
water

Article

Isoscape of δ18O in Precipitation of the Qinghai-Tibet
Plateau: Assessment and Improvement

Yudong Shi 1, Shengjie Wang 1,* , Mingjun Zhang 1, Athanassios A. Argiriou 2 , Rong Guo 3,
Yang Song 1 and Xiaofan Zhu 4

1 College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China;
syd_1995@126.com (Y.S.); mjzhang2004@163.com (M.Z.); sy5030.student@sina.com (Y.S.)

2 Laboratory of Atmospheric Physics, Department of Physics, University of Patras, GR-265 00 Patras, Greece;
athanarg@upatras.gr

3 Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; gsgrong@126.com
4 Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences,

Lanzhou 730000, China; zxf_jc@163.com
* Correspondence: geowang@126.com

Received: 6 November 2020; Accepted: 30 November 2020; Published: 2 December 2020 ����������
�������

Abstract: The spatial distribution of stable water isotopes (also known as an isoscape) in precipitation
has drawn increasing attention during the recent years. In this study, based on the observations at
32 stations, we assessed two widely applied global isoscape products (Regionalized Cluster-based
Water Isotope Prediction (RCWIP) and Online Isotopes in Precipitation Calculator (OIPC)) at the
Qinghai-Tibet Plateau (QTP) and then established an improved isoscape of oxygen isotopes in
precipitation on a monthly basis using a regionalized fuzzy cluster method. Two fuzzy clusters can
be determined, which is consistent using three meteorological data. The monthly isoscapes show the
seasonal movement of high and low isotopic value regions across the QTP and reveal the influences
of monsoon and westerly moisture. According to the cross validation, the δ18O in precipitation in
the new monthly isoscapes for the QTP we propose performs better compared to the existing global
products. To create a regional isoscape in many other regions, the regionalized fuzzy cluster method
can be considered especially for regions with complex controlling regimes of precipitation isotopes.

Keywords: precipitation; Qinghai-Tibet Plateau; δ18O, isoscape; fuzzy cluster

1. Introduction

The in situ monitoring of stable hydrogen and oxygen isotopes in precipitation provides a method
to determine the hydrological processes at the global or regional scale [1,2]. As an important basis
in isotope studies, the spatial distribution of hydrogen and oxygen stable isotopes in precipitation at
different timescales has drawn more and more attention [3–6]. During the past decades, several elaborate
methods have been used for isoscape mapping, and the global and regional isoscapes are helpful to
understand the spatial regimes of precipitation isotopes [7–9].

For many hydrological and ecological researchers using stable isotope techniques, it is critical to
know the distribution of long-term averages of stable water isotope ratios (especially in precipitation)
on a monthly scale at least [10]. This need is covered by global or regional isoscape products with
good resolution and accuracy. On a global basis, there are currently two sets of high spatial resolution
products publicly available online, i.e., the Online Isotopes in Precipitation Calculator (OIPC; sometimes
referred to as the BW model) [3,8,11] developed by Gabriel J. Bowen of the University of Utah, and the
Regionalized Cluster-based Water Isotope Prediction (RCWIP) [12] developed by the International
Atomic Energy Agency (IAEA). The data sources of these two products are mainly based on the
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Global Network of Isotopes in Precipitation (GNIP) [13], although a small number of original data
may have been obtained from other sources. Both products provide monthly and annual results and
are spatially interpolated over the global land area using additional variables. Compared with other
isotope products, they have a high resolution and can be obtained and used online.

In recent years, global isoscape products have been widely used in regional case studies. Especially
in areas with limited or no data, the long-term mean of precipitation isotope ratios has been extracted
from these products [4,14,15]. The global distribution of the GNIP stations is far from being uniform.
In many low-populated regions, such as mountains, deserts, and glaciers, there is a lack of long-term
time series of measured data. Isotope studies in these areas need complement data resulting from
interpolation methods, and this introduces uncertainties. Consequently, the direct application of these
global isoscape models to such an area without prior verification may lead to incorrect inferences.

The sources of precipitation and water vapor at the Qinghai-Tibet Plateau (QTP) are complex.
According to Yao et al. [16], the QTP can be divided into three sub-regions regarding moisture regimes,
namely the westerlies domain, the monsoon domain, and the transition domain. In the different
parts of the QTP, aside from the different moisture sources, different local climate effects also exist.
In the northwestern QTP, the altitude effect is significantly imprinted in the δ18O of precipitation;
moreover, the δ18O values are remarkably correlated with surface air temperature [17]. At the Qinghai
Lake watershed (in the northeastern QTP), precipitation isotopes are influenced by local moisture
recycling [18]. Zhang et al. [19] found that at the central QTP δ18O values show a significant seasonal
variation. A positive correlation is shown between oxygen isotope values and temperature during the
pre-monsoon and the westerlies season, and δ18O is affected by regional convective activity during
the monsoon season. At the southeastern QTP, regional precipitation is controlled by the monsoons;
also, the moisture source changes with season [20]. Gao et al. [21] studied the δ18O value in precipitation
using two different isotope-equipped general circulation models (GCMs) in the southern part of QTP.
The isotope-equipped GCM results are corrected using two types of spatial interpolation methods [22],
in order to increase the accuracy of GCM-based results over the QTP. However, an updated isoscape
with fine spatial resolution across the QTP is still needed for practical use.

It is clear that the QTP and its surrounding areas are poorly represented in the GNIP database
since only a few stations such as Lhasa and Hotan contribute data to this database [7]. Consequently,
an in-depth evaluation is required in order to check whether global precipitation isotope data products,
including OIPC and RCWIP, can well depict the precipitation isotope information in the QTP. In this
paper, we evaluate the applicability of the OIPC and RCWIP isoscapes in the QTP on a monthly scale
using data published in literature. Furthermore, we propose a new isoscape for the QTP. This isoscape
may provide a reference for further understanding the precipitation isotope mechanism and the
regional hydrologic processes in the QTP under complex climate and environmental conditions.

2. Materials and Methods

2.1. Study Area and Isotope Observation Data

The Qinghai-Tibet Plateau, also known as the “roof of the world” and “water tower of Asia,”
plays an important role in the current water cycle of Asia [23]. In this study, we focused on the plateau
within the boundaries of China (Figure 1) [24]. In Figure 1a, the sub-region boundaries in the research
scope are as follows: Qaidam (I), Eastern Qinghai-Tibet (II), South Tibet (III), Western Sichuan-Southeast
Tibet (IV), Kunlun-Ngari-North Tibet (V), and South Himalayas (VI); the DEM (Digital Elevation
Model) data are acquired from the Geospatial Data Cloud (http://www.gscloud.cn); the boundary of
the QTP is based on Zhang et al. [24], and the division of sub-regions is according to Ren and Bao [25].
The long-term mean of precipitation amount (P) and air temperature (T) during 1981–2010 is provided
by the China Meteorological Data Service Center (http://data.cma.cn/).

http://www.gscloud.cn
http://data.cma.cn/
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Figure 1. Maps showing sampling sites and altitude (a), long-term annual mean precipitation amount 
(b), and air temperature (c) in the Qinghai-Tibet Plateau (QTP). 

The observed data used in this study were retrieved from the TNIP (the Tibetan Network for 
Isotopes in Precipitation) database [16] and other published papers (Table 1). For the isotopic data, 
we adopted strict data quality control standards: 1) The natural precipitation was collected without 
any direct impact of weather modification methods, and there was no artificial selectivity when 
collecting data; 2) The sampling duration was at least three months and the specific sampling date 
was provided; 3) Each sampling station operated independently; data could not be collected at 
multiple adjacent stations to form a single station data time series; detailed station information (e.g., 
latitude, longitude, and altitude) were available; 4) The data measurement error of δ18O value was 
less than 0.5‰. Since precipitation in the QTP is not evenly distributed all year round, in this work, 
a year was divided into summer half year (May to September) and winter half year (October to April) 
[26]. Finally, this study collected 296 precipitation isotope data at 32 stations on a monthly scale.

Figure 1. Maps showing sampling sites and altitude (a), long-term annual mean precipitation amount
(b), and air temperature (c) in the Qinghai-Tibet Plateau (QTP).

The observed data used in this study were retrieved from the TNIP (the Tibetan Network for
Isotopes in Precipitation) database [16] and other published papers (Table 1). For the isotopic data,
we adopted strict data quality control standards: (1) The natural precipitation was collected without
any direct impact of weather modification methods, and there was no artificial selectivity when
collecting data; (2) The sampling duration was at least three months and the specific sampling date was
provided; (3) Each sampling station operated independently; data could not be collected at multiple
adjacent stations to form a single station data time series; detailed station information (e.g., latitude,
longitude, and altitude) were available; (4) The data measurement error of δ18O value was less than
0.5%�. Since precipitation in the QTP is not evenly distributed all year round, in this work, a year was
divided into summer half year (May to September) and winter half year (October to April) [26]. Finally,
this study collected 296 precipitation isotope data at 32 stations on a monthly scale.
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Table 1. Basic information and long-term climatology for each sampling station across the Qinghai-Tibet Plateau.

Station Longitude (◦E) Latitude (◦N) Altitude (m) P (mm) 1 T (°C) 1 Water Vapor Regime 2 Sub-Region 3 n 4 Data Source

Tuole 98.42 38.80 3367 473 −5.35 the westerly domain Qaidam 7 [27]
Yeniugou 99.63 38.70 3320 434 −0.55 the westerly domain Qaidam 9 [28]

Haibei 101.31 37.56 3280 592 −0.89 the westerly domain Qaidam 12 [29]
Delhi 97.37 37.37 2981 223 −0.29 the westerly domain Qaidam 12 [16]

Gangca 100.22 37.29 3260 411 −0.31 the westerly domain Qaidam 6 [30]
Tianzhu 102.85 37.25 2700 439 3.37 the westerly domain Qaidam 10 [31]
Golmud 95.09 36.35 2889 63 3.01 the westerly domain Qaidam 3 [32]
Muztag 75.02 38.28 4430 150 −0.84 the westerly domain Kunlun-Ngari-North Tibet 5 [28]
Tizinafu 75.20 37.83 3058 96 0.10 the westerly domain Kunlun-Ngari-North Tibet 4 [33]

Taxkorgen 75.27 37.77 3100 96 0.10 the westerly domain Kunlun-Ngari-North Tibet 12 [16]
Xihexiu 76.68 36.98 2960 119 −2.90 the westerly domain Kunlun-Ngari-North Tibet 10 [17]

Shiquanhe 80.08 32.50 4278 169 −2.18 the transition domain Kunlun-Ngari-North Tibet 10 [16]
Gaize 84.07 32.30 4430 133 −1.81 the transition domain Kunlun-Ngari-North Tibet 12 [16]

Xainza 88.70 30.90 4770 330 −1.25 the transition domain Kunlun-Ngari-North Tibet 12 [19]
Madoi 98.26 34.92 4300 370 −3.69 the transition domain Eastern Qinghai-Tibet 11 [34]
Beiluhe 92.94 34.83 4642 315 −4.81 the transition domain Eastern Qinghai-Tibet 10 [35]

Tuotuohe 92.43 34.22 4533 323 −4.51 the transition domain Eastern Qinghai-Tibet 12 [16]
Yushu 97.02 33.02 3682 656 −2.48 the transition domain Eastern Qinghai-Tibet 12 [16]
Cona 91.40 32.07 4623 453 −2.06 the transition domain Eastern Qinghai-Tibet 9 [36]
Lhasa 91.13 29.70 3649 426 1.62 the monsoon domain South Tibet 12 [16]
Nagqu 92.07 31.48 4508 514 −1.95 the monsoon domain South Tibet 12 [16]
Baidi 90.43 29.12 4430 358 0.25 the monsoon domain South Tibet 11 [16]
Larzi 87.68 29.08 4000 336 0.69 the monsoon domain South Tibet 4 [16]

Wengguo 90.35 28.90 4500 361 −0.43 the monsoon domain South Tibet 7 [16]
Dingri 87.12 28.65 4330 302 −0.26 the monsoon domain South Tibet 8 [16]

Dui 90.53 28.58 5030 389 −0.30 the monsoon domain South Tibet 10 [16]
Nyalam 85.97 28.18 3810 396 −1.70 the monsoon domain South Tibet 12 [16]

Zhangmu 85.98 27.98 2239 407 −1.64 the monsoon domain South Tibet 4 [16]
Yangcun 91.88 29.88 3500 522 0.14 the monsoon domain Western Sichuan-Southeast Tibet 8 [16]

Bomi 95.77 29.87 2737 553 3.12 the monsoon domain Western Sichuan-Southeast Tibet 11 [16]
Lulang 94.73 29.77 3327 611 4.41 the monsoon domain Western Sichuan-Southeast Tibet 11 [16]
Nuxia 94.57 29.47 2780 599 7.18 the monsoon domain Western Sichuan-Southeast Tibet 8 [16]
1 Annual mean precipitation amount (P) and air temperature (T) during 1981–2010 are provided by the China Meteorological Data Service Center (http://data.cma.cn/). 2 The water vapor
sources are classified according to Yao et al. [16]. 3 The division of sub-regions on the QTP according to Ren and Bao [25]. 4 To indicate the intra-annual coverages for each sampling site,
the number is based on monthly counts from January to December, and the same month in different years is counted once.

http://data.cma.cn/
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2.2. Global Precipitation Isoscape

The isoscape OIPC v3.2 (available online at http://wateriso.utah.edu/waterisotopes/) is released by
the University of Utah [11]; it provides monthly and annual δ18O values. The spatial resolution used
in this study was 5′ × 5′. The OIPC uses measured isotope data as well as the latitude and altitude of
known sampling stations in order to propose a best-fitting regression model:

δ18O = a|LAT|2 + b|LAT|+ cALT + d (1)

with δ18O the predicted value, a, b, and c regression coefficients, d the intercept, LAT the latitude
in degrees, and ALT the altitude in m. When the regression equation is determined, prediction by
interpolation is performed using as auxiliary variables the latitude and altitude. Finally, the precipitation
isotope estimates on a global scale are obtained by adjusting the predictions based on the residuals of
each measured station.

The isoscape RCWIP v1.0 (http://www-naweb.iaea.org/napc/ih/IHS_resources_rcwip.html) is a
model with a resolution of 10′ × 10′ developed by the IAEA [12]; compared to the OIPC, it includes
more auxiliary variables especially meteorological parameters. Monthly and annual stable water
isotope values are available online. Compared to the OIPC, the RCWIP does not adopt a unique
global model, but calculates different regression models for each climate region through a fuzzy
clustering method. This approach reduces the uncertainty of the global prediction model; furthermore,
the clustering method makes the transition over boundaries smooth.

In this paper, ArcGIS10.2 was used to extract the simulated δ18O values at the location of
32 measured stations in the QTP from the two global isoscapes and to evaluate their applicability in
the study region.

2.3. Meteorological and Elevation Data

In order to produce a new isoscape over a region, meteorological data across this region are
needed. To assess any eventual uncertainty introduced by the use of meteorological datasets, we tested
three of them: (1) Dataset of monthly surface observation values in individual years in China compiled
by the China Meteorological Administration (CMA); (2) Climatic Research Unit CL v2.0 dataset (CRU);
(3) WorldClim v2.0 dataset (WC). Table 2 has more information about them. ArcGIS 10.2 was also used
to extract the meteorological data at each sampling station. Regarding the meteorological input in
predicting isoscapes over the QTP, the latitude and longitude range was extracted using a 0.5◦ × 0.5◦

cell grid, resulting to a total of 999 grid points. A dataset was produced for CMA, CRU, and WC,
respectively. The precipitation data were normalized using the natural logarithm function (setting
0 mm to be equal to 0.01 mm). In addition, the altitude values used in this paper come from the DEM
data, provided by the Geospatial Data Cloud site, Computer Network Information Center, Chinese
Academy of Sciences (http://www.gscloud.cn) with a 1 km resolution.

Table 2. Information about meteorological data.

CMA CRU WC

Spatial Resolution 30′ × 30′ 10′ × 10′ 10′ × 10′

Period 1981–2010 1961–1990 1970–2000
Variable 1 P, T P, T P, T, V
Reference [37] [38] [39]

URL http://data.cma.cn/ https://crudata.uea.ac.uk/cru/data/hrg/ http://worldclim.org
1 P: precipitation amount; T: air temperature; V: water vapor pressure.

2.4. Fuzzy Clustering

A new δ18O isoscape of the QTP was established by applying fuzzy clustering on the observed
data. Fuzzy clustering partitions the study area according to meteorological parameters, allowing an

http://wateriso.utah.edu/waterisotopes/
http://www-naweb.iaea.org/napc/ih/IHS_resources_rcwip.html
http://www.gscloud.cn
http://data.cma.cn/
https://crudata.uea.ac.uk/cru/data/hrg/
http://worldclim.org
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area to belong to multiple clusters but at a different degree; it avoids the impact of crisp partitioning on
the results [12]. The Kaufman fuzzy clustering algorithm was used for calculation [40]. The algorithm
seeks to minimize the objective function:

C =
K∑

k=1

N∑
i=1

N∑
j=1

m2
ikm2

jkdi j

2
N∑

j=1
m2

jk

(2)

where mik is the unknown membership of the object i in cluster k, and dij is the dissimilarity between
objects i and j. The memberships must be non-negative and the memberships of a single area or site,
must sum to one.

In order to select the appropriate number of clusters empirically, we partitioned the area starting
from 2 up to 15 clusters using each set of meteorological data. Our final selection was based on the
Silhouette value, Dunn’s partition coefficient and Kaufman’s partition coefficient (Figure 2) for each
cluster. These three parameters helped us choose the appropriate number of clusters, Kaufman and
Rousseeuw [40] described their calculation process. When the silhouette value and Dunn’s partition
coefficient show high values and Kaufman’s partition coefficient shows a low value, the calculated
number of clusters can be considered as optimal. As shown in Figure 2, the optimal number of clusters
was 2, independently of the meteorological dataset used. Consequently, in the following we divide the
QTP in two clusters.

Water 2020, 12, x FOR PEER REVIEW 6 of 14 

 

area to belong to multiple clusters but at a different degree; it avoids the impact of crisp partitioning 
on the results [12]. The Kaufman fuzzy clustering algorithm was used for calculation [40]. The 
algorithm seeks to minimize the objective function: 

=





2 2

=1 =1

2=1

=1

C
2

N N

ik jk ijK
i j

N
k

jk
j

m m d

m
 (2) 

where mik is the unknown membership of the object i in cluster k, and dij is the dissimilarity between 
objects i and j. The memberships must be non-negative and the memberships of a single area or site, 
must sum to one. 

In order to select the appropriate number of clusters empirically, we partitioned the area starting 
from 2 up to 15 clusters using each set of meteorological data. Our final selection was based on the 
Silhouette value, Dunn's partition coefficient and Kaufman's partition coefficient (Figure 2) for each 
cluster. These three parameters helped us choose the appropriate number of clusters, Kaufman and 
Rousseeuw [40] described their calculation process. When the silhouette value and Dunn's partition 
coefficient show high values and Kaufman's partition coefficient shows a low value, the calculated 
number of clusters can be considered as optimal. As shown in Figure 2, the optimal number of 
clusters was 2, independently of the meteorological dataset used. Consequently, in the following we 
divide the QTP in two clusters. 

 
Figure 2. Average silhouette value (a) normalized Dunn’s partition coefficient (b) and normalized 
Kaufman’s partition coefficient (c) using each meteorological database across the QTP. 

The fuzzy membership degree of each measuring station in each cluster was greater than 0.1. 
Therefore, the previous recommendation that the membership degree is at least 0.1 [12] could not be 
adopted in this study. Through numerical debugging of fuzzy membership degree, based on the 
analysis of the moisture source and distribution of precipitation in QTP, the minimum membership 
degree selected in this paper was 0.3. In other words, when the membership of each station in a cluster 
was greater than 0.3, the station was included in the cluster in order to calculate the regression 
equation. Multiple regression models were calculated using meteorological data of each region, and 
then they were inversely sorted from high to low according to the adjusted R2 value. When the 
difference between the adjusted R2 value of two sets of models was small, the one with the smaller 
number of meteorological parameters was selected for the final calculation (Table S1 in the 
supplemental material). 

The optimal regression equation was used to calculate the fuzzy clustering equation of each 
month. The simulation value of each clustering regions was then generated by superposition, 
according to the residual interpolated by the observation station. Finally, the two clustering results 
were superimposed according to the weight distribution to generate the final monthly isoscape. 

Figure 2. Average silhouette value (a) normalized Dunn’s partition coefficient (b) and normalized
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The fuzzy membership degree of each measuring station in each cluster was greater than 0.1.
Therefore, the previous recommendation that the membership degree is at least 0.1 [12] could not
be adopted in this study. Through numerical debugging of fuzzy membership degree, based on the
analysis of the moisture source and distribution of precipitation in QTP, the minimum membership
degree selected in this paper was 0.3. In other words, when the membership of each station in a cluster
was greater than 0.3, the station was included in the cluster in order to calculate the regression equation.
Multiple regression models were calculated using meteorological data of each region, and then they
were inversely sorted from high to low according to the adjusted R2 value. When the difference
between the adjusted R2 value of two sets of models was small, the one with the smaller number of
meteorological parameters was selected for the final calculation (Table S1 in the supplemental material).

The optimal regression equation was used to calculate the fuzzy clustering equation of each month.
The simulation value of each clustering regions was then generated by superposition, according to the
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residual interpolated by the observation station. Finally, the two clustering results were superimposed
according to the weight distribution to generate the final monthly isoscape.

2.5. Assessment Method

The coefficient of determination (R2)

R2 =

∑n
i=1 (δ

M
i − δ

O)
2

∑n
i=1 (δ

O
i − δ

O)
2 (3)

with δO
i the observations, δM

i the simulation results, and δO is the mean value of the observations,
was used to evaluate the applicability of the two sets of simulated data in the QTP. The higher the R2

value, the smaller the dispersion between the simulated and the observed values, the better the linear
relationship, and the estimated value was closer to the measured value on the trend.

In addition, the leave-one-out (n − 1) “jackknife” resampling procedure [41] was applied in order
to test the precipitation isoscape of the QTP with fuzzy clustering. The jackknife method tests the
accuracy of simulation results by being applied for n number of iterations, in each iteration keeping
the value of one station out of the model calculation procedure. Thus, it provides a measure of the
accuracy of the simulation of the station.

3. Results and Analysis

3.1. Assessment of Previous Global Products in the QTP

Figure 3 shows the observed and estimated δ18O values derived from the two global isoscapes on
a monthly basis; the frames mark the summer half year from May to September when precipitation
is mainly concentrated. More information about the R2 values are provided as Table S2 in the
supplementary material. Generally, the simulated intra-annual trends of OIPC and RCWIP are similar
for most stations; although R2 > 0.8 can be seen in many stations, weak performances do exist for
some stations. The R2 values ranged from 0.002 to 0.999 for OIPC and from 0.020 to 0.944 for RCWIP;
the mean levels were 0.500 ± 0.274 and 0.434 ± 0.306, respectively. Approximate 59% and 44% of
stations in OIPC and RCWIP showed R2 values higher than 0.5.

Because of the uneven intra-annual precipitation amount and the relatively weak availability of
samples in the winter half year, not every station in Figure 3 has a 12 month time series. Regarding
the OIPC simulation during the summer half year (Table S2 in supplementary material), the stations
with high R2 values (>0.9) were located in the southeast QTP (Larzi, Bomi, Nagqu, Cona and Baidi).
Their altitudes ranged between 4000 and 4700 m a.s.l., all being higher than the average altitude of all
32 stations, with the exception of the Bomi station, located at 2737 m a.s.l. Regarding their moisture
regime, these stations are mainly in the monsoon domain, except for the Cona station, located in
the transition region. It should be mentioned that the global isoscape simulations greatly depend
on the isotopic input from the GNIP data, and only one station, Lhasa, was included in the GNIP;
the above-mentioned stations are generally close to the Lhasa station, both in terms of distance and of
altitude, which may partly explain why the measurements of these stations show the best agreement
with OIPC simulations. However, for RCWIP, the spatial distribution of R2 seems different from that of
OIPC, and some westerly dominated stations also showed high R2 values. In general, there are obvious
regional differences in the simulations of the two models OIPC and RCWIP, and a better predicted
isoscape is still needed for the QTP.
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Figure 3. Monthly variations of observed and simulated δ18O values at 32 stations across the QTP.
The frame indicates the summer half year.

The isotopic data of each month in Figure 3 are multi-year averages, and the inter-annual variation
is logically ignored. Here we selected the Lhasa station [13,16,29] to check the possible impact of
the inter-annual variations. Although the isotopic observations in Lhasa shown in Figure 4 is still
discontinuous in past decades, it does provide an available reference on the inter-annual issue of
precipitation isotopes of the QTP. The δ18O values show interannual fluctuations for all months;
extreme values appear in some years, which can be seen in March and October. During the winter
half year, with less samples, δ18O simulations in Lhasa deviate significantly from the observed values.
What may be the cause of interannual δ18O value fluctuation in precipitation? Gao et al. [42,43] found
that the interannual variation of δ18O in summer precipitation in Lhasa was affected by the ENSO
(El Niño-Southern Oscillation), and there was no significant correlation to the local precipitation amount
and surface temperature. According to Figure 4, the simulated values of both global isoscapes were
close to the observed multi-year average, especially for the summer half year. However, when strong
ENSO events occurred, the representativeness of the long-term mean may have been needed to
be considered.
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Figure 4. Comparison of monthly δ18O simulated by Online Isotopes in Precipitation Calculator (OIPC)
and Regionalized Cluster-based Water Isotope Prediction (RCWIP) and observed in Lhasa from 1986
to 2009.

3.2. Isoscape Established Using a Regionalized Clustering

3.2.1. Climate Clustering

Figure 5 presents the distribution of a fuzzy cluster membership across the QTP using the three
meteorological datasets comprising CMA, CRU, and WC. Whichever dataset is applied, the fuzzy
cluster analysis always went to two clusters; the spatial distribution of the two clusters across the
QTP was generally the same, independently of the meteorological input. The first cluster (Figure 5a–c)
was concentrated in the northwest region and in the Qilian mountain area in the northeast corner;
the second (Figure 5d–f) was in the southeast region and in the Qaidam basin area. Therefore, in this
paper, WC dataset were selected for calculation when establishing the new isoscape of the QTP.Water 2020, 12, x FOR PEER REVIEW 10 of 14 

 

 

Figure 5. Maps showing the membership fraction of each cluster using the three climatological 
databases (CMA, CRU, and WC). Subfigures (a), (b), and (c) show cluster 1, and (d), (e), and (f) are 
cluster 2. 

3.2.2. Establishing the Isoscape 

Selecting the optimal regression model is a prerequisite for establishing an accurate isoscape. 
Using the data from 32 sampling stations in the QTP, we established a regional isoscape of stable 
oxygen isotopes in precipitation (Figure 6). In Figure 6, various spatial pattern of precipitation 
isotopes can be seen, indicating the different controlling regimes for each monsoon or season; the 
specific regions with high and low isotope values move all year round. From January to April, the 
high δ18O value region gradually expanded from south to east; the eastern plateau experienced the 
δ18O enriching process, while the northwestern Qinghai-Tibet Plateau was always a low δ18O area. 
The monthly isoscapes between May and June showed significant changes. In May, the δ18O values 
were higher at the southern and eastern regions, but lower at the western regions; in June, however, 
δ18O was higher in the northwest and northeast regions and lower in the south. The moisture 
transported by the monsoon gradually strengthens, and the role of the westerlies’ moisture becomes 
weak, resulting in a large regional change of δ18O. From July to September, the δ18O value of 
precipitation on the QTP showed a spatial distribution with values lower in the south and higher in 
the north, and the northern plateau showed a relatively stable situation. In October, the areas with 
low δ18O values in the central and southern parts of the QTP gradually decreased, and the δ18O values 
increased. In November and December, the δ18O value showed a spatial distribution of high values 
in the southeast and low values in the northwest. 

Figure 5. Maps showing the membership fraction of each cluster using the three climatological
databases (CMA, CRU, and WC). Subfigures (a–c) show cluster 1, and (d–f) are cluster 2.
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3.2.2. Establishing the Isoscape

Selecting the optimal regression model is a prerequisite for establishing an accurate isoscape.
Using the data from 32 sampling stations in the QTP, we established a regional isoscape of stable oxygen
isotopes in precipitation (Figure 6). In Figure 6, various spatial pattern of precipitation isotopes can
be seen, indicating the different controlling regimes for each monsoon or season; the specific regions
with high and low isotope values move all year round. From January to April, the high δ18O value
region gradually expanded from south to east; the eastern plateau experienced the δ18O enriching
process, while the northwestern Qinghai-Tibet Plateau was always a low δ18O area. The monthly
isoscapes between May and June showed significant changes. In May, the δ18O values were higher
at the southern and eastern regions, but lower at the western regions; in June, however, δ18O was
higher in the northwest and northeast regions and lower in the south. The moisture transported by the
monsoon gradually strengthens, and the role of the westerlies’ moisture becomes weak, resulting in
a large regional change of δ18O. From July to September, the δ18O value of precipitation on the QTP
showed a spatial distribution with values lower in the south and higher in the north, and the northern
plateau showed a relatively stable situation. In October, the areas with low δ18O values in the central
and southern parts of the QTP gradually decreased, and the δ18O values increased. In November and
December, the δ18O value showed a spatial distribution of high values in the southeast and low values
in the northwest.Water 2020, 12, x FOR PEER REVIEW 11 of 14 
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Figure 6. Monthly isoscape of stable oxygen isotopes in precipitation across the QTP.

3.2.3. Comparison with the OIPC and RCWIP

The OIPC and RCWIP are two widely applied global isoscapes available online. They provide
helpful simulation data especially for areas where precipitation isotope measurements are scarce or
do not exist at all. However, because of the climate and landform of the QTP as well as the relatively
few observational data used for the development of those two global isoscapes, we considered that
the isoscape models can be further improved for this part of the world. Compared to the OIPC and
RCWIP isoscapes, the basic isotopic characteristics in our new isoscapes were consistent both spatially
and temporally. We tested the method using the “jackknife” resampling procedure and showed the
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absolute residuals between the simulated values of the three isoscapes and the observed monthly
values from the 32 stations (Figure 7). Generally, the residual values during the summer half year were
smaller than those during the winter half year, which was consistent for the three isoscapes. Compared
with the OIPC and RCWIP datasets, the residuals of the new isoscape we propose in the study
were significantly smaller for every month, which can be identified from the box plots. In addition,
the maximum absolute residual outlier of the OIPC, close to 16%� (Figure 7a), occurred in December;
the absolute residual outlier value of the RCWIP occurred in February and equaled approximately
20%� (Figure 7b); however, for the new isoscape, the maximum outlier value of absolute residual,
less than 14%�, appeared in October (Figure 7c). Generally, the absolute residuals of our isoscape,
either average or median, were closer to 0 than were those of the two other isoscapes, supporting the
argument that the new isoscape we propose performs better for the QTP.

Figure 7. Box plots of the monthly distribution of absolute residuals between the three isoscapes and
the observations at 32 stations: (a) OIPC, (b) RCWIP, and (c) this study. The boxes represent 25–75th
percentiles, and the line through the box represents the median; the whiskers indicate the 90th and 10th
percentiles; the rhombus above and below the whiskers indicates the outliers; and the circle with a
cross in the center indicates the average number.

4. Conclusions

In this study, we evaluated the applicability of two sets of global precipitation isoscapes (OIPC and
RCWIP) in the QTP. The results showed that the two isoscapes perform better for the summer half year
than for winter, and the spatial incoherence of residuals can be seen for the two isoscapes. To create
an improved isoscape using more observation input, we considered a regionalized fuzzy clustering
method. According to the cross validation, our isoscape showed a better performance than the previous
global isoscapes over the QTP, and the residuals greatly reduced in our new isoscape. To create a
regional isoscape in many other regions in the future, the fuzzy cluster method can be reconsidered
and recommended, especially for regions with complex controlling regimes of precipitation isotopes.
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It should be noticed that the long-term averages are always effective for a specific year, and more in
situ observations of precipitation isotopes are still of great importance.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/12/3392/s1,
Table S1: Regression factors applied for each month over the QTP. Table S2: The R2 values of OIPC and RCWIP for
each station over the QTP.
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