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Abstract: Direct measurements of soil hydraulic properties are time-consuming, challenging,
and often expensive. Therefore, their indirect estimation via pedotransfer functions (PTFs) based
on easily collected properties like soil texture, bulk density, and organic matter content is desirable.
This study was carried out to assess the accuracy of the pseudo continuous neural network PTF
(PCNN-PTF) approach for estimating the soil water retention curve of 153 international soils (a total
of 12,654 measured water retention pairs) measured via the evaporation method. In addition,
an independent data set from Turkey (79 soil samples with 7729 measured data pairs) was used to
evaluate the reliability of the PCnn-PTFE. The best PCyn-PTF showed high accuracy (root mean square
error (RMSE) = 0.043 cm® cm~3) and reliability (RMSE = 0.061 cm® cm~2). When Turkish soil samples
were incorporated into the training data set, the performance of the PCnn-PTF was enhanced by 33%.
Therefore, to further improve the performance of the PCyn-PTF for new regions, we recommend the
incorporation of local soils, when available, into the international data sets and developing new sets
of PCNN-PTFS.

Keywords: evaporation method; HYPROP; artificial neural networks; soil water retention curve;
international soils

1. Introduction

Pedotransfer functions (PTFs) are statistical tools used in soil science to estimate soil hydraulic
properties, mainly the soil water retention curve (SWRC), based on the easily collected basic soil
properties, available from most regional and national databases [1]. The field-scale applications
of the water flow and solute transport models, and calculations of soil available water content,
a widely used parameter in agronomic models, is greatly facilitated by the development of PTFs.
The SWRC provides critical information about the soil moisture dynamics (“movement”, “flow” and
“transport”) in unsaturated soils and has a wide range of applications including estimation of field
capacity and soil available water [2], hydraulic conductivity [3], horizontal and vertical infiltration [4],
and modeling-related problems in porous media [5,6].

Point PTFs [7-10] estimate soil moisture at specific points of the SWRC, such as field capacity
or wilting point. Parametric PTFs [11-14] estimate the parameters of a soil hydraulic function that
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describes the water retention across a wide range of pressure heads. Parametric PTFs are more prevalent
because of their continuous representation of SWRC and their ability to provide soil hydraulic parameter
estimates for use in hydrological models. Developing parametric PTFs involves fitting a soil hydraulic
model to individual water-retention points and subsequently estimating the parameters of that model
using basic soil properties. The widely used parametric PTFs such as Rosetta [15,16] and Neuro-m [17]
use artificial neural networks (NNs) to estimate the parameters of the van Genuchten water retention
model [3], which are then used to estimate the entire SWRC.

The pseudo-continuous NN PTF (PCnn-PTF) [8] was introduced as an alternative approach for
continuous estimation of the SWRC at any desired water retention. PCyn-PTF utilizes statistical
data mining techniques to estimate the shape of the SWRC based on actual measured data points,
unlike parametric PTFs, where the curvature is dictated by the selected soil hydraulic equation.
Haghverdi et al. [18-20] and Nguyen et al. [21] reported high accuracy for the pseudo-continuous
pedotransfer function (PC-PTF) approach and showed that it could provide similar and in some cases
better performance than parametric PTFs mainly as it generates continuous water retention estimations
without the use of any soil hydraulic equations.

In a recent study, Haghverdi et al. [20] used HYPROP (Hydraulic Property Analyzer, Meter Group
Inc., Pullman, WA, USA) automated evaporation-based benchtop laboratory system to generate a
high-resolution water retention data set and subsequently developed water retention PCnn-PTFs.
They reported promising results and concluded that more attention should be given to the development
of PCyN-PTFs using HYPROP data for SWRC estimations. The HYPROP system works based on
the extended evaporation method [22,23] and is becoming the standard approach of measuring soil
hydraulic properties in the laboratory since it has several advantages over the traditional equilibrium
methods (i.e., pressure plate extractors and sandbox apparatus). First, it generates high-resolution
water retention data (approximately 100 water retention data points in the 0-100 kPa range), which is of
particular importance when developing data-driven PTFs such as PCyn-PTFs. In addition, depending
on the soil type, it can generate WRC in wet and intermediate ranges in a few days versus months
using traditional equilibrium based methods [24]. In this study, only the drying path data were used
since HYPROP measurements are taken during natural evaporation-based drying of undisturbed
soil samples.

Haghverdi et al. [20] utilized a Turkish data set to develop their PCnn-PTFs, and no study has
been done to evaluate the performance of PCnn-PTFs using a more comprehensive international data
set from evaporation experiments. Recently, Schindler and Miiller [25] published a high-resolution
soil hydraulic international data set using the evaporation method and HYPROP system, making
it possible to evaluate the efficacy of PCnn-PTFs for estimations of the SWRC with a large data
set—the main objective of this study. The empirical nature of PTFs typically restricts their use to a
specific region and any extrapolation must be preceded by validation of the PTFs [26]. In practice,
however, PTFs are applied to soils different than their development data sets since sufficient data to
derive new PTFs are lacking in many regions around the world. Therefore, when developing new
international PTFs, it is crucial to evaluate both the accuracy (testing) and reliability (validation) of
the models [1,8,26,27]. The accuracy, typically, shows the performance of PTF for a randomly selected
subset of the development data set that was not used to derive the PTE. The reliability, however,
indicates the performance of PTF beyond their statistical training limits and their geographical training
area for data sets independent from the ones used to develop the PTE. Consequently, the specific
objectives of this paper are to (I) develop water retention PCnn-PTFs by utilizing the international
data set from evaporation experiments, (II) evaluate the accuracy and reliability of the PCnn-PTFs
using the international data set from evaporation experiments and an independent Turkish data set
and (II) determine whether incorporating the Turkish soils into the development data set improves
the reliability of the PTFs.
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2. Materials and Methods

2.1. Soil Data Sets

Two data sets were used in this study to develop PCnn-PTFs and evaluate their accuracy and
reliability. The primary data set was published by Schindler and Miiller [25], hereafter referred
to as the international data set, consisting of 173 soils from 71 sites collected from over the world
(Figure 1). The international data set contains measurements of water retention, unsaturated hydraulic
conductivity, and several basic soil properties, including textural data, organic matter content (SOM),
and dry bulk density (BD) [25]. The hydraulic properties for the samples collected before 2007
(n = 40) had been measured using the evaporation method [28]. A short, saturated soil column was
placed on a balance and was exposed to evaporation while the water loss per volume and tension
(measured with tensiometers placed at two depths) were monitored. For the samples collected after
2008 (n = 133), the water retention data were determined with the extended evaporation method (EEM)
using the HYPROP system. Schindler et al. [22,23] extended the measurement range of the evaporation
method up close to the wilting point by utilizing improved tensiometers, maximal degassing of the
tensiometers, and by considering the air-entry pressure of the tensiometer’s porous ceramic cup as
an additional tension measurement. For more information about the HYPROP system, readers are
referred to Schindler et al. [29]. The second data set (referred to as the Turkish data set) consisted of
79 repacked samples with 7729 hydraulic measured water retention data pairs using the HYPROP
system. The samples were collected from areas surrounding Ankara and Anamur, Turkey. The SOM
was estimated from measured soil organic carbon content using the modified method of Walkley and
Black [30]. Soil texture (percentages of soil separates, including sand, silt, and clay) was measured using
the hydrometer method [31]. For more details about the soil data set and the laboratory procedures,
readers are referred to Haghverdi et al. [32].

44

Figure 1. Number and origin of the undisturbed soil core samples for the international data set used in
this study to develop pedotransfer functions.

The characteristics of the soils are shown in Table 1. The water retention data and the soil textural
classification of the samples from the data sets used in this study are shown in Figure 2. After screening
the international data set, a subset of samples with water retention information (i.e., 153 soils with
12,654 total water retention data pairs) was selected for this study. The majority of the soil samples in
the data set were from arable lands. However, samples were also collected from other land use types
such as urban land, grassland, forests, fallow lands and riverbanks. These samples were collected
from multiple soil horizons at depths ranging from surface to 310 cm [25]. The soil textural data
were log-linear transformed to convert 63 um silt-sand particle size limit used in the original data set
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to 50 pm silt-sand limit to match the USDA soil textural classification system. The most dominant
texture in the international data set was silt loam constituting 79 soil samples (51.6% of the data set)
followed by loam consisting of 19 samples (12.4% of the data set). The measured volumetric water
content (VWC) ranged from 0.05 to 0.79 cm® cm~3 with an average of 0.38 cm® cm™=3. The logarithmic
transformation of soil tension in cm of water (pF values) ranged from —0.9 to 4.3, with an average
value of 2.0. The most dominant texture in the Turkish data set was clay constituting 38 soil samples
(48.1% of the data set) followed by sandy loam consisting of 13 soil samples (16.5% of the data set).
The measured water retention points of the Turkish data set ranged from full saturation (set to pF -2) to
pF 3.9, with an average pF value of 1.8. The measured VWC varied between 0.05 and 0.69, with an
average VWC value of 0.47 cm® cm™3.

Table 1. Characteristics of soils from both international and Turkish data sets used in this study to

develop and test pseudo continuous neural network pedotransfer functions (PCnn-PTFs).

International Data Set Turkish Dataset
Attribute
Mean Range SD Mean Range SD
Clay (%) 19.9 0.0-60.0 124 34.1 9.4-62.2 15.0
Silt (%) 56.7 0.2-86.8 17.2 30.7 5.2-57.6 8.7
Sand (%) 23.5 3.9-99.8 174 35.3 6.0-84.0 174
Bulk density (g cm™2) 1.33 0.55-1.69 0.23 0.98 0.69-1.33 0.14
Organic matter content (%) 3.0 0.00-12.0 2.5 1.2 0.0-3.1 0.6
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Figure 2. Soil water retention data pairs (a), and soil textural distribution for the data sets used in this
study (b). Red points depict the international data set from evaporation experiments [25] and blue
points represent the Turkish data set [18,20,32].

2.2. ANN PC-PTFs Development

We developed a three-layer feed-forward perceptron NN model using MATLAB R2017a
(Mathworks, 2017). The transfer functions were the “hyperbolic tangent sigmoid” and “linear’
for the hidden and the output layers, respectively. The Levenberg-Marquardt algorithm [33] was used
for training the network. The maximum epoch (one cycle of a complete presentation of the training
data set through the learning process) was set to 1000. The best weights were loaded automatically
for testing.

7
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Figure 3 illustrates the modeling workflow. Soil samples were randomly partitioned into five
folds such that 80% of the data were used for the development of the PCnn-PTFs and 20% as the test
set. The development data set was further divided into 100 training and cross-validation subsets using
a bootstrapping technique (random sampling with replacement). Each training subset was expected to
have roughly 63% of the development soils [34]. The remaining development soils were used as a
cross-validation subset. To eliminate the possibility of over-training, training was terminated when
the root mean square error (RMSE) of the cross-validation subset either began to increase or showed
no improvement. This process was repeated five times leaving aside a different fold as test such that
all samples in the data set were used as a test set. The number of neurons of the hidden layer was
iteratively changed from 1 to 14 to find the optimum topology of the models.

Bootstrapping Iteratively changing hidden
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Figure 3. Development workflow of the pseudo continuous neural network pedotransfer functions
(PCnN-PTFs) for the soil water retention curve (SWRC) estimations.

The outputs of the 100 PCnN-PTFs with optimum topology were averaged to obtain the water
retention estimations. We then post-processed the raw outputs to make sure they are physically
meaningful and water content does not increase as moving from the wet to the dry part of the SWRC.
The computational cost of developing data-driven models becomes important when big data sets with
a wide range of attributes are used. The data sets used for the development of PTFs (including the
high-resolution evaporation-based data sets used in this study) are of relatively small size. Therefore,
the computational cost of training PCnn-PTFs is negligible and not discussed in this paper.

2.3. Modeling Scenarios

We evaluated the accuracy of the PCyn-PTFs (developed using the international data set) with
four combinations of the input attributes, including soil texture (i.e., percentages of sand, silt, and clay;
SSC), BD, and SOM (Table 2). Using the logarithmic transformation of soil tension (pF) as an extra
input predictor enables PCyn-PTFs to estimate VWC at any desired soil tension. The VWC is the
output parameter corresponding to the input pF value. We estimated the water retention of Turkish soil
samples to assess the reliability of the PCyn-PTFs derived using the international data set. In addition,
we developed new sets of PTFs after incorporating the Turkish soils into the training data set to
determine whether including regional data into the international data set improves the reliability of
the PTFs for that particular region.
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Table 2. Combinations of input attributes (scenarios) that were used in this study to develop the pseudo
continuous neural network pedotransfer functions (PCnn-PTFs).

Model Input Attributes

1 SSC, BD, SOM, pF
2 SSC, pF

3 SSC, BD, pF

4 SSC, SOM, pF

SSC: sand, silt, and clay percentages (%), BD: bulk density (cm® cm™2), SOM: soil organic matter content (%),
pF: the logarithmic transformation of soil tension in cm of water.

2.4. Model Evaluation

The root mean square error (RMSE, Equation (1)), mean absolute error (MAE, Equation (2)),
mean bias error (MBE, Equation (3)), and correlation coefficient (R, Equation (4)) were calculated to
evaluate the performance of PCnn-PTFs:

RMSE = 4 E;(El M) )

1 n
MAE = — ) |E; ~ M| 2)
i=1
1 n
MBE = = )" (Ei ~ M)) 6)

i=1

o ?:1(751' —E)(M; —]\_/1) @
" (E-E) T (M- M)

where, E and M are the estimated and measured VWC (cm? cm™3), respectively, E and M are the mean
estimated and measured VWC (cm® cm™3) and # is the total number of measured water retention
points for each modeling scenario. In addition, the statistics were calculated separately for dominant
soil textures and at the wet (pF < 2), intermediate (2 < pF < 3), and dry ranges (pF > 3) of the SWRC.
These pF ranges were considered since a pF value of 2 (water potential of —9.8 kPa) is close to field
capacity, the upper limit of available water content [35], and pF values greater than 3 are considered as
dry ranges [1].

2.5. Domain of the Pedotransfer Functions

Inmoststudies, the independent data set for validation of PTFs is typically described geographically
or using the summary statistics of the data sets. We used the following approach to quantify the
independence of the validation data set from the training set. We used Mahalanobis distance
(d, Equation (5)) to evaluate which samples of the training and validation data sets belonged to the
domain of applicability of the PCnn-PTF (Model 1 with SSC, BD, and SOM as inputs) [36].

d= (- Alx-y) ©

where A is the inverse of the training (international) data variance-covariance matrix, x is the individual
data points in the validation data matrix, and y is the mean of the training (international) data set.
The means and covariance matrix of the predictor variables of the international data set (SSC,
BD, SOM) were computed in order to calculate the Mahalanobis distance of all training points to the
centroid of the training data set. Then, we computed the cut-off distance delineating the domain
of the PTF as the 97.5% percentile of the cumulative x2 distribution of the squared Mahalanobis
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distances [36,37]. The Mahalanobis distance to the centroid of the training data set for all the samples
of the Turkish (validation) data was computed to check if these points were within the domain of the

2,3425

training data set.

3. Results

3.1. Importance of the Input Predictors

Figure 4 illustrates the scatterplots of measured versus estimated VWC values and Table 3
summarizes the performance statistics for the PCnn-PTFs developed and tested using different
combinations of input predictors. Overall, all models showed acceptable performance, which is also
demonstrated by the well-scattered data clouds (around 1:1 reference line) for all the models.
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Figure 4. Scatterplots of the measured versus estimated volumetric water content (VWC) via PCnn-PTFs
when the international data set was used to train and test the models (top), and for the Turkish soil
samples when Turkish data set was not used for training (middle) and when Turkish data set was

incorporated into the training data set (bottom).

Table 3. Comparison between the performance of the PCyn-PTFs trained using different data sets to
estimate the volumetric water content (cm? cm ™) of the international and Turkish soil samples.

Training & Test: I

Training: I; Validation: T

Training: I + T; Test: T

M RMSE MAE MBE R RMSE MAE MBE R RMSE MAE MBE R
1 0.046 0.035 0.002 0.89% 0.061 0.051 -0.003 0.871 0.044 0.035 -0.002 0.934
2 0.056 0.045 0.001 0.837 0.081 0.066 0.010 0778 0.049 0.039 -0.006 0.918
3 0.047 0.036 0.001 0.891 0.064 0.053 0.001 0.861 0.043 0.035 -0.002 0.937
4 0.051 0.040 0.000 0.867 0.092 0.078 -0.060 0.829 0.050 0.040 -0.012 0917

M: Model, RMSE: Root mean square error (cm® cm™3), MAE: mean absolute error (cm?® cm~3), MBE:

error (cm® cm™3), R: correlation coefficient. I international data set, T: Turkish data set.

mean biased
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When the international data set was used for training and testing, Model 1 (inputs: SSC, BD,
organic matter (SOM), pF) showed the best performance with an RMSE of 0.046 cm® cm =3 (MAE of
0.035 cm® cm~3) followed by Model 3 (inputs: SSC, BD, pF) with an RMSE of 0.047 cm® cm =3 (MAE of
0.036 cm® cm~3). Model 2, with only the soil textural components as input predictors, showed the
lowest accuracy with an RMSE of 0.056 cm3 cm™3 (MAE of 0.045 cm® cm™3). The low MBE values
varying between 0.000 and 0.002 cm® cm~3 indicated no substantial over or underestimation. The R
values were high for all the models ranging from 0.837 to 0.896, illustrating a good correlation between
the measured and estimated VWC values.

When the Turkish data set was used as a validation set, Model 1 (inputs: SSC, BD, OM, pF)
showed the best performance with an RMSE of 0.061 cm® cm =3 (MAE of 0.051 cm® cm~3) followed by
Model 3 (inputs: SSC, BD) with an RMSE of 0.064 cm3 cm~3 (MAE of 0.053 cm?® cm~3). Model 4 (inputs:
SSC, OM), showed the lowest performance with RMSE of 0.092 cm® cm =3 (MAE of 0.078 cm3 cm™3).
Model 4, with an MBE of —0.060 cm® cm ™3, showed a tendency to underestimate the VWC, which is
also depicted in Figure 4. The R values ranged from 0.778 to 0.871 with the lowest R observed for
Model 2 and comparable values for the other models.

When the Turkish data set was incorporated into training and used as a test, Model 3 (inputs:
SSC, BD) showed the best performance with an RMSE of 0.043 cm® ecm™2 (MAE of 0.035 cm® cm™3)
followed by Model 1 (inputs: SSC, BD, OM) with an RMSE of 0.044 cm® cm™3 (MAE of 0.035 cm® cm™3).
Model 4 (inputs: SSC, OM), showed the lowest accuracy with an RMSE of 0.050 cm® cm =3 (MAE of
0.040 cm3 cm~3). The low MBE values ranging from —0.012 to —0.002 cm3 cm~3 indicated no sign of
systematic bias in any of the models. The R values were high for all the models ranging from 0.917 to
0.937, showing a good correlation between the measured and estimated VWC values.

3.2. Performance across Soil Textures

Table 4 summarizes the performance of the best performing model (i.e., Model 1 with SSC, BD,
and OM as inputs) across dominant textures (textures constituting more than 10% percent of the data
set) developed and tested using the international data set. The smallest error (RMSE: 0.04 cm® cm~3;
MAE: 0.028 cm® cm~2) values belonged to silt clay loam and the greatest error belonged to clay loam
(RMSE 0.052 cm?® em™3; MAE 0.038 cm? cm_3). The other textures (i.e., silt loam, loam, and sandy
loam) showed similar performance with MAE varying from 0.033 to 0.034 cm? cm™3. The MBE values
of 0.016 and —0.016 cm® cm =2 suggested a slight tendency for over and underestimation for silty clay
loam and clay loam textures, respectively. MBE values were negligible (close to zero) for other soil
textures. The correlation coefficient values ranged from 0.824 to 0.935 among the textures with the

greatest value observed for loam and lowest for sandy loam.

Table 4. Soil texture-based performance of the PCyn-PTFs (inputs: SSC, BD, OM, pF) developed and
tested using the international data set to estimate the volumetric water content (cm® em™3).

Silt Loam Loam Silty Clay Loam Clay Loam  Sandy Loam
RMSE 0.043 0.042 0.04 0.052 0.043
MAE 0.034 0.033 0.028 0.038 0.033
MBE 0.002 0.004 0.016 -0.016 0.009
R 0.888 0.935 0.824 0.926 0.882

RMSE: Root mean square error (cm® ecm™3), MAE: mean absolute error (cm® cm™3), MBE: mean biased error
(cm?® ecm™3), R: correlation coefficient.

Table 5 shows the performance of the best performing model (i.e., Model 1 with SSC, BD, and OM
as inputs) for the most dominant soil textures of the Turkish data set constituting roughly 92 percent of
the data set.
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Table 5. Soil texture based performance of the PCyn-PTFs (Model 1 with SSC, BD, SOM, and pF
as inputs) developed using the international data set and the international plus Turkish data sets to
estimate the volumetric water content (cm® cm™2) of the Turkish soil samples.

Training: International Training: International + Turkish
C SL CL L C SL CL L

RMSE 0.060 0.069 0.052 0.060 0.039 0.047 0.044 0.042
MAE 0.052 0.055 0.042 0.048 0.032 0.037 0.035 0.034
MBE -0.006 0.032 -0.019 -0.009 -0.001 0.001 —-0.001 —-0.004

R 0.879 0.813 0.905 0.820 0.938 0.895 0.910 0.907

RMSE: Root mean square error (cm® cm™3), MAE: mean absolute error (cm® cm™3), MBE: mean biased error
(cm?® ecm™3), R: correlation coefficient. C: Clay, SL: Sandy Loam, CL: Clay loam, L: Loam.

When the Turkish data set was only used as a validation set, the lowest RMSE (0.052 cm® cm™3)
and MAE (0.042 cm® cm™3) values belonged to clay loam, whereas sandy loam showed the highest
values (RMSE = 0.069; MAE = 0.055). MBE values of —0.019 and 0.032 indicated slight underestimation
and moderate overestimation for clay loam and sandy loam soil textures, respectively. The correlation
coefficient varied from 0.813 for sandy loam to 0.905 for clay loam soil textures. When the Turkish soils
were incorporated into the training phase, lowest RMSE (0.039 cm® em™3) and MAE (0.032 cm® cm™3)
belonged to clay, whereas the highest values were observed for sandy loam with RMSE and MAE of
0.047 and 0.037 cm® cm~3, respectively. MBE values were close to zero (from —0.001 to 0.001), indicating
no systematic bias for any of the models. The lowest and highest R values ranging from 0.895 to 0.938
were observed for sandy loam and clay textures, respectively.

3.3. Performance at the Wet, Intermediate and Dry Parts of the SWRC

Table 6 shows the performance of the best performing PCyn-PTF (i.e., model 1 with SSC, BD,
and OM as inputs) in wet (pF < 2), intermediate (2 < pF < 3) and dry (pF > 3) parts of the SWRC.
When the international data set was used for training and testing, the lowest RMSE (0.041 cm?® cm~3)
and MAE (0.031 cm® cm~3) values were observed in the wet range of the SWRC. The intermediate range
of the SWRC showed a relatively higher error with RMSE and MAE values of 0.05 and 0.039 cm?® ecm ™3,
respectively. The relatively higher and lower performances at the wet and intermediate parts were also
evident by the R values of 0.868 and 0.733, respectively. MBE range of —0.008 to 0.007 suggested no
bias for any of the models.

Table 6. Performance of the PCnn-PTFs (inputs: SSC, BD, OM, and pF as) developed using the
international data set and the international plus Turkish data sets to estimate the volumetric water
content (cm® cm™2) at wet (pF < 2) intermediate (2 < pF < 3) and dry (pF >3) parts of the SWRC.

Training and Test: I Training: I; Validation: T Training: I + T; Test: T
Wet Mid Dry Wet Mid Dry Wet Mid Dry

RMSE 0.041 0.050 0.043 0.061 0.062 0.066 0.041 0.049 0.037
MAE 0.031 0.039 0.034 0.050 0.052 0.059 0.032 0.039 0.028
MBE -0.001  0.007 -0.008 -0.018 0.021 0.058 -0.003 0.000 0.015

R 0.868 0.733 0.790 0.713 0.661 0.902 0.866 0.778 0.883

RMSE: Root mean square error (cm® cm™3), MAE: mean absolute error (cm® cm™3), MBE: mean biased error
(cm?® ecm™3), R: correlation coefficient. I: International data set, T: Turkish data set.

When the Turkish data set is used as a validation set, the lowest RMSE (0.061 cm® cm ™) and
MAE (0.05 cm® cm~3) belonged to the wet range while the highest RMSE and MAE of 0.066 and
0.059 cm?® em™3, respectively, belonged to the dry range of the SWRC. Underestimation of the VWC was
observed in the wet range as indicated by the negative MBE (~0.018 cm® cm~3) while overestimation
was evident in intermediate (MBE: 0.021 cm® em™3) and dry parts (MBE: 0.058 cm® em™3) of the
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SWRC. The R values varied from 0.661 to 0.902, with the lowest and highest values belonging to the
intermediate and dry ranges, respectively.

When the Turkish soils were incorporated into the training phase, lowest RMSE (0.037 cm3 cm™3)
and MAE (0.028 cm® cm™3) values were observed in the dry range and highest values of 0.049 and
0.039 cm?® em~3, respectively, belonged to the intermediate range. MBE value of 0.015 cm3 cm™3
suggested a tendency to overestimate VWC in the dry range. R values ranged from 0.778 to 0.883 and
were higher and comparable in the wet and dry ranges, whereas the intermediate range showed the
lowest correlation.

4. Discussion

4.1. Accuracy and Reliability of the Developed PTFs

Table 7 summarizes the performance of already published PC-PTFs and PTFs developed in this
study. The accuracy of previous PC-PTFs developed to estimate water retention range from RMSE of
0.027 to 0.159 cm® cm™3, while the reliability ranges from RMSE of 0.036 to 0.088 cm® cm™2 (Table 7).
As shown in Table 3, the high accuracy of PCyn-PTF developed in this study (RMSE = 0.046 cm3 cm™3)
puts it in a good performance rank among already published PC-PTFs. Therefore, PCynN-PTF is
a reliable approach for developing accurate water retention models using international data from
evaporation experiments. The PCyn-PTF developed by Haghverdi et al. [20] was the only other PTF
that was based on a data set with soil water retention points measured with the extended evaporation
method, using the Turkish data set. Other studies used data sets where the soil water retention pairs
were collected using equilibrium-based methods (i.e., pressure plate/sandbox). Not all the studies used
a totally independent data set for validation except Haghverdi et al. [8], whereas the validation data
set in our study was independent of the international PTF-development data set.

The analysis of the Mahalanobis distances revealed that only eight soil samples from the validation
data were below the cut-off limit (Figure 5), indicating that the two data sets used in this study
were independent with a slight overlap. Despite the difference between the data sets, the PCyn-PTF
showed high reliability with an RMSE equal to 0.061 cm® cm =2 (Table 3). An RMSE of 0.043 cm® cm™3
was further achieved when Turkish data was included in the training of the PCyn-PTF. Therefore,
incorporation of local HYPROP data sets, if available, and retraining the PCnn-PTF is recommended
to further enhance the performance of the model for new regions. The ability of NNs to mimic the
inputs—outputs relationship of the complex soil water system [38] can explain the adequate performance
of PCnN-PTFs in both training and validation phases.
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Table 7. Comparison of the pseudo-continuous pedotransfer functions (PC-PTFs) developed in the literature to the PCyn-PTF developed in this study.

Modeling Origin, no. RMSE (cm® cm3)
Study Method Approach Inputs Samples/Datapoints Test Validation
Iranian data from pressure plate (Traing and Test- 122 soil
. and Australian data set usin; samples from Iran)
Haghverdietal. (2012) 8] various equilibrium—baseclg NN ss¢ (772 soil spamples for training 0.029 0.037
methods from Australia, Validation- Iran)
SSC, BD - 0.028 0.037
SSC, OC - 0.028 0.036
SSC, BD, OC - 0.027 0.036
Haghverdi et al. (2014) [18] sandbox/pressure plate NN SSC, BD, SOM Turkey, 135 soil samples x 8 0.047 -
' T SWR points ’
Belgium, (69 soil samples x 8 to 0.040 )
10 SWR points) '
SVM SSC, BD, SOM Turkey 0.054
Belgium 0.069
different equilibrium-based
de Melo and Pedrollo methods (Pressure based, NN SSC, particle density, total ~ UNSODA, (137 soil samples for 0.088
(2015) [39] hanging water, tensiometer, porosity, BD training and 51 for validation) '
and sand-box)
sand-boxes and pressure Vietnamese Mekong Delta,
Nguyen et al. (2017) [21] P NN SSC, BD, OC (1280 data points for training, 0.044 0.052
chambers -
232 validation)

MLR - 0.056 0.066
SVM - 0.036 0.068
k-NN - 0.056 0.050

Haghverdi et al. (2018) [20] evaporation NN SSC Turkey, (81 soil samples) 0.129

SSC, BD - 0.080

SSC, SOM - 0.159

SSC, SA - 0.107

SSC, SA, BD, SOM - 0.061

SSC, BD, OM, SA, IWC - 0.033

SVM: support vector machine, MLR: multiple linear regression, NN: artificial neural network, k-NN: k-nearest neighbor, SSC: sand, silt, and clay percentages (%), BD: bulk density
(ecm® em™), SOM: soil organic matter content (%), OC: organic carbon content (%), SA: percentage of stable aggregates, IWC: initial water content (cm® cm™).
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Figure 5. The domain of the developed PCnn-PTFs using Mahalanobis distance, indicating that the
two data sets were independent with a slight overlap since only 8 Turkish soil samples (highlighted in
red) fell below the cut-off limit (y-axis for Turkish data set is on an exponential scale).

Several studies have recommended the use of local data set to develop PTFs instead of using
larger data sets [40,41]. Inconsistencies in the measurement techniques used in large data sets can
introduce unexplained variance and negatively impact the performance of PTFs [1]. The international
data set used in our study contains soil samples collected on the continental scale, yet PTFs performed
satisfactorily across modeling scenarios. This is in part because all measurements for both development
and test data sets were done using the evaporation or extended evaporation methods. We recommend
using the HYPROP system as a benchmark laboratory approach to maintain consistency in measurement
techniques when adding local samples to the international data set used in this study to develop new
PCnn-PTFs in the future.

4.2. Importance of Input Variables

Various studies have found that the addition of more input variables to the models did not
necessarily result in better performance of the PTFs [42,43]. The best performance in our study was
observed for Model 1 using all the input predictors (SSC, BD, SOM) with RMSE of 0.046 cm?® cm™3
for the test and RMSE of 0.061 cm® cm™3 for the validation sets. However, Model 3 also resulted
in a comparable performance when using SSC and BD as inputs. Moreover, Model 3 was the best
performing with RMSE of 0.043 cm® cm™3 when the Turkish data set was incorporated in the training
set, which agrees with the results reported by Patil et al. [44]. Minasny and McBratney [17] also found
that adding BD improved the performance of the neuro-m model compared to using just the textural
constituents. Moreover, the inclusion of BD as the input variable along with the soil texture resulted in
better performance in both Neuro-m and Rosetta 3 PTFs to estimate water retention [16,17].

Including SOM as an input predictor did not improve the performance of the PCnn-PTF in our
study. Zacharias and Wessolek [45] and Bergesen et al. [46] also reported that SOM does not contribute
to the model performance. Minasny and McBratney [47] conducted a meta-analysis to conclude that
an increase in the SOM only resulted in a small increase in the soil water content. Haghverdi et al. [20]
mentioned that the insignificant impact of SOM in their study could be due to its low concentration
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and narrow range in most of the Turkish soil samples, which concur with the findings of our study
despite having a larger range of SOM in the international data set.

While comparing to other PC-PTFs in literature, RMSE of 0.088 cm® cm~2 was observed by
PCnN-PTF of Moreira De Melo and Pedrollo [39] using additional inputs such as particle density and
porosity along with soil texture and bulk density. An accuracy with RMSE of 0.033 cm?® cm™ was
observed by Haghverdi et al. [20] when information about stable aggregates and initial water content
was included in the training along with other inputs including SSC, BD, and SOM. Although adding
more input predictors, if available, could enhance the performance of PTFs, our results indicate soil
texture (55C) and bulk density (BD) as the essential inputs required to develop accurate PCnn-PTFs
using evaporation data. These properties are also easily collected and are available in most data
sets; thus, we recommended them to be included in future SWRC measurement campaigns using the
HYPROP system.

4.3. Performance across Textural Classes and Tension Ranges

Generally, we observed that having more data points (due to having more soil samples) per
textural classes in the training set improved the performance for that class (Figure 6). Khlosi et al. [48]
provided error statistics for 11 textural classes and found that the PTFs performed well in the relatively
coarse-textured soils compared to heavy-textured soils. They observed better PTF performance for
textural classes with somewhat larger sample size. Schaap et al. [49] reported a relatively lower RMSE
for the sandy loam and clay loam soil, which contributed 34% of their data set.

Dataset

0.10 @ sM 4 Turkey
o Texture
g @ cClay Loamy sand Sandy loam @ Silt loam
— 0.08 Clay loam @ Sand ® sit ® silty clay
é Loam Sandy Clay Loam @ Silt clay loam
o
2
Z006 ® o

.A
. .
0.04 A
0 2000 4000 6000

Number of data points

Figure 6. Relationship between the number of data points for each textural class and the accuracy of
the best performing PCnn-PTF (Model 3 with SSC, BD, and pF as inputs) when both international and
Turkish data sets were used to develop the models.

For the international data set, silt loam was the dominant textural class followed by silty clay
loam, and both showed a high agreement with the fitted curves. For the Turkish data set, clay as the
dominant class shows a high agreement with the fitted curves compared to textural classes with lower
data percentage share. Similar results were reported by Schaap and Leij [50] and Cornelis et al. [51].
Thus, it is possible to predict the SWRC accurately if enough data points are available for the soil
texture in the training set [1,18].

The best performance of the PCyn-PTF was observed in the wet region of the SWRC for the
test and validation sets, while the lowest accuracy was observed in the dry region for the validation
data set, which concurs with the performance of parametric PTFs of Khlosi et al. [48] and Bergesen
and Schaap [11]. However, when Turkish data was included in the training of the models, the dry
region had the best performance while the intermediate part showed a lower accuracy. Nonetheless,
an improvement of 61%, 73%, and 49% in RMSE was observed in the wet, intermediate, and dry regions,
respectively, after incorporating Turkish data into training. Schaap et al. [15] and Twarakavi et al. [52]
reported overestimation of soil water retention close to saturation (pF < 0.5) and between pF of 0.5 to 1,
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and underestimation beyond pF of 1.5, which is in contrast to what we observed in our study. This is,
in part, attributed to the fact that the training data set used by Schaap et al. [15] and Twarakavi et al. [52]
consisted of samples collected from several studies with a wide range of approaches used to measure
water retention. Moreover, these studies developed parametric PTFs which means the shape of the
curve was governed by the van Genuchten water retention model [3]. However, the PCnn-PTF
developed in our study learns the SWRC’s shape from the measured water retention data without
using any soil hydraulic model.

5. Conclusions

Literature suggests that PTFs developed from small local data sets perform better as compared to
larger general sets of data [40]. However, in many parts of the world, there is a lack of soil hydraulic
data to derive PTFs for accurate SWRC estimations. Most of the large data sets (e.g., UNSODA [53],
and HYPRES [54]) used in the past to develop international PTFs typically consist of smaller data sets
with a wide range of measurement techniques applied to measure soil hydraulic properties. Having
a PTF trained on an international data set with soil hydraulic properties measured with the same
technique minimizes the inconsistency in the data set caused by variabilities in measurement techniques.
We used an international data set from evaporation experiments [25] to evaluate the accuracy and
reliability of the PCnn-PTF approach to estimate the SWRC. Evaporation based measurement of water
retention offers the advantage of producing a quasi-continuous description of the retention function in
the tensiometric moisture range, i.e., up to pF 3. In practice, HYPROP measurements lead to roughly
ten times more data points compared to the traditional method via sandbox/pressure plate instruments.
We found that a neural network-based PC-PTF can provide accurate and reliable estimation of the
SWRC. Moreover, the reliability was further improved by including the local data into the training of
PCnN-PTE Therefore, we recommend retraining the models after incorporating local HYPROP data
sets (if available) to enhance the performance of the PCnn-PTFs developed in this study in different
regions around the world.
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