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Abstract: In Nordic watersheds, estimation of the dynamics of snow water equivalent (SWE)
represents a major step toward a satisfactory modeling of the annual hydrograph. For a multilayer,
physically-based snow model like MASIiN (Modele Autonome de Simulation de la Neige), the
number of modeled snow layers can affect the accuracy of the simulated SWE. The objective of this
study was to identify the maximum number of snow layers (MNSL) that would define the trade-off
between snowpack stratification and SWE modeling accuracy. Results indicated that decreasing the
MNSL reduced the SWE modeling accuracy since the thermal energy balance and the mass balance
were less accurately resolved by the model. Nevertheless, from a performance standpoint, SWE
modeling can be accurate enough with a MNSL of two (2), with a substantial performance drop for
a MNSL value of around nine (9). Additionally, the linear correlation between the values of the
calibrated parameters and the MNSL indicated that reducing the latter in MASiN increased the fresh
snow density and the settlement coefficient, while the maximum radiation coefficient decreased. In
this case, MASIN favored the melting process, and thus the homogenization of snow layers occurred
from the top layers of the snowpack in the modeling algorithm.

Keywords: snow modeling; multilayer snow model; MASiN

1. Introduction

In northern watersheds, snowfall constitutes a significant proportion of the total precipitation
[1,2]. When rainfall happens at a low rate, water infiltrates until the soil becomes saturated, at which
point surface runoff occurs. In contrast, when snowfall takes place, water is stored on the ground
surface in solid form, modifying the soil water dynamic throughout the watershed [3]. The snowpack
starts melting as it absorbs the amount of energy required for phase change to occur. Although this
process can happen partially during winter, the atmospheric warming during spring will gradually
melt the entire snowpack. Thus, accumulation and gradual snowmelt processes temporally alter a
significant proportion of the total precipitation to flow toward the river network or recharge the
groundwater [4-6].

Various snow modeling approaches exist. Some models such as CROCUS [7,8] emphasize the
internal properties of the snow cover (e.g., snowpack stratigraphy), which can provide helpful
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information with respect to snowpack stability. This information becomes valuable, for instance, to
predict snow avalanches in mountainous regions. Other types of snow models solely focus on snow
water equivalent (SWE) in order to determine the timing and amount of melt. Snow models can be
classified into two main categories: models that represent snow cover conceptually and those where
snow cover is represented physically. Conceptual models include those where snow melt is
simulated based on a degree-day equation such as CEMANEIGE [9] or the model developed by
Kokkonen et al. [10]. A degree-day equation is an equation that expresses the amount of melt as the
product of a melting rate per temperature unit and the difference between the daily air temperature
and a temperature threshold triggering the melt. Physically-based snow models, on the other hand,
attempt to quantify the interaction between the atmospheric states and snow cover. This is done
through the application of empirical and theoretical (i.e., physical) laws. SNOBAL [11], SNOWPACK
[12], and DSM (Distributed Snow Model) [13] are a few examples of such models. Other snow models
including the snow module of HYDROTEL, a semi-distributed hydrological model [14] or SNOW-17
[15] attempt to hybridize the degree-day equations with the energy balance. In addition, each snow
model category can stratify the snowpack into a certain number of snow layers, which are considered
as conceptual or actual. The snow module used in HYDROTEL, SNOW-17, and CEMANEIGE are
examples of monolayer models. SNOBAL treats the snowpack as a bi-layer system, while DSM does
so through a three-layer system. Meanwhile, SNOWPACK treats snow cover as a multilayer system.

As mentioned previously, several physically-based models use multiple layers to simulate
snowpack dynamics for either fundamental reasons or for numerical reasons. However, it is
noteworthy that stratification directly affects the energy and mass balances of the snowpack. The
modeled stratification modifies the distribution of water masses in the snowpack through the
development of large or small snow layers. However, when the vertical profile of snow density is not
well simulated, it causes a bias in the thermal properties of the snowpack given the non-linear
relationships among them [16]. Above all, accurate modeling of the thermal properties of the
snowpack (e.g., thermal conductivity) is crucial for modeling a groundwater budget [17]. For all these
reasons, physically-based models account for snowpack stratification to accurately model the
snowmelt period and ensuing intensity.

Sensitivity analyses of snow models can shed some light on both the most influential parameters
and the prominent phenomena with the most significant impacts on the output variables. Indeed,
Essery et al. [18] studied 1701 snow model combinations and showed that accounting for snow
density change and albedo change as well as storage and refreezing of liquid water improved the
modeling results, although the model complexity did not necessarily guarantee good performance.
When it comes to SWE modeling, Magnusson et al. [19] confirmed that there was no relationship
between the model complexity and model performance. Moreover, they found that physically-based
models were barely better than temperature-index models. He et al. [20] performed a sensitivity
analysis of the SNOW-17 model parameters and showed that the snow correction factor, the
maximum melt factor, and the threshold temperature discriminating rainfall from snowfall were the
most influential parameters. Houle et al. [21] compared the parameter sensitivities of the SNOW-17
model and the snow module (a bilayer physically-based snow model) of the variation infiltration
capacity (VIC) model. While neither model outperformed the other, they concluded that the two most
sensitive parameters of the VIC snow model were the albedos of the accumulation and thaw periods.
For the multilayer physically-based snow model GEOtop 2.0, Engel et al. [22] determined that the
snow correction factor, the snow aging coefficient, and the extinction of snow albedo during the
melting period were the most influential parameters. Globally, the most significant parameters are
linked to the determination of the snow input, the albedo estimation, and the melt period. Meanwhile,
Arduini et al. [23] showed that the multilayer, physically-based, snow model of the ECMWEF
integrated forecasting system was an improvement over its antecedent single-layer version.

Snow modeling provides information about the snow cover properties such as snowpack height
or its water content. A snow model that simulates the melting process can be paired with a
hydrological model for streamflow modeling. To this end, we paired the aforementioned distributed
hydrological model, HYDROTEL, with MASiN (Modele Autonome de Simulation de la Neige) [24], which
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is a physically-based multilayer model. MASIiN performs the modeling procedure by taking into
account a unique set of valid parameters at nearby snow sites. This is an advantage when it comes to
pairing MASiN with a hydrological model for flow modeling, particularly when the hydrological
model is semi-distributed or distributed because it is necessary to model the snow melt dynamics in
different parts of a watershed.

Before pairing MASiN with any hydrological model such as HYDROTEL [25,26] for pragmatic
reasons, it is noteworthy to account for the computational budget of model calibration and the
operational application for inflow forecasting. Both procedures are indeed directly affected by the
value of the maximum number of snow layers (MNSL). In MASiN, the MNSL value can be specified
by the user. Mas et al. [24] considered a MNSL value of 70 to discretize the mass-energy transfer
between snow layers. In HYDROTEL, the watershed is discretized into hillslopes referred to as
relatively homogeneous hydrological units (RHHUSs). Similarly, HYDROTEL discretizes the river
network into different reaches that are fed by two or three RHHUS, the latter in the case of headwater
reach (i.e., stream order 1 in a Strahler reference system). The number of RHHUs is not bounded,
thus, from a computational standpoint, this would majorly impact the computational budget of
MAGSIN for snowmelt simulation given the MNSL to simulate per RHHU.

Since MASIN is a physically-based snow model, the MNSL value can be analogous to the number
of snow layers observed in nature. For example, in Antarctica, Arndt et al. [27] estimated the variability
of snow cover properties at various sites. They observed that the plurennial snow cover had eight layers,
while the seasonal snow cover had four layers. In Italy, Monti et al. [28] observed between seven and
20 layers at different times based on snow grain type, size, hardness, and density. Brun et al. [8] studied
the operational forecasting of avalanches by simulating snow cover stratification and observed up to 13
layers with different types of snow grains in the French Alps. Finally, Armstrong [29] studied the
compressive stress in the snow cover between neighboring layers and observed six different layers in
Colorado, USA. Thus, in this study, in order to consider a coherent maximum number of layers to
simulate, the MNSL in MASIiN was set between one and 20 in comparison with the full-extent
configuration of the original model, that is, a maximum of 70 snow layers.

Identifying the MNSL value is identical to modifying the total number of interactions in the
model by reducing the number of computations of the energy and mass balances. In order to have an
acceptable computational budget and to contribute to the development of this snow model, the
flexibility, provided by this parameter, was investigated. This was done by evaluating the influence
of the MNSL on model performance for snowmelt (expressed in snow water equivalent; SWE)
modeling. When reducing the MNSL, bearing in mind a reasonable computational budget while
maintaining a decent level of estimation accuracy, we assumed that this knowledge might prove to
be helpful when pairing MASIN with any other distributed or semi-distributed hydrological model.
To this end, parameter sets of MASiIN were calibrated using the dynamically dimensioned search
(DDS) optimization algorithm [30] at various snow stations by setting the MNSL value. It is also
possible to compare the performance of MASiN, depending on the choice of the MNSL value, to
simulate and compare its impact on the calibrated value of each parameter. Furthermore, modifying
the MNSL value changes the number of interactions between snow layers, which in turn may impact
on the value of another calibration parameter in the model. Hence, this study also investigated the
extent to which other parameters were influenced when modifying the MNSL for SWE simulation.
Based on this analysis, the user could thus adjust the MNSL value when it is required to amplify or
reduce any modeled physical processes to improve SWE modeling performance. Moreover, while
most modeling studies have generally focused on snowpack stratification from a snow properties
point of view such as thermal conductivity or snow density (for instance, [17]) or on snow
characteristics for preventing avalanche hazard (for instance, [31]), our study focused on snowpack
stratification from a hydrological modeling point of view, and to our knowledge, this represents an
original contribution.



Water 2020, 12, 3449 4 of 20
2. Materials and Methods

2.1. Study Watersheds

Two watersheds were considered to test the model in different regions with diverse physical
and regional characteristics. The locations of the watersheds within Canada are shown in Figure 1.
Necopastic is a sub-watershed of the James Bay watershed with an area of 244 km?. The watershed is
covered by coniferous forest (55%), bogs (35%), and outcrops and open water (10%). Data from the
meteorological station located at the La Grande Riviere airport indicate that the average annual
precipitation is 697 mm, 35% of which falls in the form of snow (true for 1981-2010 data from
Environment and Climate Change Canada [32]). During this period, the average annual temperature
over the watershed is —2.9 °C, and minimum and maximum average monthly temperatures are —28
°CinJanuary and 20.4 °C in July, respectively. The Upper Yukon, on the other hand, has an area close
to 20,000 km?, covered by coniferous forests (41.1%), bare ground/grass/shrub (42.4%), and ice and
open water (16.4%). Data from the meteorological station located at the Whitehorse airport indicate
that the average annual precipitation is 262 mm, 39% of which falls in the form of snowfall (true for
1981-2010 data from Environment and Climate Change Canada [33]. During this period, the average
annual temperature over the watershed is —0.1 °C, and the minimum and maximum average monthly
temperatures are —19.2 °C in January and 20.6 °C in July, respectively.

Necopastic

Meteo Neco
GMON Neco

Upper Yukon

o Teteo LF
& _CVNION.LF

TO°N
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60N

DEM 50°N
Value
High : 2460
] 0 100 km
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Figure 1. Location of the Upper Yukon (left) and Necopastic watersheds (upper right) in Canada as
well as the location of the meteorological and snow stations in each watershed. LF stands for Lower
Fantail, LL for Lower Llewellyn, W for Wheaton, and Neco for Necopastic.
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2.2. Meteorological Data

Input data including hourly air temperature, relative humidity, wind speed, and daily
precipitation provided by the meteorological stations located near the snow stations are provided in
Table 1 (see Figure 1 for the station locations).

Ground precipitation measurements were intermittent during the observation period in the
Upper Yukon, and, therefore, the precipitation time series had to be reconstructed for each snow
station. For this, daily increases in observed SWE time series were considered as an input to the
snowpack modeling. The source of these observed water inputs was assumed to be solely provided
by the precipitation caused because of a lack of data about wind-induced snow drifting, and
therefore, daily increase in the observed SWE time series were obtained from daily precipitation
amounts of equal water depth.

Table 1. Meteorological stations at each study basin used in this study. Data for the Necopastic
watershed came from Oreiller et al. [34] and data for the Upper Yukon watershed came from Yukon
Energy.

Station Temporal Temporal Station
Code Period Resolution Type
Necopastic Meteo_Neco 2006-2011 Daily & hourly  Auto Necopastic
Lower Fantail Meteo_LF ~ 2014-2017 Daily & hourly ~ Auto  Upper Yukon
Lower Llewellyn =~ Meteo_LL ~ 2014-2017 Daily & hourly = Auto  Upper Yukon
Wheaton Meteo_ W 2014-2017 Daily & hourly ~ Auto  Upper Yukon

Station Name Basin

2.3. Snow Data

Outputs from MASIN were compared to the observed SWE time series from snow stations, also
called GMON (Gamma MONitor) stations. A GMON station is an automatic equipment developed
by Choquette et al. [35] that continuously measures the snow cover (in mm of SWE) by estimating
the natural ground gamma emission absorbed by the water content of the snow cover. As this study
was based on the potential pairing of MASIN with HYDROTEL, the modeling performance was
estimated using daily GMON time series for the different stations presented in Table 2 and shown in
Figure 1. It is noteworthy that all available data were used for the calibration as suggested by
Arsenault et al. [36]. The sensor at Necopastic is a GMONB3 sensor, which is the same as the GMON
instrument used by Choquette et al. [35], who estimated the measurement uncertainty to be in the
order of 5-10% (for a SWE of less than 400 mm). In the Upper Yukon, a Campbell Scientific C5275
sensor was used at each station, with an uncertainty estimated to be in the order of 15 mm (when
the measured SWE is less than 300 mm), and +15% otherwise.

Table 2. Metadata for the snow stations at each study watershed used in this study. Data for the
Necopastic watershed came from Oreiller et al. [34] and those for the Upper Yukon were from Yukon
Energy.

Temporal Temporal Station

Station Name  Station Code Period Resolution  Type Watershed

Necopastic GMON Neco 2006-2011 6h Auto Necopastic
Lower Fantail GMON LF  2014-2017 6h Auto  Upper Yukon
Lower Llewellyn  GMONLL  2014-2017 6h Auto  Upper Yukon
Wheaton GMONW  2014-2017 6h Auto  Upper Yukon

2.4. Model Description: MASIN Snow Model

MASIN (Modele Autonome de Simulation de la Neige) is a physically-based, multi-layer, snow
model where the mass and energy balance for different snow layers are calculated while accounting
for a maximum number of snow layers (MNSL) with a minimum snow layer depth of 1 cm (to
conserve the stability of the iterative scheme). The MNSL value was set to 70 in the original version
of the model in order to reduce the computational budget while conserving a certain inertia for
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energy and mass transfers in the snowpack. The energy balance takes into account the shortwave
radiation according to the potential solar radiation theory of Lee [37] and is computed by considering
the effect of cloud cover and vegetation as well as partitioning of the solar radiation into diffusive
and direct shortwave radiations. The partitioning is done to model as accurately as possible the
albedo and radiation absorption by the snowpack. The model also considers longwave radiation,
sensible and latent turbulent heat fluxes, liquid water infiltration heat flux, and conduction flux. Table
3 summarizes the main physical processes simulated by MASiN as well as the related sub-processes
and associated model parameters.

Table 3. Physical processes simulated by MASIN and associated model parameters (N/A, stands for
not applicable).

Main Processes Sub Processes MASIN Parameters
Extraterrestrial irradiation N/A-

Kswmin (Minimum radiation coefficient)
kswmax (Maximum radiation coefficient)
LAlL,;, (Minimum Leaf Area Index)
LAl ,x (Maximum Leaf Area Index)

Effect of cloud and vegetation

Shortwave
L. Kgirmin (Minimum ratio of direct shortwave radiation to total
radiation . . . ’ L
Separation of direct and diffuse shortwave radiation)
radiations kgirmax (Maximum ratio of direct shortwave radiation to total

shortwave radiation)

Agirmin (Minimum albedo for direct radiation)
Qgiffmin (Minimum albedo for diffuse radiation)
Bair (Absorption coefficient for direct radiation)
Bair (Absorption coefficient for diffuse radiation)
Longwave radiation N/A-
ker (Reduction coefficient of the turbulent transfer)

Zy (Snow cover surface roughness)

Net shortwave radiation

Shortwave radiation

Energy balances Turbulent heat fluxes

Liquid water input N/A-

Conduction fluxes Qground—pack_(Ground heat flux)

Liquid water content update kiwnce (Maximum retention capacity of the snow layer)
Pns (Fresh snow minimum density)
Mass balances New snow layer T,,. (Atmospheric temperature threshold associated to the fresh
snow minimum density)
Snowmelt N/A-
Psmetamax (SNow layer density triggering the metamorphism
Settling Settling phenomenon of the snow layer)

K, (Settlement coefficient)

Layer

Layer management N/A-
management

Due to the non-linearity of energy transfer between the snow layers, the internal computational
time step was set to 30 s. While precipitation forcing is available at daily time steps, MASIiN can only
receive total precipitation values, or precipitation input partitioned into liquid and solid components.
The case of the latter component, the model discretizes daily precipitation data into hourly time steps.
For known rainfall and snowfall time series, rainfall data are discretized equally into 24 time steps,
whereas snowfall amounts are discretized to as many hours as required while maintaining the
minimum snow layer height (1 cm). If total daily precipitation data are only available, snowfall is
assumed to occur when the hourly temperature is below 1 °C. To meet the minimum snow layer
height requirement, snow can be redistributed into hourly time steps with temperature values below
1 °C. The temporal resolutions of the different input/output data are provided in Table 4.
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Table 4. Temporal resolution of the input/output data.

Data Type Parameter Units Temporal Resolution
Precipitation mm Daily/Hourly
Air Temperature °C Hourly
Input . o
Relative Humidity Hourly
Wind Speed m.s’! Hourly
Snow Layer Depth mm Hourly
Snow Layer SWE mm Hourly
Output Snow Layer Temper.ature °C ) Hourly
Snow Layer Density kg.m Hourly
Water Outflow mm Hourly
Evapotranspiration mm Hourly

2.5. Methodology

2.5.1. Sensitivity Analysis: Impact of the Number of Snow Layers

As previously mentioned, the objective of this study was to analyze the impact of the MNSL on
snowpack (expressed in mm of SWE) modeling. The study was performed in two stages, as presented
in Figure 2.

Set MNSL H Calibrate MASIN H Extractihe 1op 1003t HUS& all 21 MNSL values?
parameter sets

Stage 1
Compare SWE modelling
performance

Analyse correlation
between calibrated
Stage 2 parameters and MNSL

Figure 2. General methodology (MNSL for maximum number of snow layer; SWE for snow water
equivalent).

In the first stage, MASiN was calibrated by specifying the MNSL. For each GMON station, a
total of 21 calibrations were undertaken in order to simulate one to 20 MNSLs. The results were then
compared against the full-extent configuration of MASIN (with a MNSL of 70). The rationale for this
simulation was to reveal the existence of a threshold for the MNSL value, at which the modeling
performance would not drop. This threshold was assumed to provide a limit for reducing the amount
of interaction between the snow layers while avoiding any drop in SWE modeling performance. For
this, the equifinality was studied to test the reliability of MASIiN after decreasing the MNSL. This was
achieved by selecting the top 10 best performances for each calibration of MASIN, at each GMON
station, for all MNSL values.

In the second stage, the impact of the MNSL value on the MASiN’s parameter set was analyzed
based on the equifinality results obtained in the first stage. The equifinality analysis provides a range
of values for different calibrated parameters for each value of the MNSL. Thus, the Pearson
correlation coefficient between the 10 best calibrated parameters against the MNSL was calculated to
estimate the possibility of a linear correlation between them. Here, the null hypothesis was defined
as “there exists no correlation between each model parameter and the MNSL”. When linear
correlation exists, it would be possible to determine a more accurate range of variation for any future
calibration where the MNSL value is modified.

2.5.2. Calibration

Table 5 presents the model parameters along with their upper and lower bounds and further
highlights those that were kept for calibration as suggested in the literature [24].
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Table 5. MASIiN (Modéle Autonome de Simulation de la Neige) parameters and those calibrated
(shaded entries) as suggested by the model developers. The upper and lower bounds of each
parameter are provided in the last two columns.

Lower Upper

P t Descripti Unit
arameter escription nits Bound Bound

Snow layer density triggering the metamorphism phenomenon kg™ 150 350

Psmetamax of the snow layer

Pns Fresh snow minimum density kg.m 3 200
Atmospheric temperature threshold associated to the fresh snow

Tous minimum density ¢ 20 0
kywhc Maximum retention capacity of the snow layer % 0 20
Kq4 Settlement coefficient ht 0 0.05
Qground—pack Ground heat flux w.m2 0 20
Zy Snow cover surface roughness m 0 0.01
Keur Reduction coefficient of the turbulent trade 0 10
Kswmin Minimum radiation coefficient 0 1
Kswmax Maximum radiation coefficient 0 1
Qdirmin Minimum albedo for direct radiation 0.35 0.35
Qdiff min Minimum albedo for diffuse radiation 0.45 0.45
Bair Absorption coefficient for direct radiation cm! 0.4 04
Bais Absorption coefficient for diffuse radiation cm! 4 4
P Minimum ratio of direct shortv?rax‘le radiation to total shortwave 035 035

’ radiation

Maximum ratio of direct shortwave radiation to total shortwave

K girmax L 0.85 0.85

' radiation
LAILyin Minimum Leaf Area Index M2leaf. M 2area 0 0
LAIax Maximum Leaf Area Index MZleaf. M Zarea 0 0

To pair MASIN with HYDROTEL, daily total precipitation (Pt) values were partitioned into
rainfall (R) and snowfall (S) using the following algorithm available in HYDROTEL, which is based
on a temperature threshold (Ttures), the minimum (Tmin), and maximum daily temperatures (Tmax):

( R = Pt, S=0, if Thin > Tihres
4 R =0, S = Pt, if Tmax < Tthres

Tonax — T, Tunres — T ’ @
kR =Pt [M] S=Prt [M , otherwise

Tmax - Tmin Tmax - Tmin

It is noteworthy that the temperature threshold (Tires) was calibrated while testing the
performance of MASiN. As mentioned previously, in order to calibrate the MASiN parameters for a
given MNSL, the dynamically dimensioned search (DDS) optimization algorithm was used. DDS can
provide a set of calibrated parameter values, which is required to investigate the effect of equifinality.
Based on the guidelines suggested by Tolson et al. [30], for each GMON station and each value of the
MNSL, the calibration was grouped into 33 trials of 100 iterations and executed using a MATLAB
DDS routine. Kling-Gupta efficiency (KGE) [38], given as follows, was then used as the objective
function to quantify the goodness-of-fit between the measured and simulated SWEs:

KGE =1— [(1 - ”S/Mo)z +(1- "S/UO)Z+(1 - r)z]l/2 2)

where pg and p, are the average values of the simulated (subscript s) and observed (subscript o)
time series, respectively; o5 and o, are the standard deviations of the simulated and observed time
series, respectively; and r is the Pearson correlation coefficient. Larger is the KGE value was larger,
more accurate is the simulated series when compared to the observed series. At the end of each
calibration, the top 10 best sets of parameter values were retained based on the final KGE value for
each GMON station and the given MNSL value.
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3. Results

In this section, the results of the study are presented in two separate subsections. Section 3.1
provides a comparison of the simulated SWE values as a function of MNSL. These results reveal
whether any MNSL threshold value exists at which model performance could be maintained.
Therefore, when comparing the results, the two major criteria of importance considered were SWE
modeling accuracy and the required number of snow layers to simulate. The results are displayed
using boxplots, where the MNSL values are shown on the abscissa, and the modeling performances
are displayed on the ordinate. As the calibrated parameters directly affect different physical
processes, studying their correlations with the MNSL values can provide valuable insights on how
MASIN operates under different parameterizations. Thus, Section 3.2 investigates the correlations
between the calibrated parameter values and MNSL values in order to identify how the latter can
affect the individual physical processes modeled by MASiN when the MNSL decreases. This could
ultimately provide information on how MASIN resolves the physical processes when the number of
modeled snow layers varies.

3.1. Snow-Water Equivalent (SWE) Modeling

The top 10 best performances were compared against the MNSL values (see Figure 3). For each
GMON station and all the simulation years pooled together, calibrations with a MNSL value of 1
provided a negative KGE value, and therefore are not shown in here.

1.0 1.0
=
0,9% i Q$H¢$$ Q i 0.91
N ﬁﬂ‘?g@ o
9] ]
4 ¥4
0.8 0,8-il 1 i !J_
P BRRE T EH L L Smgls
0.7 07
2 3456 7 8 9 10111213 14 15 16 17 18 19 20 70 2 34 56 7 8 9 10111213 14 15 16 17 18 19 20 70
MNSL MNSL
(a) (b)
1.0
1.01
(]
1] 1 A e
el LeBTElTERETe IRNEPE L
0.9 i?""él & T QQET:? ‘
’ EE w BLTH
: g
¥4
0.8
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0.7
0.7] 2 34 56 7 8 9 101112 13 14 15 16 17 18 19 20 70
2 3456 7 8 9 10111213 14 15 16 17 18 19 20 70 MNSL
MNSL
(c) (d)

Figure 3. Modeling performance in terms of Kling-Gupta efficiency (KGE) values for different
maximum number of snow layer (MNSL) values for each snow station: (a) Lower Fantail, (b) Lower
Llewellin, (c) Wheaton, and (d) Necopastic.

Figure 3 indicates that, in general, it can be concluded that the MNSL value does not drastically
influence the performance of the model, that is, all stations had KGE values of at least greater than
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0.7 (Lower Llewellin), while the other three had values greater than 0.84 (Lower Fantail, Wheaton,
and Necopastic), except when the model was run with a MNSL value of one. The best SWE modeling
performance for all MNSL values was consistently in the ballpark of a KGE value of 0.88 for the
Lower Fantail station, 0.75 for Lower Llewellyn, 0.90 for Wheaton, and 0.88 for Necopastic. This
indicates that the modeling performance can be maintained at all stations for a lower MNSL value
than the one originally considered in the fully-configured model.

The behavior of the model with respect to each station can also be examined. For Lower Fantail
(Figure 3a), the full model configuration (i.e., with MNSL of 70) provided a median KGE value of
0.97. When reducing the MNSL value to 20 and down to nine, the modeling performance dropped
only marginally from a median value of 0.92 to a median value of 0.89. When the MNSL was less than
nine, the median KGE value varied between 0.87 and 0.89. Since all median KGE values were larger
than 0.87, the best compromise to reduce the maximum number of simulated layers from a KGE value
standpoint can be set to a value between two and nine for the GMON station at Lower Fantail. For
the Lower Llewellyn station (Figure 3b), all median KGE values for any MNSL value including the
fully-configured model (i.e., with 70 snow layers) were all in the range of 0.72 to 0.78. Therefore, it
can be argued that from a KGE value point of view, a MNSL value of two can maintain the modeling
performance at the same level for the full configuration of MASIN. For the Wheaton GMON station
(Figure 3c), an almost similar profile to that of Lower Fantail was observed. The fully-configured
model, however, provided a slightly higher median KGE of 0.97. The median KGE performances
were achieved (0.92 to 0.96) for a range of nine to 20 layers. Below the MNSL value of nine, the median
performance dropped to around 0.90 (MNSL values of five to seven), and then stabilized around 0.93
for the MNSL values of two to four. Therefore, any MNSL value between two and 20 can be
considered to provide an acceptable modeling outcome. As shown in Figure 3d, for Necopastic, the
fully-configured model was slightly outperformed by the model configuration with MNSL values
between 15 and 20. Below this range of MNSL values, the modeling performance decreased slightly
to reach a median performance of around 0.85 for a MNSL value of three. Similarly, for the Wheaton
station, any MNSL value could be considered for a slight reduction in the modeling performance.

For the Lower Llewellyn, the relationship between KGE values and MNSL was quite different
than those depicted at the other sites and counter intuitive from that viewpoint. In other words, while
the relationships for the other sites could be characterized by a nearly parabolic shape, for Lower
Llewellyn, it was almost linear with a negative slope. This suggests that there might be something
not properly resolved with the GMON values.

To illustrate the uncertainties associated with each MNSL value, Figures 4-7 (for each GMON
station, respectively) provide the simulated SWE time series for the top 10 calibrated parameter sets
for MNSL values of 1, 2, 9, and 70 for a winter where the fully-configured MASiN performed well
(i.e., 2016/2017 for the Upper Yukon stations, and 2009/2010 for Necopastic). While the model
performances presented in Figure 3 were calculated using the whole calibration period of each
GMON station, the KGE values provided in the captions of the aforementioned figures were solely
calculated for the displayed winters. Thus, low KGE values, obtained for some parameter sets, can
be explained by the compensation of the modeling for the other winters. Moreover, the negative KGE
values for a MNSL of one can be explained by the underestimation of the modeled SWEs. In general,
the larger the MNSL value, the better the simulation. This means that for the fully-configured model,
the uncertainty is reduced, which is synonymous to an increasingly narrow equifinality. The timing
of the dominant melting period was also improved, which was the best for the full model
configuration (MNSL of 70).

As suggested earlier, the behavior of MASIN for the different configurations suggests that the
observed SWEs at Lower Llewellyn might not be reliable, and overall not accurate enough to be
considered for this study. However, they were kept here to demonstrate that a physically-based
model can be quite useful to detect instrumentational errors or to infer other external factors that may
corrupt observations.
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Figure 4. Snow-water equivalent (SWE) modeling uncertainties provided by the top 10 best calibrated

parameter sets for the Lower Fantail snow station during winter 2016/2017 with the maximum
number of snow layer (MNSL) values of: (a) 1 ([-0.25; -0.22]), (b) 2 ([0.35; 0.89]), (c) 9 ([0.76; 0.88]), and
(d) 70 ([0.79; 0.97]). The range of the Kling-Gupta efficiency values is provided between brackets.
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parameter sets for the Lower Llewellyn snow station during the calibration period with a maximum
number of snow layer (MNSL) value of: (a) 1 ([-0.43; -0.38]), (b) 2 ([0.34; 0.73]), (c) 9 ([0.50; 0.74]), and
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Figure 6. Snow-water equivalent (SWE) modeling uncertainties provided by the top 10 best calibrated
parameter sets for the Wheaton snow station during the calibration period with a maximum number
of snow layer (MNSL) value of: (a) 1 ([-0.28; -0.25]), (b) 2 ([0.82; 0.94]), (c) 9 ([0.84; 0.92]), and (d) 70
([0.80; 0.99]). The range of Kling-Gupta efficiency values is provided between brackets.
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Figure 7. Snow-water equivalent (SWE) modeling uncertainties provided by the top 10 best calibrated
parameter sets for the Necopastic snow station during the calibration period with a maximum
number of snow layer (MNSL) value of: (a) 1 ([-0.34; -0.19]), (b) 2 ([0.64; 0.87]), (c) 9 ([0.83; 0.98]), and

(d) 70 ([-0.12; 0.98]). The range of Kling-Gupta efficiency values is provided between brackets.

Figure 8 shows, for each GMON station, the relative difference between the observed and
simulated maximum SWE values for the top 10 best calibrated parameter sets for the calibration
period for MNSL values of two, nine, and 70. Calibrations with MNSL values of nine (for Lower
Fantail, Lower Llewellyn, and Necopastic) and two (for Lower Llewellyn) provided more accurate
simulations of the maximum SWE. Thus, since the maximum SWE value reached over winter should
lead to a more accurate annual hydrograph, these MNSL values can be referred to as thresholds. For
the aforementioned GMON stations, and thus, the threshold values of the MNSL, the median values
of the relative differences between the observed and simulated maximum SWE values were —4% at
Lower Fantail, —13% at Lower Llewellyn, 2% at Wheaton, and 6% at Necopastic.
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Figure 8. Relative differences between the observed and simulated maximum snow-water equivalent
(SWE) values for the top 10 best calibrated parameter sets during the calibration period for maximum
number of snow layer (MNSL) values of 70, 9, and 2, for (a) Lower Fantail, (b) Lower Llewellyn, (c)
Wheaton, and (d) Necopastic.

Based on the above analysis for the GMON stations, a trade-off between the MNSL value and
the SWE modeling accuracy could be obtained. In most cases, the fully-configured model with a
MNSL value of 70 provided the best overall modeling performance as it could accurately outline the
energy profile and mass transfer between the snow layers in the snowpack. Nevertheless, reducing
the number of snow layers can still preserve a satisfactory level of SWE modeling performance in
terms of the KGE. Depending on the required SWE modeling accuracy, any MNSL more than one
can be considered as appropriate, even if a slight drop in performance can be observed at some
GMON stations when the MNSL value is reduced below a certain threshold (e.g., MNSL of 9).
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3.2. Influence of the Maximum Number of Snow Layer on the Calibrated Parameters

For each GMON station, the top 10 best performances provided a range of calibrated parameter
values for each MNSL investigated. These sets of calibration parameter values were compared
against the MNSL values in order to verify how they could influence the calibrated parameter values
(refer to the Supplementary Document provided in the online version of this article). Thus, Pearson
correlation coefficients between each calibrated parameter against the MNSL value were calculated
and are shown in Table 6, along with the associated p-values. The p-values were compared against
the significance level of 0.05.

Globally, either the null hypothesis is not rejected for the correlations (shown as the shaded cases
in Table 6), and so the linear correlation is not statistically different than zero, or the correlations are
too low for describing a linear relationship between the parameters and the given MNSL.
Consequently, the following discussion deliberated on the absolute correlations between the
calibrated parameters and the MNSL values for correlations greater than 0.3.

The fresh snow minimum density (p,s) showed a negative correlation for each GMON station
when including all the stations in the linear regression. These correlations ranged from weak (Lower
Llewellyn station) to moderate (Lower Fantail station), which indicates that the more snow layers are
considered in MASIN, the less dense the fresh snow would be. This correlation is explained by the
criteria for merging snow layers, which is based on the height of the layers [24]. As this criterion is
met earlier in each winter for the smallest values of MNSL, MASIN considers that the height of the
fresh snow layer is lower than the height of the fresh snow layer for the same meteorological
conditions given the highest value of MNSL. Consequently, for the smallest values of MNSL, the
fresh snow layer has a greater probability of being homogenized into older snow layers than staying
distinct from the bottom layers.

For the settlement coefficient (Ky), there was a moderate positive correlation observed at
Wheaton GMON station (R > 0.5). This positive correlation was also observed at Lower Fantail and
Necopastic when including all the stations, but was weak (R >0.2) at each of these stations. For Lower
Llewellyn, the null hypothesis was not rejected. In MASIN, when the settlement coefficient increases,
the height of the snow layer decreases. Thus, a positive correlation means that the compaction of the
snow layers for the smallest values of MNSL is weaker than for the largest values of MNSL. So, by
considering that the merging of the snow layer occurs earlier in each winter for the smallest values
of MNSL, this compaction favors the homogenization of the snowpack from the top snow layers.

Table 6. Correlations of the top 10 best calibrated parameter sets (see Table 5 for the nomenclature)
against the maximum number of snow layer (MNSL)value for each snow station when including all
the snow stations (Global column). The values shown within the parentheses represent the p-values.
Grey shaded cells indicate cases where the null hypothesis is not rejected, while blue shaded cells
identify the parameters with significant Pearson correlation. Parameters with an absolute correlation
superior to 0.3 were analyzed for their influence in MASiN.

Lower

Variable . Lower Llewellyn Wheaton Necopastic Global
Fantail
0.148 0.055 0.112 0.071 0.096
Psmetamax (0.03) (0.4) (0.1) (0.3) (0.005)
-0.479 -0.270 -0.383 -0.329 -0.356
i (2 x 10713) (8 x 1079) (1% 109) (1 % 107) (2 x 10726)
T -0.078 0.008 0.202 -0.255 -0.029
Pns (0.3) (0.9) (0.003) (2 x 109 (0.4)
. 0.110 0.092 0.119 0.178 0.123
LWHC (0.1) 0.2) (0.1) (0.01) (3x10%)
X 0.212 0.129 0.517 0.230 0.220
< (0.002) (0.06) (9 x 10-16) (8 x 109 (1 x 10-10)
-0.268 -0.221 0.089 -0.202 -0.131
Qground-pack (8 x 1079) (0.001) (0.2) (0.003) (1 %107

Z 0.037 0.078 0.132 -0.091 0.037
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(0.6) (0.3) (0.06) (0.2) (0.3)
v 0.273 -0.027 0.185 0.256 0.169
tur (6 x 10°) (0.7) (0.007) (2 x 10 (8 x 107)
. -0.015 -0.076 0.031 0.029 -0.003
SWmin (0.8) (0.3) 0.7) (0.7) (0.9)
. -0.262 -0.350 -0.229 -0.299 -0.238
SWmax (1 x 107 (2 x 107) (8 x 10 (1 x10°) (2 x 1012)
r 0.121 -0.020 0.136 0.112 0.078
thres (0.08) (0.8) (0.05) (0.1) (0.02)

Finally, the maximum radiation coefficient (kswmax) had a weak negative correlation for the
Lower Llewellyn GMON station (R < —0.3), while for other GMON stations and when including all
the GMON stations, this negative correlation was weaker, but was not zero (R <-0.2). Increasing the
maximum radiation coefficient in MASiN would increase the net direct shortwave radiation and the
net diffuse shortwave radiation, which would favor the input of energy. This increase provides an
additional amount of energy for each snow layer for the smallest values of MNSL compared to the
largest ones, which can facilitate the melting process.

All in all, reducing the MNSL value would cause the fresh snow density and the maximum
radiation coefficient to increase and the settlement coefficient to decrease. Accordingly, the melting
process would be favored due to more input of energy from the shortwave radiation. Moreover, the
top snow layers have a higher probability of being homogenized than the bottom layers. This is a
phenomenon that is highlighted when the melting process induces a mass transfer between the snow
layers, thus decreasing the layer heights when merging the snow layers with the smallest thickness.
When compared to the acknowledged most sensitive phenomena reported in the literature (e.g.,
discrimination of rainfall and snowfall, albedo estimation, and the melting period), the correlation
found for the radiation confirmed the significance of the melting period for an improved modeling
performance. For MASiN, the influences of the fresh snow density and the settlement coefficient were
not linked to a particular physical phenomenon, but are relevant for merging the smallest snow
layers, and thus responsible for decreasing the number of snow layers to simulate, which was the
motivation behind this study.

4. Discussion and Conclusions

Simulated SWE values are the main criteria when evaluating the performance of a snow model,
whether it is used as a standalone module or as part of a hydrological model. Such an evaluation was
undertaken in this study to ensure that a reasonable performance and modeling accuracy would be
maintained by modifying the stratification of the modeled snowpack. In this study, the performance
of the physically-based snow model MASIN was studied for a potential future integration in
HYDROTEL. Modifying the MNSL was conceivable as it would decrease the modeling interactions
within the snowpack. With this in mind, the objective of this study was to analyze the influence of
the MNSL on model performance, namely SWE estimation.

The first part of the study compared the influence of the MNSL value on the SWE in terms of the
KGE performance metric. The fully-configured MASIN (i.e., with a MNSL value of 70) provided the
best overall performance, while reducing the MNSL to one caused the performance to drop
significantly. However, globally speaking, using a MNSL value between two and 20 (rather than 70)
would only marginally decrease the modeling performance to an acceptable level as the
corresponding KGE values only dropped by less than 0.1 below that of the fully-configured model.
In terms of the median value of the relative differences between the observed and simulated
maximum SWEs, a slight performance drop could be observed for MNSL values less than or equal to
nine. This was true for three GMON stations out of four analyzed in this study. Indeed, this study
illustrated that a physically-based model can be quite useful to detect potential instrumental errors.

In the second part of the study, the impact of the MNSL value on the calibration parameter
values was assessed. The analysis provided information on how the modeled physical processes
behave when reducing the MNSL value. Thus, it becomes possible to adjust the MNSL value more
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adequately when the user assesses the need to amplify or reduce a modeled physical process to
improve the SWE modeling. By taking into account each individual GMON station or by considering
all of them together, it was shown that only some moderate correlation (IRl > 0.5) and weak
correlation (IR| >0.3) existed between the calibrated parameters and the MNSL values. Reducing the
MNSL caused the fresh snow density and the maximum radiation coefficient to increase, while the
settlement coefficient decreased. Consequently, by considering the influence of the MNSL on the
fresh snow density and the settlement coefficient, MASIN preferentially reduces the height of the top
snow layers. This means that it would preferentially homogenize the snow layers from the top of the
snowpack since the snow layer merging condition is based on the minimum height, when compared
to the fully configured version of the model. Moreover, the influence of a reduced MNSL value on
the maximum radiation coefficient favors the melting process by adding more net shortwave
radiation in the snowpack.

Finally, reducing the MNSL makes it possible to maintain a level of SWE modeling performance
similar to that provided by the fully configured MASIN, when using the KGE performance metric.
Indeed, although the modeling performances remained within an acceptable range, it was not
possible to clearly identify the affected modeled physical processes. Meanwhile, the second part of
this study showed that reducing the MNSL did affect a few model parameters, allowing the
identification of the modeled processes influenced by the change in the MNSL values. Consequently,
the losses in modeling accuracy were primarily associated with snow inputs (i.e., fresh snow density),
snow layer settlement, and melting process (i.e., maximum amount of radiation). While snow inputs
and melting process have already been identified as significant processes in previous studies ([18,20—
22]), this study showed that the settlement process was identified as an additional phenomenon
affected by the reduction of the MNSL values. However, the influence on the settlement process was
related in all likelihood to the snow layer merging conditions, which are specific to MASiIN.
Moreover, Domine et al. [16,17] noticed that the modeling accuracy of the vertical profile of snow
density, which are associated with the snowpack thermal properties, was paramount in the modeling
of the groundwater budget. Indeed, the vertical profile of snow density simulated by MASiN was
directly affected by the fresh snow density and the settlement coefficient; the latter parameters were
influenced by a reduction of the MNSL values, causing a drop in modeling performance. Meanwhile,
before pairing MASIN with HYDROTEL, first, it is important to consider a methodology to spatially
extrapolate some of the input data like hourly relative humidity and wind speed. Once a
methodology is developed to spatially extrapolate the input data for MASIN, and after pairing the
model with HYDROTEL, the runoff modeling accuracy can be estimated. Finally, the framework
introduced in this paper has the potential to be applied to other physically-based snow models that
provide a means to adjust the number of simulated snow layers and as long as possible to save the
model results for comparison purposes.

Supplementary Materials: The following information can be found online at www.mdpi.com/2073-
4441/12/12/3449/s1, Figure S1: Snow layer density triggering the metamorphism phenomenon of the snow layer
against the MNSL at GMON LF station, Figure S2: Snow layer density triggering the metamorphism phenomenon
of the snow layer against the MNSL at GMON LL station, Figure S3: Snow layer density triggering the
metamorphism phenomenon of the snow layer against the MNSL at GMON W station, Figure S4: Snow layer
density triggering the metamorphism phenomenon of the snow layer against the MNSL at GMON Neco station,
Figure S5: Fresh snow minimum density against the MNSL at GMON LF station, Figure S6: Fresh snow minimum
density against the MNSL at GMON LL station, Figure S7: Fresh snow minimum density against the MNSL at
GMON W station, Figure S8: Fresh snow minimum density against the MNSL at GMON Neco station, Figure S9:
Maximum retention capacity of the snow layer against the MNSL at GMON LF station, Figure S10: Maximum
retention capacity of the snow layer against the MNSL at GMON LL station, Figure S11: Maximum retention
capacity of the snow layer against the MNSL at GMON W station, Figure 512: Maximum retention capacity of the
snow layer against the MNSL at GMON Neco station, Figure S13: Settlement coefficient against the MNSL at
GMON LF station, Figure S14: Settlement coefficient against the MNSL at GMON LL station, Figure S15: Settlement
coefficient against the MNSL at GMON W station, Figure S16: Settlement coefficient against the MNSL at GMON
Neco station, Figure 517: Ground heat flux against the MNSL at GMON LF station, Figure S18: Ground heat flux
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against the MNSL at GMON LL station, Figure S19: Ground heat flux against the MNSL at GMON W station,
Figure 520: Ground heat flux against the MNSL at GMON Neco station, Figure S21: Atmospheric temperature
threshold associated with the fresh snow minimum density against the MNSL at GMON LF station, Figure 522:
Atmospheric temperature threshold associated with the fresh snow minimum density against the MNSL at GMON
LL station, Figure S23: Atmospheric temperature threshold associated with the fresh snow minimum density
against the MNSL at GMON W station, Figure S24: Atmospheric temperature threshold associated with the fresh
snow minimum density against the MNSL at GMON Neco station, Figure 525: Snow cover surface roughness
against the MNSL at GMON LF station, Figure 526: Snow cover surface roughness against the MNSL at GMON LL
station, Figure S27: Snow cover surface roughness against the MNSL at GMON W station, Figure S28: Snow cover
surface roughness against the MNSL at GMON Neco station, Figure 529: Reduction coefficient of the turbulent
trade against the MNSL at GMON LF station, Figure S30: Reduction coefficient of the turbulent trade against the
MNSL at GMON LL station, Figure S31: Reduction coefficient of the turbulent trade against the MNSL at GMON
W station, Figure S32: Reduction coefficient of the turbulent trade against the MNSL at GMON Neco station, Figure
S33: Minimum radiation coefficient against the MNSL at GMON LF station, Figure 534: Minimum radiation
coefficient against the MNSL at GMON LL station, Figure S35. Minimum radiation coefficient against the MNSL at
GMON W station, Figure S36: Minimum radiation coefficient against the MNSL at GMON Neco station, Figure
S37: Maximum radiation coefficient against the MNSL at GMON LF station, Figure 538: Maximum radiation
coefficient against the MNSL at GMON LL station, Figure S39: Maximum radiation coefficient against the MNSL
at GMON W station, Figure S40: Maximum radiation coefficient against the MNSL at GMON Neco station, Figure
S41: Threshold temperature of precipitation separation against the MNSL at GMON LF station, Figure S42:
Threshold temperature of precipitation separation against the MNSL at GMON LL station, Figure 543: Threshold
temperature of precipitation separation against the MNSL at GMON W station, Figure S44: Threshold temperature
of precipitation separation against the MNSL at GMON Neco station.
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