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Abstract: Sewer pipe inspections are currently conducted by professionals who remotely control a
robot from above ground. This expensive and slow approach is prone to human mistakes. Therefore,
there is both an economic and scientific interest in automating the inspection process by creating
systems able to recognize sewer defects. However, the extent of research put into automatic water
level estimation in sewers has been limited despite being a prerequisite for further analysis of the pipe
as only sections above the water level can be visually inspected. In this work, we utilize a dataset of
still images obtained from over 5000 inspections carried out for three different Danish water utilities
companies. This dataset is used for training and testing decision tree methods and convolutional
neural networks (CNNs) for automatic water level estimation. We pose the estimation problem as
a classification and regression problem, and compare the results of both approaches. Furthermore,
we compare the effect of using different inspection standards for labeling the ground truth water
level. By treating the problem as a classification task and using the 2015 Danish sewer inspection
standard, where water levels are clustered based on visual appearance, we achieve an averaged F1
score of 79.29% using a fine-tuned ResNet-50 CNN. This shows the potential of using CNNs for
water level estimation. We believe including temporal and contextual information will improve the
results further.

Keywords: sewer pipes; convolutional neural networks; random forests; water level; sewer
inspection standards

1. Introduction

Sewer networks are a critical piece of infrastructure that allow safe transportation of wastewater
from households to specialized treatment plants. Sewer pipes are built for transporting either rain
water, waste water, or a combination of both. In Germany, there are nearly 600,000 kilometers of public
sewer pipes [1]. In the US, it has been estimated that the length of public net of sewers extends to over
1.2 million kilometers [2]. Because the sewer pipes are buried beneath roads and streets, their presence
is easy to forget—until they break down. Replacement of an entire sewer pipe is costly and can require
a large excavation work that entails disruptions to the road traffic. A more economical option is
to refurbish the pipes before they break down [3], but this requires knowledge of the condition of
the pipes. However, sewer pipes are difficult to inspect as most pipes are not accessible by human
inspectors due to their small diameters. For large diameter pipes, the presence of toxic gases and the
general contents of the sewage water renders the inspection a safety and health risk to human workers.
The most common method for estimating the condition of a sewer pipe is to use tethered robots that are
inserted into the pipe from the nearest accessible well. The inspection robot is typically equipped with
a Closed-Circuit Television camera (CCTV) and a light source. A human operator controls the robot
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from a specially designed van and manually assesses the incoming video data. The overall inspection
procedure is slow and prone to human errors. Therefore, there is a large research and industrial interest
in automating the inspection process through the use of computer vision and machine learning [4].

Accessibility of the sewer for inspection by a robotic platform is one of the most fundamental
problems the inspection has to address. The accessibility is linked to the amount of water present in
the pipe. In order to detect and classify defects in the pipe, substantial portions of the pipe must be
visible above the water level. In short, the water level is a key indicator of how much of a pipe can
be inspected. According to the European sewer inspection standards (EN 13508-2) [5], estimating the
water level of the sewer pipe is therefore of paramount importance to human inspectors. Sample
footage from inspection data is shown in Figure 1. At first sight, estimating the water level from sewer
pipes might appear to be a straightforward task for a computer vision algorithm to solve. The sewer
is a confined space with few interruptions from the outside. However, the nature of the pipes and
their contents renders a range of problems. The only source of light comes from the inspection vehicle,
and some portions of the pipe might therefore not be sufficiently lit. Toxic gases are commonplace and
renders as mist or fumes, resulting in a hazy image with reduced information. The presence of water
entails different levels of reflection and might even flood the entire view. As a result, dust and sewage
might stick to the lens and severely impair the visibility.

(a) Tilted viewpoint. (b) Reflections. (c) Mist. (d) Infiltration.

Figure 1. Examples of adverse conditions from Closed-Circuit Television camera (CCTV) footage of
sewer pipes which can complicate the water level classification task; (a) the camera is tilted such that
the entire view is placed above the water line; (b) the water surface reflects the surroundings; (c) gases
in the sewer impair the visibility in the same way as mist and haze; (d) infiltrating water.

While there has been a lot of prior work on sewer defect classification and detection, as surveyed
by Haurum and Moeslund [4], few researchers have worked specifically with water level estimation.
Prior work utilizes classical computer vision techniques and modern deep learning-based methods.
Classic computer vision methods have been used to detect key features of the sewer pipe which can be
used to detect the water line [6,7]. Recently, Convolutional Neural Network (CNN)-based methods
have gained interest in automated defect classification [7–9], wherein some researchers have included
water stagnation [8] and “high water levels” [9]. Most importantly, a recent paper [10] proposed
training a deep learning-based segmentation model which segments the water in the image and infers
the water lines. The researchers collected 1440 high-resolution RGB images, of which 167 were used
for human evaluation and 80 images were used for training. The authors claim to achieve a perfect
segmentation of the water level, beating manual and traditional computer vision annotation methods,
and being able to calculate the flow rates and velocities by applying Manning’s equation. However,
their dataset only consists of recordings from a single pipe acquired over a 24-h period. This does
not nearly capture the amount of variability encountered when inspecting real sewers. Furthermore,
the high image resolution is not representative for sewer inspection CCTV videos which rarely
exceeds full HD.

Several vision-based approaches for water level estimation have been proposed within the
wastewater flow estimation field. A common technique is to measure the depth from a stationary
staff gauge [11–15]. Nguyen et al. [11] and Jeanbourqin et al. [12] proposed to use an infrared
camera to locate the water–air intersection line on the staff gauge using computer vision techniques.
Handheld devices [15] and calibrated cameras [13,14] have also been used for automated staff gauge
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readings. Alternatively, Sirazitdinova et al. [16] determined the water level using a stereo camera setup,
while Khorchani and Blanpain [17] used a single calibrated camera. A common characteristic among
these methods is the need for a stationary object, being either the camera setup or the staff gauge.

On the contrary, we investigate the feasibility of estimating the water levels in realistic and unseen
sewer inspection videos by the use of a single input image at a time, from a moving uncalibrated
camera. We compare both decision tree methods and deep learning-based methods in order to
determine whether the extra complexity introduced with the neural networks is justified. Furthermore,
as shown from the examples of Figure 1, the inspection imagery is distinct from commonplace
computer vision datasets such as ImageNet [18] or COCO [19]. Therefore, we investigate the effect of
ImageNet pre-training compared to training from scratch on the available data. Our contributions are
the following.

• We show that it is possible to reliably estimate the water level in unseen sewer pipes using a
classification-based CNN.

• We show the evaluation performance impact of how the water levels are categorized, using the
Danish sewer inspection standards as a use case.

• We show that CNN-based methods outperform traditional decision tree-based methods for water
level estimation.

• We open source our model and analysis code (https://bitbucket.org/aauvap/
waterlevelestimation).

The remainder of the article is structured as follows. In Section 2, we introduce our dataset.
In Section 3, we describe the proposed methods, loss functions, and the training procedure. In Section 4,
we detail the evaluation metrics and present the experimental results. In Section 5, we analyze
and discuss the presented results. Finally, in Section 6 we summarize our findings and possible
future directions.

2. Dataset

As made clear in [4], there are currently no publicly available sewer datasets. Therefore, we utilize
our own dataset consisting of CCTV recordings from actual sewer inspections conducted for three
different water utility companies across Denmark.

2.1. Dataset Construction

Professional sewer inspectors have assessed the data in real-time and provided manual
annotations of the water level based on expert assessments. The data have been annotated following
the 2010 Danish sewer inspection standards [20], where the water level is annotated in discrete steps of
10 in the interval [0, 100]. For example, if a sewer is annotated as having a water level of 40%, then the
actual water level is somewhere between 35% and 45%, as illustrated in Figure 2.

Water level

+ 5% margin

Figure 2. Illustration of the 5% point uncertainty margin allowed in the annotations. The gray horizontal
lines in the left side of the pipe indicate the discrete steps from 0% to 100%. A water level of 40% is
present in the given example.

The dataset used in this research is constructed from 5511 different CCTV videos where one or
more images are extracted from each video, resulting in a total of 11,558 images. The large amount

https://bitbucket.org/aauvap/waterlevelestimation
https://bitbucket.org/aauvap/waterlevelestimation
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of videos is necessary to represent the variability of real-world sewer pipes. Even for skilled sewer
inspectors it can be extremely difficult to estimate the water level. From our study of the recorded
data, and from conversations with the water utility companies, we have found that there are often
variations in the water level within the recordings. Therefore, noise is expected in the annotations.

We split the dataset into three parts: training, validation, and test. The dataset has been carefully
constructed such that each annotation level is equally represented. Therefore, we sample 1000 images
per class for the training split and 100 images for each of the validation and testing splits. However,
there are not 1200 occurrences across the available data for the water levels between 70% and 100%.
In these cases, we use the available data and note that the dataset is imbalanced for those classes.
The distribution of images with respect to the splits can be seen in Table 1. The data in the training,
validation, and test splits all come from unique sewer pipes and inspections.

Table 1. Overview of the dataset and the three splits. The data are annotated following the 2010 Danish
sewer inspection standards.

Water Level
Training Validation Test Total

Images Videos Images Videos Images Videos Images Videos

0% 1000 966 100 98 100 96 1200 1160
10% 1000 972 100 97 100 98 1200 1167
20% 1000 841 100 88 100 90 1200 1019
30% 1000 696 100 66 100 83 1200 845
40% 1000 574 100 55 100 59 1200 688
50% 1000 494 100 58 100 50 1200 602
60% 1000 361 100 33 100 43 1200 437
70% 531 181 97 31 31 17 659 229
80% 718 211 85 28 64 28 867 267
90% 257 79 80 12 100 11 437 102

100% 1000 199 100 22 95 23 1195 244

Total 9506 4529 1062 492 990 490 11,558 5511

While the data are originally annotated using the 2010 Danish sewer inspection standards,
the standards have been updated in 2015 [21]. In the newer inspection standards, the annotation
protocol for water levels has been changed such that it focuses on a coarse grouping of water levels
instead of fine-grained intervals. Specifically, the water level is annotated into four classes: less than 5%,
between 5% and 15%, between 15% and 30%, and above 30%. These groupings better correspond to the
visual appearance of the water level, as it can be hard to distinguish the classes of more than 30% due
to the inspection camera being partially or fully submerged under water. In these cases, the inspectors
have previously used contextual and temporal information in order to complete their annotations.

It is possible to make a near perfect one-to-one mapping between the two standards with the
exception being the 2015 class with ≥30% water level. As the 2010 annotations have a ±5% point
uncertainty margin, the 30% class may contain data from water levels as low as 26%. We choose to
accept the risk of this and acknowledge it as a source of extra noise. With this mapping, the dataset
presented in Table 1, annotated following the 2010 Danish sewer inspection standards, can be re-labeled
into a dataset following the 2015 Danish sewer inspection standards as shown in Table 2. Furthermore,
by converting the data to the 2015 standards, the dataset becomes much more skewed towards the
≥30% class. This causes the dataset to be heavily imbalanced, compared to the dataset following the
2010 standards. However, we do not resample the data to be balanced for the 2015 standards as it will
cause the experiments to be incomparable due to different training sets.



Water 2020, 12, 3412 5 of 14

Table 2. Overview of the dataset and the three splits. The data is annotated following the 2015 Danish
sewer inspection standard.

Water Level Intervals
Training Validation Test Total

Images Videos Images Videos Images Videos Images Videos

WL < 5% 1000 966 100 98 100 96 1200 1160
5% ≤WL < 15% 1000 972 100 97 100 98 1200 1167
15% ≤WL < 30% 1000 841 100 88 100 90 1200 1019

30% ≤WL 6506 1750 762 209 690 206 7958 2165

Total 9506 4529 1062 492 990 490 11,558 5511

2.2. Data Quality

As the data are from real-life sewer inspections, the video resolution and quality vary depending
on the utilized recording equipment. All the data have, however, been recorded with 25 frames per
second. Furthermore, all of the videos have a text layer applied with inspection metadata, annotations,
and more. This information has been blurred in order to ensure that the CNN-based methods learn by
observing the water in the sewer pipe and not by reading the textual metadata. A range of examples
from the dataset are shown in Figure 3.

(a) WL: 0% (b) WL: 10% (c) WL: 20%

(d) WL: 30% (e) WL: 40% (f) WL: 50%

(g) WL: 60% (h) WL: 70% (i) WL: 80%

(j) WL: 90% (k) WL: 100%
Figure 3. Images from the dataset that show the inter-class variation. WL is the annotated water level.
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3. Methodology

We investigate the performance of multiple machine learning methods using both the 2010 and
2015 Danish annotation guidelines. First, we train the proposed models using the annotations following
the 2010 standard in a classification approach where each level is a discrete class. Second, we train the
models in a regression setting where the water level percentage is predicted as a continuous quantity.
Last, we train the models in a classification setting and convert the annotations to the 2015 standard
classes where the different classes are grouped as mentioned in Section 2. These settings are referred to
as Class10, Reg2Class10, and Class15, respectively.

3.1. Features and Models

We investigate the performance of two CNNs—AlexNet and ResNet—to determine whether
deep learning is feasible for estimating the water level in sewers from single images. Furthermore,
by measuring the performance of ResNet-18, ResNet-34, and ResNet-50, we can evaluate the effect of
higher abstraction levels provided by an increased network depth.

AlexNet [22] is considered to be the deep neural network that sparked the interest for deep
learning almost ten years ago, and it is often used as a baseline for classification tasks. A neural
network is considered deep when there is more than a single layer between the input and output
layers, and AlexNet has eight such layers. Generally speaking, the feature abstraction level increases
with the depth of the network which, in theory, means that a deeper network can handle more complex
tasks. However, as the amount of parameters increases, so does the processing time and the likelihood
of overfitting the model to the training data. It has even been shown that for some architectures it can
harm the performance if the depth is overly increased due to the degradation problem [23].

ResNet [24] is a family of CNN models developed with the aim of being able to utilize the
increased abstraction level offered by deeper layers without suffering from the degradation problem.
The models consist of stacks of relatively small layers connected by identity shortcuts that forces the
network to learn the residual function between the stacks. These shortcuts allow the networks to
cheaply reduce the influence of certain layers if they do not enhance the output performance. This type
of architecture has proven to be very powerful and ResNets are still widely used; especially for cases
where depth is expected to improve the performance.

Two decision tree methods—Random Forest [25] and Extra Trees [26]—are also investigated in
order to provide a baseline performance. The tree-based methods are trained using GIST features [27]
computed from the images as Myrans et al. The authors of [28] have shown this to be an effective
combination for sewer defect classification. The GIST feature descriptor [27] applies a series of 2D
Gabor filters, each with a different scale and orientation, resulting in a feature map per scale and
orientation permutation. The feature maps are divided into a predefined grid where the feature values
within each grid element are averaged. The averaged feature values are then concatenated per feature
map into a feature vector, and all of the resulting feature vectors are concatenated to give the final
GIST feature vector.

3.2. Loss Functions

The classification models are all evaluated using the standard categorical cross-entropy (CE) loss
with the option of including class specific weights, wc. The cross entropy loss is defined as

fCE = −
C

∑
c=1

wcyc log(pc) (1)

where yc is the ground truth label, 1 if the correct class, and 0 otherwise, and pc is the predicted
probability of class c. For the standard CE loss, wc is set to 1 for all classes.
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However, for the regression networks there is not a single standard loss. A large set of methods
utilizes the Mean Absolute Error (MAE) or Mean Square Error (MSE) loss functions, also known as the
`1 and `2 loss functions, respectively. MAE and MSE are defined as

fMAE(x) = |x| (2)

fMSE(x) = x2 (3)

where x is the residual, the result after subtracting the predicted value from the ground truth value.
The MAE loss function is robust to outliers but suffers from derivatives that are not continuous.

MSE is more stable during training due to continuous derivatives, but more sensitive to outliers due to
the squared residual term. Due to the built-in ±5% uncertainty around each annotation in the 2010
standards, we choose to train with the MSE loss as the quadratic residual term allows automatically
increasing the weighing the further away the prediction is from the ground truth.

3.3. Training Procedure

The CNNs are all trained using the hyperparameters stated in Table 3. The Adam optimizer [29]
is chosen as it continuously adapts the learning rate for each parameter based on the first- and
second-order moments of the gradients. The initial learning rate is set to 0.01 for models learned from
scratch whereas a reduced learning rate of 0.001 is used for fine-tuning networks pretrained on the
ImageNet dataset. When fine-tuning the ResNet models, we freeze the first two residual blocks in
order to retain low-level feature knowledge. A weight decay of 0.0001 is used for all models to help
regularize the weight parameters and avoid overfitting. All models are trained for 50 epochs with
a batch size of 64 to make them comparable. During training, the input images are augmented by
horizontally flipping the image with a 50% chance. All images during both training and evaluation
are normalized.

Table 3. Hyperparameters for each of the Convolutional Neural Network (CNN) models.

Parameter From Scratch Fine-Tuned

Learning Rate 0.01 0.001
Weight Decay 0.0001
Optimizer Adam
Batch Size 64
Epochs 50

We conduct a small hyperparameter search in order to find the best set of parameters for the
tree-based methods. The investigated hyperparameters and the possible values are shown in Table 4,
where d is the amount of features in the GIST feature descriptor. For the classification models,
the minimum number of samples required to be at a leaf node is set to 1, whereas for the regression
models it is set to 5, as per the original Random Forest paper [25]. The GIST feature descriptor
is computed using a 4× 4 grid with filters using 4 scales and 8 orientations. The input image is
downscaled to 128× 128 pixels and converted to grayscale as described in [28], which results in a 512
dimensional GIST feature vector.

Table 4. Hyperparameter search intervals for the Random Forest and Extra Trees algorithms. d denotes
the dimensionality of the input features for GIST.

Parameter Values

Number of Trees [10, 100, 250]
Maximum Depth [10, 20, 30]
Maximum Features [

√
d, log2(d), d/3, d]
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All classification models are trained by minimizing a weighted CE loss where the class weights
are calculated as

wc =
max(Ni)

Nc
, i ∀ [1, 2, ..., C], (4)

where Ni is the number of training samples for class i and wc is the weight for class c, out of the total
C classes.

The regression models are trained by minimizing the MSE loss. The best performing model is
determined by selecting the model with the lowest validation loss. For the CNNs, the validation loss is
computed after each epoch. The best performing tree-based models are found from the model with the
lowest validation loss among the models in the aforementioned hyperparameter search, see Table 5.

Table 5. Hyperparameters for each of the best performing Random Forest and Extra Trees models on
each task.

Parameter\Model
Random Forest Extra Trees

Class10 Reg2Class10 Class15 Class10 Reg2Class10 Class15

Number of Trees 250 250 250 250 250 250
Maximum Depth 10 20 10 10 20 10
Maximum Features

√
d d

√
d d d d

All of the CNN architectures are implemented using the PyTorch framework [30], utilizing the
publicly available implementations as well as the provided network weights for the ImageNet
pretrained models. The models were trained on a single RTX 2080 TI graphics card. For the tree-based
models, we utilize the Scikit-Learn library [31] while the GIST features are extracted using an open
source Python wrapping of the original C implementation [32].

4. Experimental Results

We observe that in general the fine-tuned CNNs outperforms the CNNs trained from scratch,
indicating that while the ImageNet dataset is visually quite far from the sewer image data the learned
information is still valuable. This aligns with prior experience within the transfer learning domain
where ImageNet pretraining is the norm. Therefore, we only show the performance of the fine-tuned
CNNs in Tables 6–9. The results of the CNNs trained from scratch can be found in Appendix A.

Performance Metrics

The tasks are evaluated using the F1-metric which is calculated as the harmonic mean of the
Precision, P, and the Recall, R, of the predictions, as shown in Equations (5)–(7). TP, FP, and FN denote
the true positive, false positive, and false negative predictions, respectively.

P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)

F1 =
2 P R
P + R

(7)

As the task at hand is a multi-class classification problem, we generalize the binary F1-metric
by calculating the average of the F1-metric for each class. This is done by calculating the micro-
and macro-averaged F1-metrics. These F1-metrics are chosen as the normal accuracy metric is not
representative for imbalanced data. Furthermore, the two F1-metrics incorporate an implicit weighting
for minority and majority classes such that different trends for the imbalanced dataset are highlighted.
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The micro-F1 metric is calculated by treating all observations equally, resulting in a metric
sensitive to the majority classes. Micro-F1 is calculated based on the micro-averaged precision and
recall, as shown in Equations (8)–(10), where C denotes the amount of classes. TPc, FPc, and FNc are
the binary metrics for class c, obtained by approaching the evaluation as a one vs. all binary task
for class c. Specifically, this means that the precision, recall, and F1-metric are calculated by globally
counting all true positive, false positive, and false negative predictions.

micro-P =
∑C

c=1 TPc

∑C
c=1 TPc + FPc

(8)

micro-R =
∑C

c=1 TPc

∑C
c=1 TPc + FNc

(9)

micro-F1 =
2 micro-P micro-R
micro-P + micro-R

(10)

The Macro-F1 metric is calculated as the arithmetic mean of the per-class F1-metrics as shown in
Equation (11). This results in an equal weighting for each class, thereby causing the Macro-F1 metric to
be more sensitive to the rare classes.

Macro-F1 =
1
C

C

∑
c=1

F1c (11)

In order to compare the regression models with the classification models, we convert the regression
output to classification outputs for training setting Reg2Class10. This is achieved by utilizing the fact
that each class represents a ±5% point interval around the center value. The regression predictions are
therefore converted by first clamping the values to the interval [0, 100] and subsequently assigning
the regression prediction to the closest ground truth value. For instance, a regression output of 74.5%
water level will be assigned to the 70% level class. The regression outputs are not converted to the
Class15 labels, as the conversion cannot be performed without uncertainty near the 30% water level
area. The results for all methods are shown in Table 6 and the F1 score for each class under the
different training variations are shown in Tables 7–9 and Tables A1–A4. Models trained from scratch
are indicated with a “S” suffix, while fine-tuned models have a “FT” suffix. The per-class performance
is also visualized in Figure 4.

Table 6. Results for each tested method for the different training settings.

Method
Class10 Reg2Class10 Class15

micro-F1 Macro-F1 micro-F1 Macro-F1 micro-F1 Macro-F1

Random Forest 27.17 23.19 14.63 11.01 68.18 51.47
Extra Trees 29.49 26.39 14.33 10.72 64.34 50.19
AlexNet-FT 30.10 26.96 30.10 28.81 69.59 20.54
ResNet18-FT 39.19 37.41 30.61 30.00 73.03 60.93
ResNet34-FT 37.37 35.54 28.69 28.00 76.36 61.88
ResNet50-FT 39.70 36.50 27.07 26.27 79.29 62.88

Table 7. Per-class F1 score for each method—Class10 training setting.

Method\Water Level 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Random Forest 48.25 32.58 29.38 19.32 22.11 21.52 17.89 3.45 16.13 9.43 35.02
Extra Trees 45.05 36.65 33.79 19.88 27.84 26.09 20.32 6.35 13.14 28.33 32.85
AlexNet-FT 49.38 41.75 28.05 31.54 15.60 25.32 14.77 10.77 17.27 49.61 12.50
ResNet18-FT 71.72 55.67 32.05 16.67 34.10 31.43 24.62 10.89 26.23 66.94 41.18
ResNet34-FT 68.38 57.65 39.52 34.38 26.29 15.04 23.79 11.90 21.36 59.72 32.91
ResNet50-FT 63.32 47.49 38.20 23.96 31.30 13.11 29.63 13.86 14.74 66.08 59.77
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Table 8. Per-class F1 score for each method—Reg2Class10 training setting.

Method\Water Level 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Random Forest 0.00 20.55 14.71 20.14 26.51 19.53 13.20 1.41 5.13 0.00 0.00
Extra Trees 0.00 15.83 13.59 20.00 25.57 20.97 12.24 0.00 9.71 0.00 0.00
AlexNet-FT 53.89 41.79 33.65 30.05 25.11 24.56 23.81 9.02 16.51 56.79 1.69
ResNet18-FT 50.35 49.04 34.00 26.54 26.36 25.31 26.73 11.94 16.55 49.06 14.16
ResNet34-FT 54.09 40.84 34.55 23.66 23.70 30.08 26.84 11.68 23.13 34.90 4.55
ResNet50-FT 44.59 35.68 28.14 23.65 26.96 17.56 27.59 12.58 15.91 56.32 0.00

Table 9. Per-class F1 score for each method—Class15 training setting.

Method\Water Level WL < 5% 5% ≤ WL < 15% 15% ≤ WL < 30% 30% ≤ WL

Random Forest 50.61 40.68 32.08 82.52
Extra Trees 47.15 39.18 35.16 79.28
AlexNet-FT 0.00 0.00 0.00 82.14
ResNet18-FT 70.75 48.62 38.41 85.94
ResNet34-FT 69.06 43.59 46.36 88.53
ResNet50-FT 65.38 53.39 41.24 91.51
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Figure 4. Per-class F1-metric for all methods under the different training settings.

5. Discussion

From the results presented in Table 6 it is possible to see several trends. We observe that utilizing
the 2015 classification scheme leads to a direct increase in performance compared to the 2010 standard.
Specifically, we see that for all models, except AlexNet-FT, the F1-metrics have been improved
dramatically. This corresponds with prior research by Van der Steen et al. [33], who found that
the more detailed a sewer inspection standard is, the more mistakes inspectors make.

When looking into the training settings, we see that the classification approaches consequently
match or outperform the methods trained with a regression approach. This indicates that the strict
discrete class membership enforced by the classification approaches leads to better generalization than
the soft continuous class membership enforced by the regression approaches. This may be a direct
consequence of all the ground truth labels being discrete values with a known uncertainty margin,
leading to the values actually representing a span of values. The regression approaches may, however,
perform better if the ground truth labels were provided by a continuous measurement such as data
from a flow meter.
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When looking into the class-specific performance of the Class10 and Reg2Class10 training settings
in Tables 8 and 9, we observe that the models have a high F1-metric for the first few classes where
the water level is still visually distinguishable. However, as the water level increases, the F1 metric
performance decreases until an increase in performance for the 90% and 100% water level classes.
We see that for the tree-based methods in the Reg2Class10 setting, there are several classes with an
F1-metric of 0% while other classes have an F1 metric of up to 26%. Similarly, we observe that the
AlexNet-S model simply focuses on a single class in its predictions as also shown by the Macro-F1
score, while the AlexNet-FT model is capable of producing more meaningful predictions. We also
see that the depth of the networks does not seem to correspond with an increase in performance of
the F1-metric.

It is observed that the tree-based methods do not match the micro-F1 score of the ResNets and
AlexNet for the Class15 training setting. However, when comparing the Macro-F1 metric, it is obvious
that the tree-based methods outperform the AlexNet on some classes. By looking into the results in
Table 9 we see that the tree-based models perform well on the two extreme classes, <5% and ≥30%,
but are not as capable at classifying the two intermediate classes where the inter-class variance may be
more subtle. Moreover, we see that the AlexNets do not generalize at all, instead simply collapsing to
predict only the majority class. This is in contrast with how the AlexNets performed in the Class10
and Reg2Class10 training settings, where only AlexNet-S failed to produce meaningful predictions.

These results show that by framing the water level estimation task as a clustering of perceptible
amount of water, as in the 2015 Danish standards, better facilitates machine learning-based methods
than using a direct mapping such as in the 2010 Danish standards. However, the results are not
perfect, as there are still some classes with a low classification rate. This could potential be improved
by including temporal information in the models, such that transitions between water levels can be
detected and spurious classification be ignored. Such an approach has been applied by the authors
of [28], who applied a Hidden Markov Model and window filtering to sewer defect classifications.
Geometric information, such as the size and shape of the pipe, may also prove useful as these are
closely linked with the water level. Last, information about defects would also help guide the models
toward the correct water level classification. Defects such as pipe collapse or large roots could lead to
abnormally high water levels.

6. Conclusions

Estimating the water level in sewers during inspection is important as it indicates the portion of
the pipe that cannot be visually inspected. Currently, it is a subjective and difficult task of the inspector
to estimate the water level through CCTV recordings and only limited research has been conducted on
automating this process. A professionally annotated dataset with 11,558 CCTV sewer images provided
by three Danish utility companies is used as the foundation for an investigation on the feasibility of
using deep neural networks for automating water level estimation. The problem is studied through
two classification tasks following the 2010 and 2015 Danish Sewer Inspection Standards. Four deep
neural network models (AlexNet, ResNet-18, ResNet-34, and ResNet-50) and two traditional decision
tree methods (Random Forest and Extra Trees) are compared against each other.

The deep learning methods generally outperform the decision trees, but the networks do not
seem to benefit from the abstraction levels of the very deep layers. The best results are provided by
ResNet with micro-F1 scores of 39.70% and 79.29% following the 2010 and 2015 standards, respectively.
These are promising results given that the data are noisy and the classifications are based on single
images. Utilizing temporal, contextual, and geometric information could improve the classification
rate and should be considered for future work.
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Appendix A. Results for CNNs Trained From Scratch

Table A1. Results for the CNNs trained from scratch, for each of the different training settings.

Method
Class10 Reg2Class10 Class15

micro-F1 Macro-F1 micro-F1 Macro-F1 micro-F1 Macro-F1

AlexNet-S 10.05 1.67 10.05 1.67 69.59 20.54
ResNet18-S 25.96 23.59 18.79 17.79 70.81 54.41
ResNet34-S 29.90 25.72 20.71 19.80 72.02 53.35
ResNet50-S 29.29 26.20 19.79 18.92 68.18 48.31

Table A2. Per-class F1 score for the CNNs trained from scratch—Class10 training setting.

Method\Water Level 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

AlexNet-S 0.00 0.00 18.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ResNet18-S 55.45 41.67 18.18 8.20 27.07 20.83 8.00 16.04 10.53 16.20 37.31
ResNet34-S 51.68 38.64 30.59 20.00 16.54 24.18 11.76 11.49 8.85 22.62 46.62
ResNet50-S 43.22 32.00 28.24 10.37 24.51 14.93 17.89 6.11 13.89 56.00 40.99

Table A3. Per-class F1 score for the CNNs trained from scratch—Reg2Class10 training setting.

Method\Water Level 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

AlexNet-S 0.00 0.00 0.00 0.00 0.00 18.35 0.00 0.00 0.00 0.00 0.00
ResNet18-S 33.33 37.56 18.10 20.87 17.92 23.04 16.43 11.01 11.37 3.97 2.04
ResNet34-S 20.69 36.84 28.18 20.72 12.67 21.05 13.98 16.42 12.97 32.22 2.04
ResNet50-S 18.64 26.83 19.81 23.85 16.55 22.86 17.02 7.75 2.68 52.11 0.00

Table A4. Per-class F1 score for the CNNs trained from scratch—Class15 training setting.

Method\Water Level WL < 5% 5% ≤ WL < 15% 15% ≤ WL < 30% 30% ≤ WL

AlexNet-S 0.00 0.00 0.00 82.14
ResNet18-S 53.08 45.57 33.49 85.49
ResNet34-S 52.78 38.92 34.78 86.92
ResNet50-S 50.49 25.00 33.90 83.87
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