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Abstract: Water disinfection is one of the main treatments aimed at maintaining human health.
Traditionally, the treatment takes place inside multichamber tanks that facilitate the contact between
disinfectant and pathogenic microorganisms to be removed. However, the traditional contact tanks
used for disinfection have geometric characteristics causing the formation of dead or recirculation
zones that reduce treatment efficiency with potentially harmful effects on human health. This study
proposes the creation of holes in the baffles that divide the various chambers in order to increase
the mixing inside the reactor. In particular, various configurations with holes of different sizes
were considered. The results obtained through fluid dynamics simulations based on the LES
(large eddy simulation) model show that the jet emerging from the holes penetrates the recirculation
zones, transforming them into areas of active mixing. The analysis of the hydraulic mixing indices
traditionally used to evaluate the performance of these tanks shows that the presence of the holes
allows a significant increase in the mixing efficiency by reducing the short-circuit phenomena and the
entrapment of the disinfectant inside the dead zones. Parameters of fundamental importance are the
size of the holes, the arrangement of the holes within the baffles and the perforation percentage.

Keywords: multichamber; disinfection; computational fluid dynamics (CFD); perforated baffles;
hydraulic efficiency

1. Introduction

Disinfection represents the last unit to which the water is subjected inside a treatment plant before
spilling into the receiving water bodies or entering the distribution network. The purpose of this
unit is to remove the pathogenic microorganisms naturally present in the water, reducing the risks to
ecosystem and human health. Traditional disinfection treatments make use of chemical reagents such
as chlorine or ozone that are added to the water inside multichamber contact tanks. In these tanks,
the chambers are separated by parallel baffles that force the flow to follow a serpentine path with 180◦

flow inversions in order to increase the contact time of the disinfectant with the bacteria to be killed [1].
Due to the rectangular geometric configuration, traditional contact tanks have numerous angles in

which the flow velocity decreases or even vanishes (dead zones) and areas in which stable recirculation
phenomena occur [2]. The presence of these low speed zones also involves short-circuit phenomena
as the flow follows a preferential path at high velocity that extends near the walls of the chambers.
These phenomena modify the flow from the ideal plug-flow condition, resulting in considerable
variations in the real hydraulic residence time compared to the theoretical one, with important
consequences on disinfection efficiency [3]. The presence of short circuits causes, in fact, a reduction
in contact time and therefore a poor disinfection, while the dead and recirculation zones trap the
disinfectant inside them, increasing the contact time with the possible development of unwanted
by-products dangerous for human health. In addition to health problems, the reduction in disinfection
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efficiency determines a greater consumption of disinfectant and energy, with the increase of the plant’s
operating costs.

Numerous literature studies propose new designs for disinfection systems with the purpose of
optimizing the hydrodynamics inside the contact tank in order to reduce the consumption of energy
and chemical reagents and to increase the overall efficiency of disinfection treatment. These studies
propose to improve the disinfection efficiency by reducing the distance between the baffles [2,4–6],
modifying the configuration of the inlet [1,3,4,7], inserting rounded corners and placing turning vanes
near the corners of the chamber [1], adding horizontal baffles to vertical ones or creating slots [8–11]
and holes [12,13] in the baffles.

All these technical and constructive devices are designed to bring the flow closer to the ideal
plug-flow condition in which longitudinal dispersion is almost zero, and a uniform distribution
of the tracer in each cross-section is verified, thus ensuring an optimal hydraulic and sanitary
performance [14,15]. Furthermore, in the ideal plug-flow configuration the hydraulic residence
time (HRT) is uniform and equal to the theoretical average one chosen during the design phase,
to ensure adequate disinfection efficiency and to reduce the required chemical dosage and energy
consumption [8]. The efficiency of a contact tank can be evaluated through the analysis of the
hydraulic efficiency indicators (HEI) obtained from the residence time distribution (RTD) plots in
tracer studies [13]. Numerous literature studies, in fact, have shown that HEI analysis gives important
information regarding the hydraulic and sanitary performance of disinfection tanks [16,17]. Moreover,
considering the flow of a tracer inside the tanks, it is possible to evaluate the hydrodynamic efficiency
of all the units of a water treatment plant and consequently the efficiency of the sanitary treatment
that takes place inside them [18–20]. The baffling factor t10/τ can be used for the global assessment of
the hydraulic efficiency of contact tanks, where t10 is the time necessary for the passage through the
outlet section of the tank of 10% of the tracer mass injected and τ is the theoretical mean residence time
based on the assumption of plug-flow conditions. The Morrill index (Mo = t90/t10) and the dispersion
index (σ) may be used to evaluate the mixing performance of a contact system, where t90 is the time
necessary for the passage of 90% of the mass of the tracer injected, while σ is the dispersion index of
RTD curve [7].

Thanks to the technological developments of recent years, today it is possible to analyze mixing
efficiency of contact tanks more precisely using computational fluid dynamics (CFD) methods [21].
Different turbulence models have been used in the various literature studies to perform tracer and
flow simulations inside the contact tanks. These studies were mainly focused on the accuracy and on
the capability of the numerical experiments to simulate the turbulent phenomena occurring inside
the tank and to capture the mixing of the disinfectant with the flow. Many studies have compared
the numerical results with the experimental ones in order to evaluate the accuracy of the numerical
model used, highlighting that turbulence models employed in numerical simulations have significant
effects on the results obtained [22–24]. In particular, Reynolds averaged Navier–Stokes (RANS) based
turbulence models such as k-ε, k-ω and low Reynolds number models have been shown to be able to
accurately predict the mean flow through the multichamber [6,25]. Recent technological advances lead
to a preference for more accurate large eddy simulation (LES) based models, which require higher
computational costs due to the need for a finer mesh. Despite this, it is preferred to use the LES models
since, unlike the RANS models, they are able to better simulate the time-varying turbulent eddies
in the vicinity of the baffle corners [26–28]. Recent studies have postulated that these time-varying
turbulent eddies affect the mixing of the disinfectant with the flow, therefore, LES models are preferred
in mixing studies since RANS based turbulence models only consider time-averaged values of the
flow [2,10,22]. For all these reasons, in the present study it was decided to perform fluid dynamics
simulations based on the LES turbulence model, in order to study the hydrodynamic behavior of
reactors with perforated baffles characterized by a different number of holes, percentage of perforation
and arrangement of the holes in the baffles.
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2. Numerical Model

Efficiency of the contact tank is evaluated by means of tracer simulations for a conservative tracer.
A second-order accurate numerical model in the open source CFD code OpenFOAM (CFD Direct Ltd.,
Reading, UK) is used in numerical simulations conducted in this study. Numerical simulations of the
turbulent flow inside the contact tank is performed employing the LES turbulence model previously
validated by the authors.

2.1. Computational Domain

Figure 1 shows the reactor model used to perform simulations. The reactor has the same geometric
characteristics as the one studied by Kim et al. [26] with the only difference that the baffles are not solid
but perforated. Water enters the tank from the inlet on the left with a constant discharge Q = 0.2 L/s and
emerges from the outlet on the right to maintain an approximately constant water level inside the tank.
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Figure 1. Three-dimensional schematic view of the computational domain.

In order to reduce the computational time, numerical simulations were performed on a truncated
version of the physical domain studied by Kim et al. [26]. In the truncated reactor, the number of
chambers is reduced from 12 to 4 while maintaining the same chamber width equal to 0.113 m. In this
way, the reactor has an overall longitudinal length of 0.48 m and a width of 0.23 m. The deflectors have
a height of 0.18 m while the water reaches a height of 0.21 m inside the reactor. Periodic boundary
conditions are used in the streamwise direction for velocity to simulate an infinitely long domain:
in this way, velocities at the outlet are copied to the inlet after each time step. Theses boundary
conditions make the results independent on the inlet turbulence intensity avoiding unwanted flow
disturbances that occur when different boundary conditions are applied to the inlet and outlet [26].

In order to simulate flow through the multichamber reactor, a three-dimensional computational
mesh has been generated. Due to the specific geometry of the chambers, a Cartesian grid is used
(Figure 2). The computational domain is decomposed using 210 × 90 × 90 cells in the streamwise,
spanwise and wall-normal directions respectively, for a total of 1,701,000 cells, with a greater refinement
close to the bottom and baffle walls in order to resolve steep velocity gradients. The cell resolution near
the solid walls has been chosen following a sensitivity analysis and is fine enough to capture boundary
layer effects.
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2.2. Mathematical Formulation

A LES model is used to simulate the flow and transport of the passive scalar in order to
predict the mixing of the tracer with the fluid inside the computational domain due to turbulence.
The mass, momentum, and transport equations for the incompressible fluid are in the conservative
form here reported:

∂ui
∂xi

= 0 (1)

∂ui
∂t

+ u j
∂ui
∂x j

= −
1
ρ

∂p
∂xi

+ ν
∂2ui
∂x j∂x j

+ fi (2)

∂C
∂t

+ u j
∂C
∂x j

=
∂
∂x j

(
(D + Dt)

∂C
∂x j

)
(3)

where ui and xi are velocity and position in the i-th direction, t is time, ρ is fluid density, p is pressure,
ν is the kinematic viscosity, fi represents the body force per unit of mass in the i-th direction, u j is
the velocity component along the j-direction (x, y and z), xj represents the Cartesian coordinate, C is
the filtered concentration, D is molecular diffusivity, negligible compared to turbulent diffusivity Dt.
The turbulent diffusivity can be computed as Dt = µt/Sc, where µt is eddy viscosity calculated in (4)
while Sc is the turbulent Schmidt number which is set to 1000 in order to maintain the same ratio
between the water molecular viscosity and the tracer mass diffusivity used in the experiments by
Kim et al. [26,29].

The governing equations are resolved using the transient solver pimpleFoam available for
incompressible and turbulent flow of Newtonian fluids. This solver is a combination of PISO
(pressure-implicit split operator) and SIMPLE (semi-implicit method for pressure-linked equations)
solvers and is composed of an implicit momentum predictor and several pressure-velocity correctors.
In the PIMPLE (pressure-implicit method for pressure-linked equations) loop, the velocity equations are
firstly solved by using the velocity and pressure fields of the previous time step, known as momentum
predictor. The velocity and pressure are corrected several times afterwards to satisfy mass conservation.
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Different LES subgrid models are available for incompressible flows. In this case, wall-adapting local
eddy-viscosity (WALE) model was used, where the eddy viscosity is modeled by:

µt = ρL2
S

(
Sd

ijS
d
ij

)3/2

(
Si jSi j

)5/2
+

(
Sd

ijS
d
ij

)5/4
(4)

where µt is the subgrid-scale turbulent viscosity, Ls is the mixing length for subgrid scales, Si j is the
rate-of-strain tensor for the resolved scale defined by:

Si j =
1
2

(
∂ui
∂x j

+
∂u j

∂xi

)
(5)

In the WALE model Ls and Sd
ij are respectively defined as:

Ls = min
(
kd, CwV1/3

)
(6)

where k is the von Kármán constant, d is the distance to the closest wall, Cw is the WALE constant equal
to 0.325 and V is the volume of the computational cell.

Sd
ij =

1
2

(
g2

i jg
2
i j

)
−

1
3
δi jg

2
kk (7)

with

gi j =
∂ui
∂x j

(8)

Residence time distribution (RTD) and cumulative RTD (CRTD) curves are used to determine the
hydraulic and mixing efficiency of the tank. In the conservative tracer analysis, a non-reactive tracer is
injected at the inlet for a time selected to be less than 5% of the mean residence time (MRT) calculated
in (9) and the temporal variation of the concentration is observed at the outlet [30].

MRT =
∀

Q
(9)

where ∀ is the volume of the tank and Q is the flow rate. The tracer and cumulative concentrations are
nondimensionalized through the following equations:

E(θ) =
C

Cinit·
Trelease
τ

(10)

F(θ) =
∫
∞

0
E(θ)dθ (11)

where Cinit is the injected tracer concentration (Cinit = 1), Trelease is the injection period, θ = t/τ is the
dimensionless time and τ is the MRT [13].

2.3. Boundary Conditions

As regards the passive scalar tracer, a uniform concentration is injected into the tank for 2.5 s
applying a fixedValue boundary condition, in such a way that the tracer enters uniformly from the entire
inlet cross section. The zeroGradient boundary condition is used at the outlet and walls indicating zero
diffusive flux across these boundaries and symmetry boundary condition is imposed on the upper face
of the domain since free-surface effects are negligible.
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Numerical simulations are conducted using OpenFOAM code, which solves the governing
equations through the finite volume method. For the temporal discretization of the governing
equations, the second-order backward scheme is used. A 0.005 s time step is set to maintain the
Courant–Friedrich–Levy (CFL) number below 0.5. As regards the space, linearUpwind and Gauss
linear schemes are used for the treatment of the convective and diffusive terms respectively, so that the
overall accuracy of the numerical method is second order.

The boundary conditions applied on the walls to characterize the physics of the problem are
no-slip condition for the velocity, zero Gradient for the pressure, kqRWallFunction for the turbulence
kinetic energy, nutkWallFunction for the turbulence viscosity, and nutUSpaldingWallFunction for the
nuSGS. As mentioned, periodic boundary conditions were used at the inlet and outlet to reduce the
computational time. A symmetry boundary condition is finally imposed on the upper face of the
domain since free-surface effects are negligible [2,25].

Initially, the flow inside the reactor was simulated without the tracer for a time of 300 s in order to
allow the flow field stabilization excluding the wake fluctuations generally observed during the initial
phases of a simulation [8]. Once the flow field is established, the tracer is released inside the tank for a
period of 2.5 s and the simulation is run for an additional 330 s to ensure that almost all the injected
tracer passes through the outlet.

3. Results and Discussion

Recent studies suggest that the presence of slots or holes in the baffles improves the overall
efficiency of the contact tank as it reduces short circuits increasing fluid-fluid contact mixing in both the
recirculation and jet zones of the chambers [10,24]. In particular, the fundamental work of Kizilaslan
et al. [13] presents a geometry characterized by perforated baffles with an increasing percentage of
perforation in the flow direction and with a perforation that in some sections reaches values close
to 95%. When the flow exits from the hole, it hits the recirculation zone and increases the mixing,
avoiding the excessive permanence of the disinfectant trapped in the recirculation and dead zones.
In order to better understand this issue, in the present research square holes with increasing hole side
and increasing perforation percentage are investigated.

3.1. Perforated Baffles Geometry

The present study therefore focused on determining the variation of the hydraulic and sanitary
efficiency of contact tanks characterized by different perforated baffles geometries. The novelty of
this study consists in the square geometry of the holes in order to simplify the possible application
in full-scale disinfection tanks. For each of the eight designs analyzed, Figure 3 shows the holes
distribution on the baffle, whereas Table 1 reports the main parameters obtained by varying the size
and number of square holes. The design name refers to the size of the holes side expressed in [mm].
In the last column of the table is reported the perforation percentage given by the ratio between the
areas of all the holes normal to the flow and the area of the baffle. Table 1 shows that the proposed
geometry is characterized by low baffles perforation percentages, spanning in the range of 2.0–21.0%.
This value is clearly lower than those investigated by previous research [13], where a value of solidity
ratio in the range 65–90% was investigated. In the present research, it was decided to adopt much
lower perforation values than the other literature studies in order to facilitate the eventual realization
at full scale.
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Table 1. Perforation parameters of baffle designs.

Design Hole Side (mm) Number of Holes Perforation Percentage (%)

D2 2 204 2.0
D4 4 120 4.6
D6 6 126 11.0
D8 8 96 14.8

D10 10 63 15.2
D12 12 48 16.7
D14 14 40 18.9
D16 16 35 21.6

3.2. Flow Analysis

For each of the perforated designs, flow simulations to analyze the effect of perforation on mixing
performance were performed. Figure 4 presents the distribution of the time-averaged absolute velocity
on a horizontal plane located at the mid-depth of the tank. In particular, the figure compares the velocity
vectors of the conventional design with those of three perforated models: the one with smaller holes
(D2), the one with larger holes (D16) and one with intermediate sized holes within the investigated
range (D8).

The purpose of the perforated baffles is to increase the mixing inside the recirculation and dead
areas. However, this mixing induced by the flow exiting the holes obviously depends on the size
of the holes themselves. Figure 4b shows that extremely small holes do not substantially move the
flow condition away from that of traditional contact tanks depicted in Figure 4a. Due to the low
operating speeds, in fact, the water is unable to enter the holes and to penetrate the recirculation
areas, but continues to follow a preferential path at higher velocity that extends near the walls of
each chamber. The high flow velocity determines the passage of a portion of water through the
entire length of the contactor in much shorter times than the average hydraulic residence time (HRT),
with consequent short circuit and therefore a reduction in disinfection efficiency. As it is possible to
observe in Figure 4c,d, as the size of the holes increases, the flow is able to pass through the perforated
baffles. The jet emerging from the holes penetrates the recirculation areas in the adjacent chambers and
eliminates the dead zones while creating new mixing zones in these regions. Large-scale turbulent
eddies generated by the square holes on the perforated baffle also contribute to mixing within the
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chambers. At the same time, the presence of the holes interrupts the preferential path followed by
the flow near the walls of the chambers, thus reducing short circuits and increasing HRT. In this way,
the perforated baffles improve the hydraulic and sanitary efficiency of the disinfection reactor as they
increase the contact time of the disinfectant with the bacteria, while avoiding the excessive permanence
of the disinfectant trapped in the recirculation and dead zones.
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3.3. Tracer Analysis

Disinfection capacity of the contact tanks has been evaluated considering the flow of a passive
scalar tracer injected inside the tank from the inlet. Figure 5 compares the RTD curves obtained for
conventional and perforated designs. In the reactor with conventional solid baffles, the first peak
value occurs at approximately θ = 0.35 suggesting that a large quantity of the injected tracer leaves the
reactor after a shorter time than the ideal contact one. The second peak value is instead observed at
approximately θ = 0.65 due to the delayed release of the tracer trapped in the dead zones. As it is
possible to observe from the RTD curves related to the perforated designs, the holes allow to reduce
short-circuits, since the first peak moves to the right and approaches to θ = 1. On the other hand,
the disappearance or attenuation of the second peak is an indicator of the reduction of dead and
recirculation zones allowed by the jet coming out of the holes.
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Figure 5a shows the first portion of RTD curves for conventional, D2, D4, D6 and D8 designs. As it
is possible to observe, the design with the smallest holes (D2) leads to a reduction of the first peak and
shifts it slightly to the right, indicating a partial reduction of the short circuit effect. The second peak,
on the other hand, remains since the recirculation areas downstream of the baffles are not adequately
mixed by the small amount of flow coming out of the holes. In the D4 model, the first peak moves
more to the right, still maintaining high values, while the second peak disappears almost completely
because the jet coming out of the holes impacts the dead zones, transforming them into mixing zones.
The D6 and D8 RTD curves show that as the size of the holes increases, the first peak significantly goes
down and the second peak completely disappears. Figure 5b shows that moving from the D8 model to
the models with larger holes, the RTD curves have a very similar trend and therefore the hydraulic
behavior of the reactors is practically identical.

There are slight differences in the baffling factor t10/τwhich, as suggested by the US EPA (United States
Environmental Protection Agency) [31], can be used as a parameter to classify hydraulic performance
of a contact tank based on the values reported in Table 2.

Table 2. Baffling classification according to the t10/τ index [31].

Baffling Condition t10/τ

Unbaffled (mixed flow) 0.1
Poor 0.3

Average 0.5
Superior 0.7

Perfect (plug-flow) 1.0

General regulations instead suggest that for a perfect mixing system the Morril (Mo = t90/t10) and
dispersion (σ2) coefficients should be close to 2 and 0, respectively. As previously mentioned, t10/τ and
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t90/τ represent the normalized times, starting from the introduction of the tracer, respectively necessary
for the passage of 10% and 90% of the mass of the tracer injected through the monitoring section.
The dispersion index is instead defined as:

σ2 =
σ2

t

t2
g

(12)

with

σ2
t = τ2

·

∫
∞

0 θ2E(θ)dθ∫
∞

0 E(θ)dθ
(13)

and

tg = τ·

∫
∞

0 θE(θ)dθ∫
∞

0 E(θ)dθ
(14)

where σt
2 is the variance of the RTD curve and tg is the normalized time to reach the centroid of the

effluent curve [32].
From the analysis of the HEI values determined by the CRTD curves and reported in Table 3,

was obtained that Design 12 shows the highest performance in terms of the baffling factor (t10/τ = 0.509),
while Design D14 allows the highest mixing efficiency (Mo = 4.127 and σ2 = 1.268). Figure 6 compares
the CRTD curve of conventional solid baffles design with the CRTD obtained for D12 and D14
perforated designs and shows that the differences between the two perforated baffles designs are so
small that the two curves almost perfectly overlap.

Table 3. Hydraulic efficiency indicators for conventional and perforated baffle designs.

Design t10/τ t90/τ Mo σ2

Conventional 0.347 2.000 5.758 0.105
D2 0.409 2.052 5.022 1.313
D4 0.459 2.275 4.960 1.308
D6 0.472 2.152 4.560 1.300
D8 0.481 2.116 4.396 1.285
D10 0.491 2.098 4.273 1.279
D12 0.509 2.116 4.161 1.272
D14 0.499 2.061 4.127 1.268
D16 0.481 2.070 4.302 1.280
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Figure 7 shows the variation of the baffling factor t10/τ value with the perforation percentage.
For low perforation values, corresponding to very small holes sizes, the baffling condition is very
similar to that of the conventional solid baffles design. As the perforation percentage increases,
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the mixing efficiency increases, reaching the maximum value for D12 design that corresponds to
an average baffling condition. By further increasing the perforation, there is a reduction in reactor
performance because high quantities of tracer pass through the larger holes, causing short-circuit
effects that lower the HRT.
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Finally, Figure 8 shows the normalized vertical velocity profiles for conventional and D12 designs
predicted at three different vertical locations of a chamber. At all three depths investigated in the
conventional model, the y-velocity value varies from negative to positive along the chamber width,
in accordance with the presence of recirculation or dead zones occupying a large part of the chamber.
In the D12 design, on the other hand, the jet coming out of the holes reduces the direction change of
the y-velocity vector at all the depths investigated and the velocity profiles show a trend towards that
of an ideal plug-flow reactor (PFR).
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4. Conclusions

The efficiency and energy consumption of water disinfection treatment strongly depends on
the tank hydrodynamics. In this study, numerical simulations are presented for the flow and tracer
transport inside disinfection tanks with different geometric characteristics compared to traditional
designs. In particular, the increase in hydraulic efficiency of the multichamber reactor due to the
creation of square holes on the vertical partitions has been evaluated. A number of geometric
configurations characterized by different hole sizes and different perforation percentages have been
analyzed. All simulations show that the holes allow an increase in the mixing efficiency of the tank
as the flow coming out of the holes impacts the recirculation areas downstream of the deflectors,
transforming them into active mixing zones. A careful preliminary study in the design phase can
therefore lead to an optimization of the reactor’s hydraulic and sanitary efficiency with a consequent
reduction in the consumption of chemical disinfectants and economic savings in terms of energy
required to guide the flow inside the reactor. It is important to emphasize that it is possible to
obtain satisfactory increases in hydraulic and sanitary performances even with not excessive baffles
perforation percentages. This is an advantage of the proposed geometry because the square shape of
the holes and the low perforation percentage makes it easier to realize this perforated geometry in real
tanks of new construction or for the improvement of existing disinfection tanks.

By varying the holes size, it is possible to increase the baffling factor approaching the optimal
value t10/τ = 1 characteristic of the ideal plug-flow condition. The D12 design allowed to pass from a
“poor” to an “average” hydraulic condition thus defined according the baffling factor. The perforated
baffles configuration also allows increasing the overall efficiency of the contact system by enhancing
the mixing effects. In fact, the Morril index passes from values close to six, obtained for the traditional
configuration, to values just over four approaching the ideal condition (Mo = 2). By increasing the size
of the holes beyond a certain value, there is instead a reduction in the baffling factor since too large
holes cause the passage through the entire reactor of a significant portion of tracer in a shorter time
than the theoretical hydraulic residence time. The large holes, therefore, do not reduce the detrimental
short-circuit effects while allowing an increase in mixing in the tank. It is, therefore, necessary to carry
out a preliminary study in order to identify the optimal configuration that allows transforming the
dead zones into areas of active mixing while avoiding the short circuit in the tank.
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