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Abstract: User-friendly and energy-efficient methods able to work in noncontinuous mode for
in situ purification of olive mill wastewater (OMW) are necessary. Herein we determined the
potential of oxidized multiwalled carbon nanotubes entrapped in a microporous polymeric matrix
of polydimethylsiloxane in the removal and recovery of phenolic compounds (PCs) from OMW.
The fabrication of the nanocomposite materials was straightforward and evidenced good adsorption
capacity. The adsorption process is influenced by the pH of the OMW. Thermodynamic parameters
evidenced the good affinity of the entrapped nanomaterial towards phenols. Furthermore, the kinetics
and adsorption isotherms are studied in detail. The presence of oil inside the OMW can speed up
the uptake process in batch adsorption experiments with respect to standard aqueous solutions,
suggesting a possible use of the nanocomposite for fast processing of OMW directly in the tank where
they are stored. Moreover, the prepared nanocomposite is safe and can be easily handled and disposed
of, thus avoiding the presence of specialized personnel. After the adsorption process the surface of the
nanomaterial can be easily regenerated by mild treatments with diluted acetic acid, thus permitting
both the recyclability of the nanomaterial and the recovery of phenolic compounds for a possible use
as additives in food and nutraceutical industries and the recovery of OMW for fertirrigation.

Keywords: olive mill wastewater; carbon nanotubes; polydimethilsiloxane; waste treatment; phenolic
compounds; resources recovery

1. Introduction

Olive mill wastewater (OMW) is an acid waste derived from olive pressing, which has a production
range from 10 to 30 million of m3 per year [1]. OMW is composed of water, oil, and solids and exhibits
ecotoxic and phytotoxic properties due to its high content of phenols [2]. For that reason, OMW has
been considered as a matter of treatment and minimization [3]. However, it could represent a cheap
source of components that can be recovered and used as natural food additives [4,5]. For instance,
at low concentrations, phenols of olive have antioxidant properties with potential benefits for the
health [6–8]. Moreover, OMW purified from phenols can be a valuable source for fertirrigation [9].

Different methods have been developed to purify OMW from phenols such as electrochemical
oxidation [10], physical methods [11], solvent extraction [12], chemical treatments [13–15], filtration [16],
and bioremediation [17,18]. However, these techniques could require high energy, the use of
chemicals, and could generate secondary pollutants during the remediation process [19]. Moreover,
phenolic compounds (PCs) could be degraded during the treatment thus not permitting their recovery.
For all these reasons, there is an urgent need to develop alternative methods for the removal and
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recovery of PCs from OMW. In this view, adsorption techniques can be an attractive alternative [20–25].
Different adsorbents have been developed, such as granular activated carbon [20], zeolites [26],
agricultural wastes [3], and amberlite [27]. One of the major issues is that these materials are in powder
form requiring large centrifuges or filtration systems for their management during the treatment.
Another approach could be to pack the powder in a column for a continuous flow separation in a
plant [21]. However, the seasonally production of OMW and the necessity to collect and transport
OMW from the large number of olive mills to the plant can make such systems expensive [19].
Recently we have developed a nanocomposite material in which oxidized carbon nanotubes (oxCNTs)
were physically entrapped on the surface of porous polydimethylsiloxane (PDMS) for the removal
of phenolic compounds from aqueous solutions with good adsorption capacity. The nanocomposite
can be easily handled and disposed of, making easier its recovery after the adsorption process [28].
Although the use of the material to remove phenolic compounds for OMW treatment was suggested a
complete characterization of the adsorption process was not performed. In the present work we tested
the ability of PDMS/oxidized multiwalled carbon nanotubes (oxMWCNTs)—spongeous materials
to remove phenolic compounds from complex matrices such as OMW. The adsorption mechanisms,
thermodynamic parameters, and kinetics were studied with different theoretical models. A good and
fast adsorption capacity was observed. The system was demonstrated to be effective for the purification
of complex OMW matrices in batch samples, suggesting their possible use for in situ purification of
OMW, being able to work directly in the tank where the waste is stored. It has been demonstrated that
the different phenols present in OMW can affect the adsorption process with respect to our previous
observations. Moreover, the presence of oil in OMW can speed up the uptake process, probably due to
the swelling of the pores inside the adsorbent phase. The reusability of the nanocomposite and the
possibility of recovering adsorbed phenols was also demonstrated.

2. Materials and Methods

2.1. Materials

Multiwalled carbon nanotubes with a diameter of 25.4 ± 4 nm were provided by Nanostructured
& Amorphous Materials, Inc., Los Alamos, NM, USA. The PDMS polymerization kit (Sylgard 184),
comprising monomer and curing agent, were purchased from Dow Corning, Midland, MI, USA.
All the other reagents were analytical grade and purchased from VWR International srl, Milano, Italy,
and used as received.

2.2. OMW Origin and Composition

OMW was obtained from a three-phase continuous extraction unit in Miggiano, Italy. The pH at
25 ◦C was equal to 4.8 and the density 1.08 ± 0.02 g/L. Total suspended solids were 2.57 ± 0.05 g/L,
the total solids were 25.12 ± 0.8 g/L, the mineral matter was 4.02 ± 0.07 g/L. The phenolic amount equal
to 2.089 ± 0.01 g/L was calculated by Folin–Ciocalteau assay [29].

2.3. Preparation of the Spongeous Adsorbent

A sponge of polydimethilsiloxane (PDMS), in which oxidized multiwalled carbon nanotubes
(oxMWCNTs) were stably entrapped and homogenously dispersed on pores’ surfaces, was prepared
following our well-developed procedure [28]. Briefly, microparticles of glucose crystals with an average
dimension of 290 ± 170 µm were mixed with a shaker overnight with pristine MWCNTs at 3% w/w.
The obtained mixture was packed in a centrifuge tube and an appropriate amount of PDMS prepolymer
mixed with curing agent in the ratio of 10:1 and diluted with 40% in wt.% of hexane was added on
the top. The composites were centrifuged at 8000 rpm for 20 min to allow the packing of the mixture
and the permeation of the prepolymerization solutions between the sugar particles. The composite
was then cured at 60 ◦C overnight to accomplish the polymerization. Finally, glucose was removed by
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firstly soaking the nanocomposite in boiling water under continuous stirring and then by sonication in
warm water and ethanol.

MWCNTs entrapped in the nanocomposites were then oxidized. The sponges were placed in
water under reduced pressure to allow the permeation of the solution in the pores of the hydrophobic
nanocomposite, then nitric acid was added until a concentration of 3 M was reached and left for two
hours under continuous stirring. At the end of the process the as-obtained nanocomposites were washed
repetitively with water until the pH of the washing solution remained stable. The nanocomposites were
dried under vacuum and dipped in H2O2 30% w/w solution under stirring for 2 h. Finally, the obtained
materials (PDMS/oxMWCNTs) were repetitively washed in water and dried at 100 ◦C overnight.

2.4. Determination of PCs in OMW

The PCs in the OMW were quantified by Folin–Ciocalteu assay [29]. 240 µL of water, 50 µL of
OMW, and 250 µL of Folin–Ciocalteau reagent were added in a flask. After 120 s, 2.7 mL of sodium
carbonate (20% w/v) was added. The mixture was left at 25 ◦C for 2 h and then centrifuged at 8000 rpm
for 5 min. The absorbance of the supernatant was read at 765 nm with a Cary UV 50 spectrophotometer.
Gallic acid was used as a standard for the calibration of the method.

2.5. Adsorption Experiments

A proper amount of the PDMS/oxMWCNTs nanocomposite (6 g/100 mL) was immersed in 5 mL
of OMW diluted with water (pH = 4.8) with a known concentration of phenols (1.251 g/L) and shacked
at 25 ◦C. Studies at different pH were performed, adjusting the pH with 0.1 M HCl or 0.1 M NaOH.
The adsorption rates of phenols were monitored at different times (namely 0, 0.5, 1, 1.5, 2, 2.5, 3,
4, 22, and 24 h) collecting small aliquots from the solution for further spectrophotometric analysis.
Removal efficiency (Q%) and equilibrium adsorption capacity (qe) of the sponges were calculated by
Equations (1) and (2) respectively:

removal e f f iciency (%) =

[
(C0 −Ct)

C0

]
× 100 (1)

adsorption capacity, qe
(mg

g

)
=

[
(C0 −Ce)

W

]
×V (2)

where C0 and Ct are respectively the concentration of PCs at the beginning of the experiment and at a
given time (hours) in ppm (mg/L), Ce is the PCs concentrations (ppm) at the equilibrium (24 h), W is
the weight of the sponge in grams, and V is the volume of the solution in liters.

2.6. Desorption Experiments

The adsorbent was separated from the OMW solution and washed with water. Desorption experiments
were conducted by dipping the PDMS/oxMWCNTs sponge in 10% acetic acid, which was vortexed for 2 h.

3. Results and Discussion

3.1. Adsorption of OMW PCs on PDMS/oxMWCNTs Sponges

Our developed fabrication route described in experimental methods can easily allow the synthesis
of black porous PDMS/oxMWCNTs sponges (Figure 1a) in which the pores dimensions are comparable
to that of the used hard template. The carbon nanotubes are well-dispersed in the polymeric
matrices thanks to the mechanical destroying of π-π stacking during the fabrication steps. Moreover,
the oxidation of the nanomaterials in the sponges occurred after the synthesis of the 3D nanocomposites
thus reducing the need of complex apparatus thanks to the easy handle of the material [28,30].
Although it is known that treatment with strong acid can degrade PDMS matrices [31], it is interesting
to note as the oxidation procedure did not significantly affect the mechanical stability of the material.
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This is probably due to the low concentration of nitric acid and short time of incubation used for
the synthetic procedure. The prepared sponges were dipped in an OMW solution at pH 4.8 and the
adsorption of PCs was monitored at different times. As reported in Figure 1c, at the beginning of the
process we observed a fast phenols adsorption. After 4 h the adsorption process become slower due to
the decrease in the number of easily accessible sites on oxMWCNTs [3,28,32]. Finally, for times higher
than 20 h an equilibrium between the adsorbent and adsorbate is achieved. Moreover, we observed
that the adsorption of PCs did not occur in 24 h on porous PDMS prepared following the procedure in
Section 2.3, but in the absence of MWCNTs, and is very low on a spongeous nanocomposite in which
MWCNTs were not oxidized (removal efficiency approximately 2%) (data not shown).
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Figure 1. A piece of polydimethylsiloxane/oxidized multiwalled carbon nanotubes (PDMS/oxMWCNTs)
sponge (a) before and (b) after dipping in an olive mill wastewater (OMW) solution. (c) Effect of contact
time on adsorption of OMW phenolic compounds (PCs) on the PDMS/oxMWCNTs sponge.

Interestingly, most of the uptake process (around 95%) was completed in 4 h, evidencing a faster
uptake with respect to what we observed in aqueous solutions [28].

We hypothesized that this can be due to two different reasons: on one hand it could be due to an
increased affinity of phenols contained in the OMW with the adsorbent; on the other hand, it could
be due to the presence of oil in the OMW, which could cause the swelling of the PDMS/oxMWCNTs
sponge [30,33] thus favoring the diffusion of the mixture inside the adsorbent phase. To verify the
first hypothesis the PDMS/oxMWCNTs sponge was dipped in two different solutions containing two
different PCs, namely 4-nitrophenol and phenol, for which the nanomaterial has evidenced different
affinities at the same concentration (i.e., 0.18 mM) [28]. We observed a significant increment in the
removal efficiency at equilibrium, but not in the rate of adsorption. In fact, 84% of the process is
completed in 4 h in both cases (Figure S1). Therefore, the increment in the adsorption rate was
attributed to the evident swelling of the nanocomposite in OMW (Figure 1b).

3.2. Effect of pH and Adsorbent Amount on PCs Adsorption

pH can affect both the adsorption mechanisms and the nature of soluble species’ interactions with
the adsorbents [34].

We tested the pH effect on the PCs removal from OMW with our porous nanocomposite. As visible
in Figure 2, the removal efficiency (%) increases from pH 2 to 4.8, then slightly decreases for pH values
up to 6.5 and finally decreases dramatically at higher pH, reaching a removal efficiency (%) close to
zero at pH over 10.5.

The increment in removal efficiency observed until pH of around 6.5 is mainly due to π-π
interactions. Although this mechanism is still not clear, it is well known that higher pH values can
alter the π donation strength of PCs thus causing an increase of their adsorption on the oxMWCNTs’
surface [28,35]. However, the removal efficiency decreased very fast at pHs over 6.5 with an apparent
different behavior to that observed in adsorption of PCs on oxMWCNTs in aqueous solutions [28].
A similar behavior was also reported for some PCs adsorbed by MWCNTs [35], demonstrating that
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the decreased removal efficiency of phenols for pH over their pKa could be due to the increased
electrostatic repulsion between the dissociated phenols and negatively charged oxMWCNTs. Moreover,
the dissociation of the PCs would increase their hydrophilicity, thus decreasing their adsorption.
Consequently, the observed trend can be explained by the fact that most of the PC constituents of
OMW are deprotonated at higher pH, due to their pKa lower than 5 (Figure 3) [36]. This suggests also
that the adsorption of different type of phenols could be achieved at different pHs.Water 2020, 12, x FOR PEER REVIEW 5 of 14 
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Figure 3. The major constituents of OMW. The common name and the pKa value are reported under
each compound.

Figure 4 shows the removal efficiency (%) and adsorption capacity (qe) of phenols in OMW as
a function of the PDMS/oxMWCNTs sponge amount in the given conditions. It is evident that an
increase in sponge amount in the mixture results in an obvious increase in the phenol adsorption
percent. With the increase in PDMS/oxMWCNTs amount from 4 to 10 g/100 mL, the phenol removal
efficiency increased rapidly from 20.2 to 35.5%. This was intuitively due to the increase in the number
of adsorption sites with the increase in the sponge amount. The results indicated that it was possible to
remove phenols completely from OMW when there was a high enough PDMS/oxMWCNTs sponge
amount in the mixture. On the other hand, the qe was high at low doses and reduced at high doses,
thus suggesting that some adsorption sites remain unsaturated during the adsorption process [3,37–40].

The results of this section also indicated that, in order to obtain the optimal adsorbent dosage,
higher initial phenol concentrations should be tested in conjunction with appropriate adsorbent dosage
depending on the concentration of phenolic compound in OMW [37,38].
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3.3. Adsorption Isotherms and Thermodynamic Parameters

Several models have been used to describe adsorption equilibrium, among which the Freundlich
and the Langmuir models are the most frequently used.

The Freundlich isotherm [41] describes a reversible process in which the adsorption can occur
through homogeneous and/or heterogenous interactions.

The linear form of the equation is:

log qe = log KF +
1
n

log Ce (3)

where KF is the Freundlich constant representative of the adsorption capacity of adsorbent and
n describes the strength of adsorption. An R2 of 0.80 was obtained by linear fitting (Figure S2),
evidencing that the model did not describe well the experimental data, thus being in contrast with
what was observed in aqueous solutions [28]. We ascribe this behavior to the complexity of OMW in
which other interferences species can influence the adsorption mechanisms.

Experimental data were also fitted with the Langmuir theory [42], which is valid for monolayer
adsorption onto surfaces with homogenous binding sites.

The linearized form of the isotherm is:

Ce

qe
=

1
KLqmax

+
Ce

qmax
(4)

where KL (L/mg) is the Langmuir constant and is representative of the affinity of the sorbate for the
sorbent and qmax (mg/g) is the maximum adsorption capacity.

The R2 value higher than 0.99 suggests that the model is more appropriate to describe the
adsorption process. From the fitting, a qmax of 4.39 mg/g was found. The dimensionless equilibrium
parameter (RL) was calculated as in Equation (5) at different concentrations of PCs.

RL =
1

1 + KLC0
(5)

The results summarized in the table of Figure 5 evidenced that the RL value is always comprised
between 0 and 1, confirming the high affinity of PDMS/oxMWCNTs sponge for phenols contained
in OMW [3].
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OMW. The table reports calculated values from Equations (6) and (7).

The obtained results were compared with other sorbents used for the same purpose (Table 1).
The highest values were reached with wheat bran and banana peel [3,37]. However, it should be pointed
out that in this work the adsorption capacities are calculated per gram of sponges and not per gram
of oxMWCNTs. This is important since the adsorption of PCs is exclusively due to the oxMWCNTs.
Therefore, calculating the qmax considering only the grams of oxMWCNTs a value of 454.55 mg/g is
obtained, which is comparable with the most efficient materials. Moreover, the PDMS/oxMWCNTs
sponge has the advantages of being user-friendly and easy to manipulate during all the steps of the
waste treatment.

Table 1. Langmuir constants for PCs adsorption from various absorbents reported in literature.

Adsorbent qmax (mg/g) KL (L/g) References

PDMS/oxMWCNTs 4.39 (454.55) 0.014 This work
Banana peel 688.9 0.24 [3]
Wheat bran 487.3 0.13 [37]

Olive pomace 11.40 0.005 [43]
Activated carbon coated with milk protein 246.45 9.1 [44]

Activated carbon 268.17 0.14 [45]

From the variation of KL values with temperature we calculate the Gibbs free energy (∆G◦) of
adsorption, enthalpy (∆H◦), and entropy (∆S◦) using the following equation:

∆G
◦

= −RT ln(KLD) (6)

and the van’t Hoff equation:

ln(KLD) = (
∆S

◦

R
) − (

∆H
◦

RT
) (7)

in which R is the gas constant (8.314 J/(mol K)), T is the temperature expressed in Kelvin, and KLD is
obtained by multiplying KL by 1000 [46,47].

The van’t Hoff plot of ln(KLD) against 1/T evidenced a good linearity with an R2 = 0.96 and both
∆H◦ and ∆S◦ were calculated (Figure 6). The negative values of ∆G◦ suggests that the process occurs
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spontaneously. The positive value of ∆H◦ represents an endothermic reaction while values of ∆S◦

higher than zero evidenced that the randomness increased at the solid liquid interface due to the high
affinity of the sorbent for the PCs [46].
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3.4. Kinetic of the Adsorption Process

To elucidate the adsorption mechanisms in OMW, adsorption kinetics have been evaluated.
The mechanism of the adsorption strongly depends on the physical and chemical characteristics of
the adsorbent as well as on the mass transport process. Pseudo-first-order and pseudo-second-order
equations were examined in this study.

The pseudo-first-order equation [48] is represented by the following equation:

ln(qe − qt) = ln qe − k1t (8)

in which qt is relative to the number of PCs adsorbed (mg/g) at any time t (h), and k1 (h−1) is the
equilibrium rate constant of pseudo-first-order sorption. By plotting ln(qe − qt) against t a straight line
should be obtained with slope −K1 and intercept lnqe.

The pseudo-second-order equation [49] is expressed in the form:

t
qt

=
1

k2q2
e
+

t
qe

(9)

in which k2 is the rate constant of the pseudo-second-order equation (g/g h). The rate constant (k2) and
the equilibrium adsorption capacity (qe) can be obtained from the slope and the intercept of the plot of
t/qt versus t. The experimental data fitted with both the models are reported in Figure 7.

It is evident that pseudo-second-order kinetic model better describes the experimental data
(R2 > 0.99), thus suggesting that chemical sorption, mainly due to π-π interactions [28], occurs between
the PCs and PDMS/oxMWCNTs sponge [3]
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3.5. Intraparticle Diffusion Model

The pseudo-first-order and the pseudo-second-order models can explain the adsorption process,
but are not useful to identify the diffusion mechanisms.

qt = kpt1/2 + C (10)

kp is the rate constant of intraparticle diffusion model and C is a constant for any experiment (mg/g).
By plotting qt versus t1/2 (Figure 8) two linear ranges were observed and ascribed to at least two
different diffusion mechanisms of adsorption.

The lower value of kp2 with respect to kp1 (with kp1 and kp2 representing kp values for step I and
II, respectively) indicated that the free path available for diffusion of PCs inside the sponge became
smaller, thus causing the reduction of the diffusion rate [50]. It can be hypothesized that firstly
the adsorption occurs on the most accessible sites on the oxMWCNTs surface. Once these sites are
saturated, the PCs entered into smaller pores and/or reached the binding sites in the interstitial space
between oxMWCNTs, causing a decrease in the diffusion rate [28,32,51].

Interestingly, more than 95% of the total adsorption process occurs at the faster step. Moreover,
a higher Kp value in the first step was obtained with respect to that obtained in aqueous
solutions [28], thus confirming that the swelling of the sponge in OMW can speed up the entire
adsorption process [30,33].
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3.6. Desorption and Reusability Studies

Since the chemisorption process occurs between phenols and oxMWCNTs, adsorbed compounds
can be removed with an acidic treatment [28]. After the first adsorption process, the PDMS/oxMWCNTs
sponges were washed in 10% acetic acid at 60 ◦C to break the π-π interactions. The washing procedure
permits the solubilization of most of the adsorbed PCs (~99%) (Figure 9, blue columns), which can thus
be used in phenolic-enriched foods after simple further purification steps. Furthermore, the sponge can
be reused without losing its adsorption capacity, confirming the high stability of the nanocomposite
despite the swelling process. This suggests the possibility to use the nanocomposite for an higher
number of adsorption/desorption cycles, thus permitting the decrease of costs for the treatment of
OMW with higher phenols concentrations and the complete purification of the waste that can thus be
used for fertirrigation [9].
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4. Conclusions

The present work describes the application of spongeous nanocomposites made of PDMS and
oxidized MWCNTs for the adsorption of phenols from olive mill wastewater. The MWCNTs loading was
performed with a straightforward method without the use of complex procedures. The oxidation of the
nanomaterial was performed directly on the sponge, simplifying the post-treatment and speeding up the
whole fabrication process. The entrapped nanomaterials were stable and evidenced good adsorption
capacity compared to other systems. The pH of the OMW and pKa of the phenolic compounds
can influence the removal efficiency of the nanocomposites. By the evaluation of thermodynamic
parameters, we observed that the adsorption process is spontaneous and with a high affinity for
the phenolic compounds. The adsorption process in OMW is described by the Langmuir isotherm,
suggesting the formation of a monolayer on the nanomaterial surface and evidencing a different
behavior of the nanocomposites with respect to what happens in standard aqueous solutions in which
the formation of a PCs heterogeneous multilayer on an adsorbent surface was observed. It is also
interesting to note that the presence of complex matrices such as OMW can speed up the entire
adsorption process (more than 95% of the adsorption is completed in less than 4 h) with respect to
standard aqueous solution. We ascribed this behavior to the presence of a small amount of oil inside
the OMW that can promote the swelling of the sponge and the diffusion of the mixture inside the
polymeric matrices. This is interesting since the oil seasonal production required the fast processing
of OMW.

The nanocomposite can thus be easily used to work in batch conditions. This could be useful for a
real application of the system. After its production, OMW is stored in a big tank in which the spongeous
nanocomposites can be added for the adsorption process. Thus, the nanocomposite can be used directly
in situ. In this view, the entrapment of oxMWCNTs adsorbent in a porous polymeric matrix represents
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a significant advantage; in this way, post-treatment processes, such as filtration and/or centrifugation,
are not required to remove the adsorbent phase after the adsorption process, decreasing the time and
the costs of the treatment. Moreover, the nanomaterial can be easily handled and disposed in a safe
way without the use of specialized personnel. The surface of the nanomaterial can be regenerated
with a mild treatment with diluted acetic acid. On one hand this permits us to further decrease the
costs of production in wastewater treatment. On the other hand, the adsorbed phenolic compound
can be easily desorbed from the sponge and can be used, after small further purification, to produce
phenolic-enriched food due to its health benefits ranging from reduced incidence of cardiovascular
disease, diabetes, and cancers. Furthermore, the treated OMW can be a useful source for fertirrigation.
This could permit us to transform a waste product to a resource, especially for the regions of the
Mediterranean area in which is concentrated most of the world’s production of olive oil. Moreover,
the reusability of the material can be useful for OMW with high concentration of phenols that needs
repetitive cycles of purification.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/12/3471/s1,
Figure S1: Normalized removal efficiency % data to 0–1 range on the maximal value after 4 h of the uptake process
and removal efficiency % at equilibrium for an aqueous solution of phenol and 4-nitrophenol. Figure S2: Fitting of
experimental data with linearized Freundlich isotherm model for phenols in OMW (R2 = 0.8).
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