at the measurement
height (m s−1). The first term of the PM method is usually defined as equilibrium evaporation; the lower
limit of evaporation when the air above the water surface is saturated. The second term of the PM
method is generally called the aerodynamic component correlated to the drying power of the air.

The Priestley–Taylor (PT) method [47] was originally developed for estimating potential
evaporation over open water surfaces and saturated land surfaces under advection–minimum
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conditions. The PT method is a simple expression of the PM equation, which introduced a constant to
account for the aerodynamic component of the PM method. The PT formula is expressed as:

E = α
∆

∆ + γ

Rn − ∆Q
λρw

×D (11)

where α is the Priestley–Taylor empirical constant and taken as a constant of 1.26.
The DeBruin–Keijman (dBK) method [48] is derived from the PT equation and determined as:

E =
∆

0.85∆ + 0.63γ
Rn − ∆Q
λρw

×D (12)

The following empirical relationship between β and γ/∆ [49] is applied in the derivation of the
dBK method:

β =
0.63γ

∆
− 0.15 (13)

The Brutsaert–Stricker (BS) method [50] also called the advection–aridity model, is based on the
concept of a symmetric complementary relationship that depends on the feedback between actual
evaporation (Ea) and potential evaporation (Ep),

Ea = 2Ew − Ep (14)

where Ew is the wet environment evaporation and is often calculated by the PT method, Ep is generally
calculated by the PM method. Ea is the evaporation defined by the BS method, and therefore the
formula can be written as:

E =

(
(2α− 1)

∆
∆ + γ

Rn − ∆Q
λρw

−
γ f (u)(e∗a − ea) × 10

(∆ + γ)λρw

)
×D (15)

2.3.2. Solar Radiation-Based Methods

Two different generalized forms of solar radiation-based methods, including the Jensen–Haise
(JH) method [51] and Makkink (Mak) method [52], were evaluated in this study. The JH method was
originally developed for the arid environment in the western United States and determined by the
following expression:

E = (0.014(1.8Ta + 32) − 0.37)
Rs

λρw
×D (16)

where Rs is the incoming solar radiation (W m−2).
The Mak method was first developed for estimating evapotranspiration for grasslands in The

Netherlands and is currently applied to open water. The equation is described as follows:

E = 0.61
∆

∆ + γ
Rs

λρw
×D− 0.012 (17)

2.3.3. Dalton-Based Methods

The Dalton-based methods, consisting of mass transfer (MT) method [21,53] and Ryan–Harleman
(RyH) method [54], estimated the evaporation through wind speed (U) and vapor pressure difference (VPD)
between the lake surface and the atmosphere. A simple formula of the MT method is given as follows:

E = NU(e∗s − ea) × 1000 (18)

N =
0.00338

A0.05
s

(19)
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where N is the mass transfer coefficient and parameterized as a function of lake surface area As

(acre) [21].
The RyH method considered the two main evaporation-driven processes: free convection caused by

buoyancy and forced convection caused by wind. The formula of the RyH method is given as follows:

E =
2.7(Ts − Ta)

1
3 + 3.1U

λρw
(e∗s − ea) × 10×D (20)

2.4. Calibration of Evaporation Methods

Due to the difference in physical and climatic conditions, some parameters or empirical coefficients
can be replaced or calibrated to achieve a relatively better agreement with observations. The details of
the adjustments are summarized in Table 1. Since long term continuous observation of temperature
profiles sometimes is absent because of the instrument failure, the determination of heat storage in the
water body needs alternate expression related to meteorological factors. For the combination methods,
the heat storage is determined using the measured water temperature profiles in the default condition
(V0) and a hysteresis function of net radiation [55] in the calibrated condition (V1), respectively.
The initial climate conditions assumed for the two solar radiation-based methods are totally different
from the Erhai Lake, and therefore its empirical coefficients are calibrated site-specific through multiple
regression against measured evaporation. The transfer coefficient N for the MT method, which reflects
the efficiency of vertical transport of water vapor by turbulent eddies induced from wind shear,
is calibrated by using the aerodynamic formula [22]. The empirical constants of the RyH method are
also modified by forcing multiple regression against measured data under the condition V1.

Table 1. Comparisons between the default condition V0 and calibrated condition V1 for the
evaporation equations.

Methods V0 V1

Combination methods

BREB
∆Q is calculated from

measured water
temperature profiles.

∆Q is derived from the hysteresis function
of Rn

∆Q = aRn + b + c dRn
dt

where a, b, and c are empirical constants
and determined by the measurement data

PM
PT

dBK
BS

Solar radiation-based
methods

JH

Default setting in
Section 2.3

E = (0.0026(1.8Ta + 32) + 0.34) Rs
λρw
×D

Mak E = 0.71 ∆
∆+γ

Rs
λρw
×D− 0.012

Dalton-based methods
MT

E = NU(e∗s − ea) ×D, N =
ρaε
ρwP

k2

(ln( z
zo ))

2

k Von-Karman constant (0.4, dimensionless)
ρa Air density (kg m−3)

z Measurement height (5 m);
zo Momentum roughness length (0.001 m);

RyH E =
1.9(Ts−Ta)

1
3 +3.4U

λρw
(e∗s − ea) × 10×D

2.5. Evaluation Criteria of Evaporation Methods

To evaluate the performance of evaporation methods from daily to monthly timescale, statistical
measures including linear correlation coefficient (R), root mean square error (RMSE) and mean absolute
error (MAE) between the observed and estimated evaporation were selected and calculated as follows:

R =

∑n
i=1

(
OBSi −OBS

)(
MODi −MOD

)
√∑n

i=1

(
OBSi −OBS

)2 ∑n
i=1

(
MODi −MOD

)2
(21)

RMSE =

√√
1
n

n∑
i=1

(MODi −OBSi)
2 (22)
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MAE =
1
n

n∑
i=1

|MODi −OBSi| (23)

where n denotes the number of data points, OBSi and MODi are the observed and modeled evaporation,
respectively, OBS and MOD are mean values of the observed and modeled evaporation, respectively.

2.6. Assessment of Relative Contribution

In order to quantify the relative contribution of meteorological factors to the long-term trend of
annual evaporation, the detrend method [56] and the sensitivity method [57] were used. In the detrend
method, the relative contribution of a factor xi is determined by the following formula:

RCdetrend(xi) =

(
dEoriginal

dt −
dEdetrend xi

dt

)
∑nt

j=1

∣∣∣∣ dEoriginal
dt −

dEdetrend xj
dt

∣∣∣∣ × 100% (24)

where RCdetrend(xi) is the relative contribution of factor xi to evaporation changes based on the detrend

method,
dEoriginal

dt is the trend of lake evaporation calculated by using the original inputs, dEdetrend xi
dt is the

trend of lake evaporation calculated by using the linear detrend xi and original data for other variables,
nt is the total number of affecting factors. In the sensitivity method, the relative contribution of a factor
xi is determined by the following formula:

RCsensitivity(xi) =

∂Eoriginal
∂xi

dxi
dt∑nt

j=1

∣∣∣∣∣∂Eoriginal
∂xj

dxj
dt

∣∣∣∣∣ × 100% (25)

where RCsensitivity(xi) is the relative contribution of factor xi to evaporation changes based on

the sensitivity method,
∂Eoriginal
∂xi is the partial derivatives of xi, dxi

dt is the trend of xi during the
long-term period.

3. Results and Discussions

3.1. Meteorological Conditions and Surface Energy Budget

The general characteristic of meteorological conditions during 2015–2018 is shown in Figure 2.
Daily average wind speed (U) ranged from 0.80 to 6.58 m s−1 during 4-year period. The annual mean
values of U from 2015 to 2018 were 2.80 m s−1, 2.70 m s−1, 2.90 m s−1, and 2.69 m s−1, respectively.
The annual mean U in each year was slightly higher than the long-term annual average of 2.50 m s−1

for the period 1981–2010 at the Dali National Climatic Observatory (DNCO). Air temperature (Ta)
and water surface temperature (Ts) both showed clearly seasonal variation. Noted that Ts is derived
from the longwave radiation. Daily average Ta ranged from 1.3 to 24.3 ◦C. The measured annual
average values of Ta from 2015 to 2018 were 1.41~1.64 ◦C warmer than the long-term climate average
of 15.06 ◦C for the period 1981 to 2010. Daily average Ts ranges from 7.0 ◦C to 25.8 ◦C during
2015–2018. The annual average Ts during 2015–2018 ranged from 17.43 ◦C to 17.69 ◦C, which were
slightly larger than the annual mean Ta. The daily average temperature difference (∆T) between the
lake surface and the atmosphere was almost negative from February to June and was positive during
other months in a year. Annual mean ∆T is always positive during 4-year period. The daily average
vapor pressure difference (VPD) gradually increased with seasons but slightly dropped in summer
due to a large amount of rainfall. The daily average incoming solar radiation (Rs) generally peaked in
mid-summer and reached its minimum in winter. Small daily mean values of Rs were also observed in
summer because of the influence of rainfall events. The precipitation was mainly concentrated on the
monsoon season from May to October, accounted for 76% to 89% of the annual precipitation during
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2015–2018. The annual total precipitation in 2016 (1153.6 mm) was larger than the long-term mean
annual precipitation (1055 mm), while the annual precipitation in 2015 (1016.2 mm), 2017 (909.7 mm),
and 2018 (1000.8 mm) were slightly lower than the long-term average.

Figure 2. Daily average of wind speed (U), air temperature (Ta), water surface temperature (Ts),
temperature difference (∆T), vapor pressure difference (VPD), incoming solar radiation (Rs), and daily
total precipitation (precip) during period 2015–2018.

The monthly mean value of surface energy budget components during 2015–2018 is shown
in Figure 3. Net radiation (Rn) displayed a strong seasonal variation, where maximum Rn occurred
in May of 2015 and June of 2016–2018, and minimums occurred in December with monthly average
values lower than 50 W m−2. Seasonal variation of latent heat flux (LE) was similar to that of Rn.
Maximum monthly average LE was not consistent among four years and occurred in June of 2015
and 2017, July of 2016, and October of 2018, respectively. The maximum LE was about one month
to three months lag behind the maximum Rn over Erhai Lake. For large and deep lakes with the
high heat capacity of lake water, a two to five months delay between maximum LE and Rn was
observed [17,58–60]. The seasonal variation of the heat storage change (∆Q) can be divided into
storaging period (∆Q > 0) and releasing period (∆Q < 0). The heat was absorbed into the water body
during spring to summer and used to warm the lake water. The peak value of heat absorption was
observed in May. A slight fluctuation of heat absorption occurred during summer due to a large
amount of rainfall. The heat released into the atmosphere since September. The maximum heat release
usually occurred from October to November. The seasonal variation of ∆Q has a significant influence
on the estimation of seasonal lake evaporation by weakening evaporation during spring and summer
and enhancing it largely during the autumn and winter [61].
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Figure 3. Monthly average components of the surface energy budget during 2015–2018. Rn: net radiation;
∆Q: heat storage change; LE: latent heat flux; H: sensible heat flux. Note that the monthly mean ∆Q in
January 2015 is estimated by the residual of surface energy balance due to the measurement of water
temperature profile was not available.

The sensible heat flux (H) was relatively small when compared with LE, with monthly average
values ranged from −11.9 W m−2 to 19.5 W m−2. Monthly mean H was usually remained negative from
February to June when Ta is greater than Ts and became positive afterward when Ta is smaller than Ts.
Based on the surface energy partitioning, most of the Rn absorbed by the water body was consumed for
lake evaporation with annual mean LE/Rn ranged from 0.85 to 0.88 during 2015–2018. Monthly LE/Rn

exceeded 1 during September (only for 2018)/October to January, indicated the energy stored in the
water body served as an additional energy source of evaporation during these periods. A similar result
was also found in Ross Barnett Reservoir under humid and subtropical climate, with an annual average
LE/Rn of 0.81 and monthly average LE/Rn > 1 during September to January [62]. For a hypersaline
terminal lake under an arid environment, LE accounted for a lower portion of Rn with an average
value of 65% over four seasons [34]. The energy balance closure (EBC) is quantified by the ratio of
the turbulent flux (LE + H) to the available energy (Rn − ∆Q). Annual mean energy EBC ranged from
0.86 to 0.97 during 2015–2018 and was comparable to values obtained from other lakes [15,31,62] and
terrestrial sites [63].

3.2. Evaluation of Evaporation Methods at Different Timescales

3.2.1. Evaluation of Combination Methods

The performances of five combination methods were improved as the timescale is extended
from daily to monthly. Under the default condition V0, the mean correlation coefficient (R) of the
five methods increased from 0.53 for daily to 0.85 for monthly timescale, the RMSE decreased from
1.85 to 0.83, and the MAE reduced from 1.30 to 0.67, respectively (Table 2, V0). Under the calibrated
Condition V1, the heat storage change ∆Q is considered as a hysteresis function of Rn. The estimate of
evaporation using hysteresis ∆Q was also comparable to the default condition using measured ∆Q
as input. The coefficient of determination R2 between measured and modeled ∆Q is 0.84 at monthly
timescales during 2015–2018, which is identical to the average results of 22 lakes [55]. Using hysteresis
relation is able to provide reasonable ∆Q estimates when measurements of water temperature profiles
are not available, and produce good estimates of monthly evaporation for the combination methods.
Reasonable evaporation estimates can also be achieved by taking heat storage as a simple linear
function of Rn in Poyang lake [64] with a mean depth of 8 m comparable to the mean depth of Erhai
Lake (10 m).
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Table 2. Linear correlation (R), root mean square error (RMSE) and mean absolute error (MAE) between
the estimated evaporation and the measured evaporation, under timescales of daily (1d), weekly (7d),
and monthly. V0 and V1 represent the default and modified conditions, respectively.

R RMSE (mm d−1) MAE (mm d−1)

1d 7d Monthly 1d 7d Monthly 1d 7d Monthly

BREB 0.53 0.70 0.83 1.63 1.02 0.74 1.30 0.85 0.65
PM 0.62 0.76 0.88 1.31 0.82 0.58 1.03 0.68 0.51
PT 0.53 0.72 0.87 1.58 1.00 0.72 1.22 0.81 0.61

dBK 0.52 0.71 0.87 1.58 1.01 0.74 1.23 0.82 0.63
V0 BS 0.43 0.65 0.82 1.97 1.32 1.02 1.54 1.08 0.88

JH 0.55 0.74 0.85 1.65 1.05 0.74 1.28 0.83 0.64
Mak 0.48 0.70 0.78 1.50 0.97 0.74 1.13 0.74 0.61
MT 0.85 0.81 0.73 1.77 1.47 1.31 1.44 1.22 1.16
RyH 0.82 0.80 0.74 0.79 0.56 0.44 0.61 0.45 0.38

BREB 0.50 0.66 0.79 1.59 1.02 0.76 1.27 0.86 0.66
PM 0.61 0.75 0.85 1.31 0.83 0.59 1.04 0.69 0.51
PT 0.50 0.70 0.84 1.61 1.02 0.74 1.28 0.83 0.63

dBK 0.49 0.69 0.84 1.61 1.03 0.76 1.28 0.84 0.64
V1 BS 0.38 0.59 0.78 2.02 1.36 1.07 1.62 1.11 0.91

JH 0.45 0.67 0.74 1.51 0.86 0.53 1.18 0.70 0.42
Mak 0.48 0.70 0.78 1.50 0.87 0.54 1.17 0.70 0.43
MT 0.86 0.82 0.76 0.82 0.61 0.48 0.64 0.50 0.40
RyH 0.84 0.82 0.77 0.76 0.53 0.40 0.58 0.43 0.34

The difference in monthly average evaporation between five combination methods and EC
observations showed small seasonal bias under the default and calibrated conditions. The combination
methods overestimated evaporation during spring and summer and underestimated it during late
autumn to winter (Figure 4). Variation of seasonal bias was almost consistent among the five
combination methods. Under the default condition V0, the departure was within the range of
−1.5 mm d−1 to 1.5 mm d−1, except for the BS method with bias beyond this range. Calibrated condition
V1 showed similar seasonal bias related to default condition V0. More positive bias during
April (2017 and 2018) and May (2015 and 2016) and less negative bias during December were
found in V1 (Figure 4, V1). Such seasonal bias of combination methods has also been found in
other lakes [25,30,34,65]. The combination methods are based on the assumption of closed surface
energy balance. However, the turbulent fluxes measured by the EC system are generally underestimated,
and therefore, the surface energy balance is not always closed [66], eventually leading to seasonal
deviation of combination methods.
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Figure 4. Difference in monthly evaporation (mm d−1) between five combination methods (BREB, PM,
PT, dBK, and BS) and EC observations under default condition V0 and calibrated condition V1.
The percentage represents the difference in annual total evaporation loss.
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On an annual basis, the difference in annual total evaporation loss displayed large variability, i.e.,
the BREB and PM method both overestimated the annual evaporation under default and calibrated
condition during 2015–2018, while the BS method showed a slight overestimation in 2015 and
underestimation during 2016–2018 (Figure 4). Compared to other combination methods, the larger
underestimate during winter of the BS method balanced the positive bias and therefore resulted
in small overestimation in 2015 and underestimation during 2016–2018. The PT and dBK methods
showed relatively small annual bias during 4-year period. Annual evaporation loss estimated by the
combination methods neglecting ∆Q did not change significantly in comparison with the inclusion of
∆Q (not shown), because the storage and release of energy from the lake were almost balanced with
an annual mean of −1.78 to 2.04 W m−2 during 2015–2018. The heat storage can be roughly neglected
on longer timescales.

Among all the combination methods, the PM method has the best performance with large R
and small RMSE and MAE under the range of daily to monthly timescales, followed by the PT, dBK,
BREB, and BS method. Good performance of the PM method is also found in other lakes, e.g., a large
deep lake in Egypt [29], the Dead sea in an arid environment [34], and the Laja Lake in the middle of
the Andes mountain range [67]. More favorable results from the PT than the dBK method coincided
with the analysis in a small highland lake, which pointed out the PT method is more suitable for
estimating evaporation over high altitude lakes than the dBK method developed from the sea-level
environment [32]. The P-T coefficient taken as a constant of 1.26 without consideration its seasonal
variability (larger than 1.26 in winter and smaller than 1.26 in summer, not shown) might introduce
uncertainties and cause larger RMSE and MAE of the PT method in comparison with the PM method.
However, in Poyang lake, a large shallow subtropical lake in China, no obvious seasonal trend in α
was observed [68], and the PT method performed slightly better than the PM method [64]. The BS
method displayed the largest bias for lake evaporation estimation among the combination methods
from daily to monthly timescales, where its MAE value was almost twice as much as the value from
the PM method.

3.2.2. Evaluation of Solar Radiation-Based Methods

The performances of the solar radiation-based methods were similar to the combination methods.
The radiation-based methods yielded poor estimates at short timescales (daily to weekly) and relatively
good estimates at monthly timescale. Under the condition V0, the default version of two radiation-based
methods compared less favorably with most of the combination methods, except for the BS method.
The difference in monthly average evaporation between the default JH method and EC observations
also had a seasonal cycle, in which lake evaporation was generally overestimated during spring
and summer and was underestimated during late autumn and winter, resulting in an annual bias
of −2.6% to 4.3% during 2015–2018 (Figure 5, V0). The default Mak method underestimated the
monthly average evaporation almost all year, leading to a large negative annual bias of −13.4% to
−17.8% during 2015–2018 (Figure 5, V0). Under the calibrated condition V1, the simulation bias of the
default radiation-based methods was reduced after calibration with smaller RMSE and MAE, while the
correlation between observation and modified JH method declined slightly compared to the default JH
method (Table 2, V1). The large positive bias of the default JH method in summer was reduced or
became negative after calibration (Figure 5, V1). The difference in annual bias caused by the JH method
before and after calibration was not significant. The modified Mak method reduced the large negative
deviation of default condition and overestimated evaporation during spring, consequently resulting in
less negative annual bias ranged from −4.4% to 0.65% during 2015–2018 (Figure 5, V1). For the sake
of simplicity and accuracy, the modified solar radiation-based methods have an advantage over the
combination methods and were applied in estimating the long-term lake evaporation [32,69].
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3.2.3. Evaluation of Dalton-based Methods

In contrast to the two former methods based on the surface energy budget and solar radiation, the
Dalton-based methods had a larger correlation with observations at short timescales (daily to weekly)
and relatively poor correlation at a monthly timescale. Under the default condition V0, the RyH
method had much better performance than the MT method in terms of smaller RMSE and MAE values
among the entire range of timescales (Table 2, V0). With the transfer coefficient N parameterized as
a function of the lake surface area [21], the default MT method strongly overestimated the monthly
average evaporation during all the year except for August 2018, thus leading to overestimation of the
annual total evaporation by 25.7% to 40.6% during period 2015–2018 (Figure 5, V0). A similar result
was also found in Lake Taihu [31] that the MT method caused an overestimation of annual evaporation
up to 87%. For the default RyH method, the monthly departure of evaporation was within the scope of
−1 to 1 mm d−1. The underestimation generally occurred during summer to early autumn. The annual
bias was relatively small and varied from −2.9% to 5.2% during 4-year period (Figure 5, V0). Under the
calibrated condition V1, two modified Dalton-based methods both reduced the bias in terms of smaller
RMSE and MAE values from daily to monthly scales (Table 2, V1) compared to the default condition.
Continuous strong overestimation of monthly average evaporation of default MT method was reduced
substantially after using the aerodynamic formula of mass transfer coefficient N, and generally shifted
into negative bias during the second half the year, resulting in a small positive annual bias in 2015
and 2017, and negative annual bias in 2016 and 2018 (Figure 5, V1). The difference in an annual bias of
the RyH method was not significant before and after calibration, indicated the RyH method without
site-specific calibration performed well over Erhai Lake. The good behavior of the default RyH method
is also found in the study of a variety of lakes and ponds in Minnesota [70] and small mountain lakes
in southern Wyoming, USA [71] because of the large variability in wind speed and relative humidity.

3.3. Inter-Comparisons between Evaporation Methods at Different Timescales

Nine evaporation methods are related to different main drivers of lake evaporation. The correlation
between meteorological variables and lake evaporation obtained from observations and default
evaporation methods across daily to yearly timescales during 2015–2018 is shown in Figure 6. On the
basis of the measurement results, lake evaporation had the largest correlation with U from daily
to weekly timescale, and the relationship gradually decreased as the time interval is extended,
which correlation dropped from 0.76 on a daily scale to 0.01 on a yearly timescale. Lake evaporation
had a greater correlation with Ta and Rn on a monthly timescale. On an annual timescale, evaporation
was highly correlated to VPD and radiation (Rn and Rs) with a correlation higher than 0.8, while it
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had a negligible relationship with U and Ta. Apparently, VPD, Rn, and Rs both had an increasing
correlation with lake evaporation as the timescale is extended from daily to annual.

1 
 

 

 

Figure 6. Correlations between evaporation and meteorological variables at (a) daily, (b) weekly,
(c) monthly, and (d) annual timescale during 2015–2018. Lake evaporation is obtained from observations
(OBS) and estimation of default evaporation methods. The asterisk * means the correlation is not
significant at the 0.05 confidence level by the Student’s t-test.

The combination and solar radiation-based methods failed at short timescales (daily to weekly),
due to the mismatched controlling factors as lake evaporation was highly correlated with U while these
methods were controlled by Ta and radiation (Rn and Rs), and showed relative good performances
at monthly timescale due to the consistency of large relationship with Ta and radiation (Rn and Rs).
The Dalton-based methods showed large correlations with U and VPD, make it possible to yield
good estimates of evaporation from daily and weekly timescale, while produced less satisfactory
results at monthly timescale because lake evaporation is largely correlated to Ta and radiation.
Due to the difference in weather and climatic conditions, lake evaporation dynamics are driven
by different atmospheric forcing and processes, which will influence the suitability of evaporation
methods among lakes. For instance, the good performance of calibrated Dalton-based methods during
a shorter timescale over Erhai Lake is different from the results from lake Okeechobee in subtropical
South Florida [72], because lake Okeechobee experienced a large amount of rainfall and small VPD
condition, lake evaporation is mainly governed by solar radiation. Therefore, the Dalton-based
methods driven by U and VPD is not suitable, and the solar radiation-based methods can provide
more realistic estimates of evaporation. The solar radiation-based methods also have an advantage
over the Dalton-based methods in estimating evaporation from lakes and reservoirs in a semi-arid
environment [30].

The combination methods agreed well with the solar radiation-based methods across the entire
range of timescale as they have similar controlling factors-Ta and radiation (Rn and Rs) (Figure 7).
These two methods showed obvious disagreement with the Dalton-based methods at shorter timescales
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because the latter is mainly driven by U and VPD, indicated the importance of choosing the appropriate
method for lake evaporation estimation at a smaller timescale. The correlations between the methods
increased with the extended timescale, indicated that the deviation of methods based on different
physical parameterization would be reduced on a longer timescale. Despite the more consistency at
the annual timescale, large differences could still occur between these methods.

1 
 

 

 
Figure 7. Correlations between default evaporation methods at (a) daily, (b) weekly, (c) monthly, and
(d) annual timescale during 2015–2018. The asterisk * means the correlation is not significant at the 0.05
confidence level by the Student’s t-test.

3.4. Estimation of Long-Term Lake Evaporation

To investigate the interannual variation of lake evaporation during the past decades (1981–2018),
the calibrated JH method was forced with historical measurements dataset from the DNCO station
and the CMFD dataset. The calibrated JH method had a relatively small annual bias varied from
−2.6% to 2.8% during 2015–2018 (Figure 4, V1), and only required Ta and Rs as input, which both easily
obtained, therefore made it become a practical and reliable option for estimating the long-term trend
of evaporation.

The estimated annual evaporation displayed an insignificant increasing trend of 0.30 mm year−1

during 1981–2018 and ranged from 1146.2 mm to 1362.0 mm with a mean value of 1249.0 mm (Figure 8a).
The low annual evaporation in the early 1990s resulted from the small incoming solar radiation.
The increasing trend of lake evaporation has also been reported in lakes with different
climate background, including a small highland lake in the Tibetan Plateau [32], Lake Taihu in
a subtropical region of China [73], Lake IJssel in the Netherlands [69] and a small reservoir in the
Brazilian savannah [74]. The long-term trend of evaporation of Erhai Lake calculated by the modified
JH method is opposite to the results obtained from evaporation pan E601 situated in the surrounding
land site [75], in which pan evaporation showed an obvious decreasing trend since the 1980s with rising
temperature. This inverse trend is known as the “evaporation paradox”, which is in agreement with
the results from reservoirs in the contiguous United States [76]. This discrepancy is likely attributed
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to different environmental and meteorological conditions and the limited measured area of the
evaporation pan. During period 1981–2018, Ta increased significantly with a trend of 0.046 ◦C year−1,
while U declined significantly at a rate of −0.016 m s−1 year−1, Rs and annual total precipitation
both decreased slightly at rates of −0.037 W m−2 year−1 and −1.4 mm year−1, and specific humidity
qa changed insignificantly (Figure 8). The increasing lake evaporation accompanied by decreasing
precipitation is likely to reduce the water resources of Erhai Lake, which is supported by the decreasing
trend of water resources observed in this basin [77] and in the mainland of China [78]. The climate over
Erhai Lake basin was mainly cold and wet in the 1960s and 1970s, but getting warm after into 1980s
and warmer and dry into the 21st century [77]. This changing climatic condition may cause an increase
in lake evaporation since the 1980s despite the incoming solar radiation decreased during this period.

Figure 8. Interannual variations of annual total evaporation and meteorological variables: (a) annual
total evaporation estimated by the modified JH method, (b) air temperature Ta, (c) wind speed U,
(d) specific humidity qa, (e) incoming solar radiation Rs, and (f) annual total precipitation. The dashed
line represents the linear trend during 1981–2018. Only air temperature and wind speed have a
significant trend (p < 0.01).

The relative contributions of Ta and Rs were quantified by the detrend method and sensitivity
method to find out what caused the evaporation trend during the past decades, as shown in Figure 9.
A large difference occurred between the original evaporation and the recalculated evaporation under
the detrended Ta condition. The increasing trend (0.30 mm year−1) of evaporation based on the
original inputs was largely reduced to −0.24 mm year−1 when using the detrended Ta and original
Rs as input (Figure 9c). Under the detrended Rs condition, the trend of original annual evaporation
was slightly increased to 0.54 mm year−1 (Figure 9c). Based on the detrend method, the increasing
Ta contributed to 69.2% of evaporation variation, while the decreasing Rs resulted in −30.8% of
evaporation change (Figure 9f). Relative contributions of these two factors based on the sensitivity
method were consistent with the results of the detrend method. The change in Ta contributed 69.5%
to evaporation variation (Figure 9f). Therefore, the rising Ta contributed to the increasing trend of
evaporation during 1981–2018, indicating the impact of changing climate on the hydrological cycle
over Erhai Lake. Because the variation of Rs was relatively small and insignificant during 1981–2018,
its contribution to the long-term trend of evaporation was not the largest, although the magnitude of
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annual lake evaporation changed largely to the disturbance of Rs. It has been reported that annual
evaporation for lakes in low-altitude areas is projected to increase about 200 mm by 2091–2100 in
comparison with 2006–2015, in spite of little changes in incoming solar radiation [8]. According to
a study about the characteristics of climate change around the Erhai Lake area, the annual average
air temperature will keep a warming trend in the future [79], which may continuously accelerate the
evaporation of the lake and, in turn, alter the local water balance and energy budget allocation.

Figure 9. Interannual variations of original annual averaged meteorological variables and its detrended
series: (a) air temperature Ta and (b) incoming solar radiation Rs. (c) Variations of annual total
evaporation estimated by the modified JH method using the original inputs and detrend inputs.
The “E_original” line means lake evaporation is calculated by using original data. The “E_detrend
Rs” line means lake evaporation is calculated by using detrend Rs and original Ta. The “E_detrend Ta”
line means lake evaporation is calculated by using detrend Ta and original Rs. Variations of partial
derivatives of (d) Ta and (e) Rs. (f) Relative contributions of Rs and Ta to the annual total evaporation
trend based on the results of the detrending method and sensitivity method.

4. Conclusions

This study is aimed to evaluate the nine evaporation methods at different timescales on the
basis of the comprehensive measurements conducted by an EC system over the Erhai Lake and
revealed the long-term trend of evaporation. The accuracy of methods varied with timescales resulted
from the (dis)agreement between its parameterization scheme and the drivers of lake evaporation.
Under the default condition, the Dalton-based RyH method is the most accurate method at short
timescales (daily to weekly), while the MT method resulted in a large overestimation of lake evaporation.
On a monthly scale, the variation of lake evaporation is better described by the combination and
solar radiation-based methods since evaporation is mainly correlated to air temperature and radiation
(Rn and Rs). Under the calibrated condition, the combination methods using the hysteresis heat
storage produced comparable results to the default condition using measured heat storage as input,
indicated the hysteresis model could be considered as a good alternative for estimating heat storage
without the measurement of water temperature profiles. The JH and RyH method improved slightly
after optimization. The large negative bias of the default Mak method and positive bias of the default
MT method were substantially reduced after optimization. The calibrated JH method had a relatively
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small annual bias, and a simple data requirement was applied in the estimates of long-term evaporation.
The annual total evaporation showed an insignificant increasing trend of 0.30 mm year−1 during
1981–2018, with a minimum occurred in the early 1990s. Relative contributions of meteorological factors
were quantified by the detrend method and sensitivity method. Rising air temperature contributed to
the increasing trend of evaporation by 69.2% and 69.5% based on the detrend method and sensitivity
method, respectively. This result indicated the amplified impact of a warming climate on the water
cycle over the Erhai Lake basin, which will help to better understand the response of the lake system to
climate change. In this study, we only concentrated on the estimate of historical evaporation. The extent
of lake evaporation over Erhai Lake in the future and its variability are underexplored and needed to
discuss further.
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