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Abstract: UV-activated Zr-doped composites were successfully produced through the impregnation of
Zr on the crystal lattice of different clay materials by a one-step route. Fixing the amount of Zr available
for dopage (4%), the influence of different supports, submitted to different chemical treatments,
on the photocatalytic activity of the resulting Zr-doped pillared clay materials (PILC) was assessed.
Both chemical characterization and structural characterization suggest that the immobilization of
Zr on montmorillonite and PILC structures occurred through isomorphic substitution between Si
and Zr in the tetrahedral sheet of the clay material. This structural change was demonstrated by
significant modifications on Si-OH stretching vibrations (1016 cm−1, 1100 cm−1 and 1150 cm−1),
and resulted in improved textural properties, with an increase in surface area from 8 m2/g (natural
montmorillonite) to 107 m2/g after the pillaring process, and to 118 m2/g after the pillaring and
Zr-doping processes ((Zr)Al-Cu-PILC). These materials were tested in the UV-photodegradation of
agro-industrial wastewater (AIW), characterized by high concentrations of recalcitrant contaminants.
After Zr-dopage on AlCu-PILC heterogeneous catalyst, the total organic carbon (TOC) removals of
8.9% and 10.4% were obtained through adsorption and 77% and 86% by photocatalytic oxidation,
at pH 4 and 7, respectively. These results suggest a synergetic effect deriving from the combination of
Zr and Cu on the photocatalytic degradation process.

Keywords: Zr-doped materials; pillared clays; advanced oxidation processes; photocatalysis;
agro-industrial wastewater

1. Introduction

Agro-industrial activities are one of the main sources of wastewater pollution and its impact
on the environment has received special attention in recent years [1,2]. Winery wastewater (WW) is
characterized by high load of recalcitrant organic compounds [1,3], and its unregulated discharge
represents a great threat to aquatic ecosystems and human health [4]. In this regard, the development
of effective and low cost methods for the treatment of WW is now imperative.

Currently, different techniques have been developed to treat this type of effluent,
including adsorption [5], coagulation [6] and biological processes [7]. However, some of the drawbacks
include the limited adsorption capacity and the formation of a potential second pollution source,
since these processes only transfer contaminants from one phase to another instead of destroying
them [8]. Biological degradation is the most common process applied, however, the microbial activity can
be inhibited by the recalcitrant character and toxicity of the organic contaminants [9]. To overcome these
problems, advanced oxidation processes (AOPs) have been proposed as effective, fast and non-expensive
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technologies for the degradation of recalcitrant contaminants [10–12]. Different homogeneous AOPs
have already been applied in the treatment of agro-industrial wastewaters, particularly ozonation [13],
Fenton [14] and photo-Fenton (solar and UV-A LEDs) processes [15]. Nonetheless, despite the
interesting results obtained, Fenton processes have important limitations, namely the acidic conditions
needed to improve the degradation efficiency, the additional procedure to remove the homogeneous
catalyst from treated effluent, and the neutralization of the treated effluent to meet the legal discharge
limits (pH 6.0–9.0) [16]. In order to overcome these drawbacks, heterogeneous AOPs have been the
main focus of research interest in the last years, due to the substantial reduction in the effective costs
associated with the sludge treatment, as well as the easy catalyst recovery and potential reuse [17,18].

The Catalytic Wet Peroxide Oxidation (CWPO) process is one of the most efficient, economical and
environmental-friendly advanced oxidation processes for the treatment of non-biodegradable pollutants
under milder conditions, and was successfully applied in the treatment of several organic contaminants,
using different types of supports [19–22]. Considering the recalcitrant character of some type of
effluents and the fairly poor results that have been obtained so far with the conventional Fenton process,
the combination of UV light irradiation in the oxidation processes was proposed with a significant
improvement in degradation efficiency [22–26].

The application of CWPO process in the treatment of WW is quite limited. Among our previous
research studies, where different clay-based supported catalysts were applied for the first time in the
heterogeneous UV/H2O2-assisted treatment of a real winery wastewater [27,28], only few heterogeneous
catalysts including Fe-graphite [29] and natural clay [30] were applied to improve the efficiency of
CWPO in the treatment of a winery wastewater. The results obtained by other studies are very
interesting, with significant TOC removals, 80% and 55%, respectively. However, the authors did
not explore the influence of crucial operational conditions, namely the variation of pH conditions,
which may affect the efficiency of the photo-catalytic process.

According to our previous studies, the application of AlCu pillared clay (PILC) as heterogeneous
catalyst revealed great stability along the treatment process and a high performance at neutral pH
conditions, reaching a TOC removal of 83% ([H2O2]0 = 98 mM; catalyst dosage = 3.00 g/L). This is
particularly important, once it allows the catalyst reuse and eliminates the cost of effluent neutralization
before its discharge. Thus, in this work, a novel Zr-doped AlCu-pillared clay ((Zr)AlCu-PILC) was
prepared, attending to the ZrO2 excellent electrical, mechanical, chemical and photocatalytic properties.
Accordingly, AlCu-PILC was chosen for this purpose owing to their low cost, environmental stability,
high surface area and adsorption capacity, as well as great photo-catalytic activity, which combined
with Zr may be significantly enhanced [20,21]. Zr-nanocomposites have been prepared by quite a
few methods, including the sol–gel process [31,32], combustion [33], the hydrothermal method [34],
microwave irradiation [35], etc. However, it continues to be a challenge to find a simple, efficient and
low cost methodology to prepare these nanocomposites.

This work intends to develop a one-step route to incorporate Zr onto clay lattice, promoting great
stability and improved photocatalytic activity. The resulting photocatalyst will be tested in the
photodegradation of a real WW under UV-C irradiation, and the influence of Zr immobilization on the
properties and photoactivity of the heterogeneous catalysts will be discussed.

Different models have been employed to describe the kinetics of catalytic processes involving a
heterogeneous liquid–solid system [36–38]. Reaction control models, such as pseudo-first-order and
pseudo-second-order models, were considered unsuitable to describe the kinetics of heterogeneous
photocatalytic processes, because the two separated linear regression analyses obtained did not take
into account relevant factors, namely, the transient period between each linear region, the non-linear
behavior during the induction period, and the objective determination of each region, which is
subjective when applying two separated linear regressions. The Fermi’s model provides a single fit to
experimental results showing a transition between the induction period (slow degradation) and the
subsequent rapid degradation step of an organic compound (inverted S-shaped transient curve) [39–41].
Considering that the degradation process does not have to follow any particular kinetics or reaction
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order, it is worth noting that Fermis based model was specifically developed to describe the kinetics
of complex systems, involving mixtures of unknown pollutants and several reaction intermediates
formed during the photocatalytic process. Therefore, it includes lumped analytical parameters, such as
TOC, that can be derived in groups of compounds with different reactivity [42].

In a previous work [42], a lumped kinetic model based on Fermi’s equation was developed to
describe the TOC histories for the degradation of a dye by catalytic wet peroxide oxidation, as shown
in Equation (1)

TOC
TOC0

=
1− xTOC

1 + exp
[
kTOC(t− t∗TOC)

] + xTOC (1)

where kTOC corresponds to the apparent reaction rate constant; t∗TOC represents the transition time related
to the TOC content curve’s inflection point, and xTOC corresponds to the fraction of non-oxidazable
compounds that are formed during the reaction.

The Lumped kinetic model based on Fermi’s equation has successfully described the kinetics of
our previous experiments using pillared clays in the H2O2-assisted photocatalytic wet oxidation of
WW and, therefore, it is intended to apply this method in order to describe the kinetics of the WW
degradation process using the new proposed materials as heterogeneous catalysts.

2. Materials and Methods

2.1. Reagents and Winery Wastewater Sampling

ZrOCl2.8H2O (99%) was supplied by Alfa-Aesar, CuCl2.2H2O (99%) by Panreac, H2O2 (30% w/v)
by Sigma-Aldrich. NaOH and H2SO4 (95%) were both obtained from Analar NORMAPUR. Deionized
water was used to prepare the respective solutions. The agro-industrial wastewater (AIW) was collected
from a Portuguese winery cellar located in the Douro region (Northeast of Portugal). The main chemical
parameters measured are shown in Table 1. Prior to the oxidation process, the wastewater was submitted
to a primary treatment, where the suspended solids were removed from the effluent.

Table 1. Agro-industrial wastewater characterization.

Parameter Value

pH 3.8 ± 0.1
Chemical Oxygen Demand (mg O2/L) 1420 ± 45

Biochemical Oxygen Demand (mg O2/L) 610 ± 15
Total Organic Carbon (mg C/L) 500 ± 12

Total Polyphenols (mg gallic acid/L) 105 ± 3
Phosphates (mg P2O5/L) 2.7 ± 0.2
Sulphates (mg SO4

2−/L) 17.8 ± 1.0
Total Iron (mg Fe/L) 0.45 ± 0.02

Aluminium (µg Al/L) 17.5 ± 0.9
Cadmium (µg Cd/L) 2.1 ± 0.1

Copper (µg Cu/L) 400 ± 18
Chromium (µg Cr/L) 0.05 ± 0.003

Manganese (µg Mn/L) 29 ± 1.4
Zinc (µg Zn/L) 4200 ± 200

2.2. Clay Mineral

Natural montmorillonite (MT) was purchased from Fluka, Alfa-Aesar. The chemical composition
and main surface properties of natural clay mineral are listed in Tables 2 and 3, respectively. The chemical
data was determined by energy dispersive X-ray spectroscopy (EDS/EDAX, FEI QUANTA–400).
The total iron expressed as Fe2O3 content in raw-montmorillonite was found to be 4.28%. The cation
exchange capacity (CEC) of the mineral fractions was measured following the ammonium acetate
method proposed by Chapman [43].
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Table 2. Main chemical compositions of raw montmorillonite and its derived catalysts, obtained by
EDS/EDAX (wt.%).

Sample SiO2
(%)

Al2O3
(%)

Fe2O3
(%)

MgO
(%)

Na2O
(%)

CaO
(%)

K2O
(%)

CuO
(%)

ZrO2
(%) Al/Si Zr/Si CEC

(meq/g)

MT 68.80 21.97 1.58 3.13 2.54 0.95 0.31 - - 0.32 - 0.61
Zr-MT 63.35 20.09 1.50 2.90 2.90 0.85 0.31 - 5.54 0.32 11.44 0.22

AlCu-PILC 64.15 26.36 1.36 2.53 0.97 0.26 0.37 1.32 - 0.41 - 0.23
(Zr)Al-PILC 60.66 25.62 1.69 2.15 1.17 0.56 0.6 - 5.14 0.42 11.80 0.21
(Zr)AlCu-PILC 60.46 25.64 1.03 1.97 1.02 0.24 0.23 1.30 5.41 0.42 11.18 0.22

Table 3. Specific surface areas and pore characteristics of MT and their respective catalysts.

Sample SBET (m2/g) Vtotal pore (cm3/g)

MT 8.5 0.047
Zr-MT 65 0.109

Al-Cu-PILC 107 0.202
(Zr)Al-PILC 81 0.146

(Zr)Al-Cu-PILC 118 0.217

2.3. Analytical Techniques

Several physical-chemical parameters were measured in order to characterize the agro-industrial
wastewater, namely the chemical oxygen demand (COD), the biological oxygen demand (BOD5),
the total organic carbon (TOC) and the total polyphenols (mg gallic acid/L) presented in Table 1.
The COD and BOD5 were determined according to Standard Methods (5220D; 5210D; respectively) [44].
COD analysis was carried out in a COD reactor from HACH Co. and a HACH DR 2400
spectrophotometer was used for colorimetric measurement. Biochemical oxygen demand (BOD5)
was determined using a respirometric OxiTop system. pH evolution was followed by means of a
pH-meter (HANNA Instruments, Rhode Island, USA). The TOC content (mg C/L) was determined
using a Shimadzu TOC-L CSH analyzer (Tokyo, Japan). Total polyphenols were evaluated following
the Folin–Ciocalteu method [45].

2.4. Catalysts Preparation

The preparation of the pillared clays was carried out following a conventional procedure
described in detail by Molina, et al. [46]. AlCu-PILC was prepared through the intercalation between
montmorillonite fractions and poly(hydroxy)aluminium (Al3(OH)4

5+) and copper Cu3(OH)4
2+ species.

The pillaring solution was prepared by slow addition of a 0.2 M NaOH solution to a mixture of 0.1 M
AlCl3 and 0.1 M CuCl2 (Cu/(Al+Cu) = 0.1), under constant stirring until the molar ratio OH/Al = 2.5
was reached. The resulting solution was adjusted to pH 6 and was further aged for 8 h at 298 K.
The intercalation process was initiated by the addition of a suspension of 0.1 wt.% montmorillonite in
deionized water to the pillaring solution, applying the stoichiometry of 10 mmol Al/g clay. The cationic
exchange process was carried out at room temperature for 12 h under constant stirring. The resulting
suspension was washed by centrifugation with deionized water in order to reach ionic conductivity
values lower than 10 µS. After air-drying, the resulted material was calcinated for 2 h at 400 ◦C.

The Al-Cu oligomeric solution was adjusted to pH 6 in order to achieve the higher proportion of
oligomeric species: 100% of both Al3(OH)4

5+ and species. The aqueous speciation was calculated by
Visual MINTEQ, version 3.0. After the pillaring process, Cu2+ oligomeric species were converted to
the respective metal oxide clusters by dehydration and dehydroxylation along the calcination process.
The Al-PILC was prepared following the same procedure adopted to AlCu-PILC, but only using
poly(hydroxy)aluminium (Al3(OH)4

5+) species.
The Zr-doped catalysts (Zr-MT, (Zr)Al-PILC and (Zr)AlCu-PILC)) were prepared by the incipient

wetness impregnation method. The precursor solution was prepared with ZrOCl2.8H2O in order to
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obtain a zirconium load of 4 wt.%. After impregnation process, the doped catalysts were dried
at 100 ◦C overnight and calcinated for 3 h at 400 ◦C. The results obtained from the chemical
characterization (Table 2) confirm that 4 wt.% of zirconium were successfully immobilized on different
heterogeneous catalysts.

2.5. Catalysts Characterization

The FTIR spectra were obtained by mixing 1 mg natural montmorillonite with 200 mg KBr.
The powder mixtures were then inserted into molds and pressed at 10 ton/cm2 to obtain the transparent
pellets. The samples were analyzed with a Bruker Tensor 27 spectrometer and the infrared spectra
in transmission mode were recorded in the 4000–400 cm−1 frequency region. The microstructural
characterization was carried out by scanning electron microscopy (SEM/ESEM FEI QUANTA 400) and
the chemical composition of the different catalysts was estimated (Table 2) using energy dispersive
X-ray spectroscopy (EDS/EDAX).

The textural parameters of samples were obtained from N2 adsorption–desorption isotherms
at 77 K using a Micromeritics ASAP 2020 apparatus (Norcross, Georgia, USA). The samples were
degassed at 150 ◦C up to 10−4 Torr before analysis. The specific surface area (SBET) was determined by
applying the Gurevitsch’s rule at a relative pressure p/p0 = 0.30 and according to the Brunauer, Emmet,
Teller (BET) method from the linear part of the nitrogen adsorption isotherms. Different pore volumes
were determined by the Barrett, Joyner, Halenda model (BJH model).

2.6. Adsorption Tests

Different adsorption tests were carried out in order to predict the amount of organic carbon
removed through adsorption. The adsorption batch experiments were carried out at different pH
conditions (pH 4.0 and pH 7.0) by adding 3.00 g/L of each heterogeneous catalyst into 500 mL
of WW (500 mg C/L). The temperature was kept constant throughout the experiments. After the
adsorption runs, the samples were centrifuged and the TOC content of the supernatant solution was
measured. The percentage of organic carbon removed through adsorption was calculated according to
Equation (2) [47,48]:

TOCrem.(%) =
TOC0 − TOCt

TOC0
× 100 (2)

where TOC0 is the initial TOC content (mg C/L) and TOCt is TOC value at instant t (mg C/L).

2.7. Photocatalytic Experiments and Kinetic Modelling

The photocatalytic experiments were performed in a batch cylindrical photoreactor (600 cm3)
equipped with a UV-C low pressure mercury vapour lamp (TNN 15/32)—working power = 15 W
(795.8 W/m2) and λmax = 254 nm (Heraeus, Germany). The UV absorption spectrum of the AIW reveals
a maximum at ca. 275 nm (with and without the catalysts) and a high absorption at the wavelength
where the UV-C lamp emits. In a typical run, 3.0 g/L of catalyst was mixed with 500 mL of the AIW
(TOC = 500 mg C/L) for 15 min. After this, a specific amount of H2O2 (98 mM) was added to the
suspension and the UV light was turned on at the same time. The initial pH varied from 4.0 to 7.0,
and was adjusted by adding 1 M of H2SO4 or 1 M of NaOH. After the reaction has started, 20 mL
of solution was withdrawn for TOC measurements at different reaction times, completing a total
period of 240 min. The samples were centrifuged and the Zr and Cu concentrations were analyzed by
atomic absorption spectroscopy (AAS) using a Thermo Scientific iCE 3000 SERIES. All experiments
were performed in triplicate and the observed standard deviation was always less than 5% of the
reported values.

A kinetic modelling based on a lumped kinetic model traduced by Fermi’s equation was carried
out in order to describe the WW degradation process. The experiments were conducted at different
pH conditions (pH 4 and pH 7), where temperature, effluent volume, contaminant concentration,
H2O2 concentration and catalyst dosage were kept constant. A nonlinear least squares regression,
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based on the Levenberg–Marquardt (LM) algorithm, was applied using the OriginPro 8.5 “Sigmoidal
Fit Tool”. As a result, a unique semi-empirical function is applied to simultaneously describe the initial
low TOC conversion (induction period) and subsequent rapid degradation step. Therefore, both the
initial transition period and pseudo-first order kinetic period can be expressed with the proposed
model [49].

3. Results and Discussion

3.1. Catalysts Characterization

The X-ray diffractograms corresponding to natural montmorillonite (MT) and to Zr-doped and
undoped PILCs, are shown in Figure 1. The hkl reflections associated with MT diffraction pattern are
characteristic of a montmorillonite clay mineral with mixed interlayer composition including different
proportions of Na+ and Ca2+ ions (13.08 Å). This assumption is in agreement with the chemical
characterization data, which shows proportions of 0.95% and 2.54% of CaO and Na2O (Table 2),
respectively. The MT samples modified with previously synthesized oligomeric species (Cu3(OH)4

2+

and/or Al3(OH)4
5+ show a shift of the basal reflection d001 from 13.08 Å (MT) to 18.02 Å and to 17.01 Å

for (Zr)AlCu-PILC and (Zr)Al-PILC, respectively, confirming the insertion of the oligomeric species in
the interlayer region of montmorillonite and the successful pillaring process. The higher expansion
observed when both Cu- and Al-oligomeric species were intercalated on montmorillonite results from
the higher pillars formed, indicating that the number, charge, size and shape of the oligomeric species
affect the pillar size. These results were also suggested by the textural properties obtained for these
materials (Table 3), since the (Zr)AlCu-PILC has higher surface area (ABET=x) and higher number of
total pore volume than (Zr)Al-PILC, suggesting an increase in contact area available for absorption
due to the higher pillars formed.
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Figure 1. X-ray diffraction results obtained before (MT) and after the pillaring process (AlCu-PILC)
and Zr-dopage ((Zr)-Al-PILC, (Zr)AlCu-PILC).

Comparing both (Zr)AlCu-PILC and AlCu-PILC diffraction patterns, it is possible to observe an
identical behaviour, confirming that Zr was probably incorporated into the AlCu-PILC lattice without
structural modification. The chemical composition of both samples before and after the Zr-doping
process is also in agreement with this previous conclusion, given that the increase in Zr amount
in doped-clay minerals is accompanied by a decrease in Si proportion, suggesting the isomorphic
substitution between Si and Zr in the tetrahedral sheet of the pillared clay. This mechanism is triggered
by the similar ionic radii of both cations, where the new one may have identical or lower ionic charge
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than the replaced one. In this case, both Si and Zr have similar ionic radii and the same ionic charge
(+4) and, therefore, no structural charge was developed and no significant structural changes have
occurred. This is particularly important, because once the AlCu-PILC has not been structurally affected
by the doping process, the adsorption capacity, which is crucial for its catalytic activity, was also not
negatively affected. Moreover, enhanced catalyst stability is expected; once Zr is directly incorporated
on the crystal lattice of montmorillonite, the risk of metal leaching is significantly lower.

Comparing both (Zr)-MT and MT spectra, no additional conclusions are achieved, since, after the
Zr impregnation process, sample (Zr)-MT was submitted to the calcination process, which resulted
in the total interlayer collapse to 9.55 Å by dehydration. Therefore, independently of the position of
Zr (tetrahedral sheet or interlayer region) on the MT structure, the structural collapse will occur and
avoid additional conclusion by means of X-ray diffraction (XRD).

Figure 2 depicts the FTIR spectra obtained before (MT) and after the pillaring process (AlCu-PILC),
as well as before (AlCu-PILC) and after the Zr-doping process ((Zr)AlCu-PILC). The results show
some structural alterations on montmorillonite after the uptake of metal poly(hydroxy)-complexes and
consequent formation of pillars on its internal surface. This is traduced by the decrease in intensity and
shift of peaks in the range between 800 and 950 cm−1, after the pillaring process, which are assigned
to Al-OH, Fe-OH and Mg-OH vibration modes, at 916 cm−1, 877 cm−1 and 849 cm−1, respectively.
These structural changes were only observed for PILC samples, which, according to Zhou et al. [50],
can be attributed to the interactions between Al or Al/Cu mixed poly(hydroxy) species and the alumina
octahedral layers.

Significant modifications on Si-OH stretching vibrations were observed after the Zr-doping
process, due to the shift of the main band from 1016 cm−1 to 1040 cm−1, and the reduction in intensity
of the additional stretching vibrations assigned to the Si-O group, at 1150 cm−1 and 1100 cm−1,
confirming the incorporation of Zr ions directly in the crystal lattice by isomorphic substitution of
Si ions in the tetrahedral sheet of montmorillonite. On the other hand, no additional changes in the
vibrations associated with the octahedral sheets of montmorillonite (800–950 cm−1) were observed
after this process.
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Figure 2. FTIR results obtained before (MT) and after pillaring process (AlCu-PILC) and Zr-dopage
((Zr)-Al-PILC, (Zr)AlCu-PILC), Zr-MT.

The specific surface area and total pore volume of the original montmorillonite and doped and
undoped materials are shown in Table 3. These results suggest significant alterations on montmorillonite
after the pillaring and Zr-doping processes, resulting in significant and progressive increases in surface
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area and total pore volume. Accordingly, the surface area increased from 8 m2/g (MT) to 107 m2/g
after the pillaring process, and to 118 m2/g after the pillaring and Zr-doping processes, whereas the
total pore volume increased from 0.05 cm3/g (MT) to 0.20 cm3/g and to 0.22 cm3/g for AlCu-PILC and
(Zr)AlCu-PILC, respectively. The respective isotherms can be classified as type II, where unrestricted
monolayer–multilayer adsorption occurs, and the behaviour of the hysteresis loops can be associated
with type H3, which usually corresponds to aggregates of plate-like particles forming slit-like pores,
which is in agreement with these material structures.

3.2. Adsorption vs. Reaction

Adsorption experiments were carried out using the pillared and Zr-doped catalysts to evaluate
the effect of their surface chemistry on the contaminant adsorption and TOC removal. According to
previous studies, adsorption plays an important role as the main mechanism involved in the initial
induction period, which corresponds to the period necessary for catalyst surface activation [51]. In the
present study, part of the mechanism associated with the induction period is probably associated
with the adsorption of H2O2 and organic compounds onto the catalyst surface, producing surface
complexes which promote the activation of the oxidation process through the generation of HO•
radicals. Our previous research assessed, for the first time, the application of natural pillared clays
(PILCs: Al-Cu-ST and Al-Fe-ST) as heterogeneous photocatalysts for the H2O2-assisted treatment of a
real AIW [27]. The results indicated that the transition point between the induction period and surface
activation and the production of HO• species was directly influenced by the amount of H2O2 initially
dosed to the process. Accordingly, a decrease in the transition period (t *) TOC from 136 to 96 min was
observed, using Al-Cu-ST as the heterogeneous catalyst (3.0 g/L), when H2O2 concentration increased
from 29 to 98 mM, reducing the period necessary for the surface activation and, therefore, the period
required to initiate the degradation process. Considering our previous conclusions, the influence of
different catalysts, as well as the effect of Zr-dopage on these supports, were evaluated, taking into
account the optimal experimental conditions obtained before, namely [H2O2]0 = 98 mM and catalyst
dosage = 3.0 g/L.

The evolution of TOC removal through adsorption at different pH conditions and using the
different catalysts is shown in Figure 3. As expected, both pH conditions imposed and catalyst textural
properties affected the catalyst adsorption capacity. The lowest contaminant adsorption was obtained
for Zr-MT and (Zr)Al-PILC, at pH 4 and pH 7, respectively, which correspond to the catalysts with
lower surface area (65 m2/g and 81 m2/g, respectively). On the contrary, the higher adsorption capacity
was obtained for (Zr)AlCu-PILC, at both pH conditions, corresponding to the sample with the highest
surface area (118 m2/g) and total pore volume (0.22 cm3/g) obtained. This behaviour has particularly
impact on the TOC removal efficiency along the oxidation process (Figure 4), as it is observed that
the catalyst with enhanced adsorption capacity at both pH conditions has greater activity in the
degradation process. Accordingly, the TOC removals obtained using (Zr)AlCu-PILC/UV after 4 h,
corresponds to 77% and 86%, at pH 4 and 7, respectively. The incorporation of Zr on montmorillonite
lattice (Zr-MT) has contributed to the significant improvement of TOC removals, when compared
with raw-montmorillonite, with an increase from 46% to 60% and from 37% to 61% at pH 4 and 7,
respectively. The development of AlCu pillared structures had additional advantages considering
the improvement of montmorillonite textural properties, resulting in additional stability and catalyst
activity. This is traduced by the increase in TOC removals to 69% and 73% at pH 4 and 7, respectively,
with a maximum of 33% removal in the non-catalytic UV-C/H2O2 experiments performed at both
pH conditions. As previously observed, the Zr-dopage on AlCu-PILC has also improved its catalytic
activity, promoting an increase in TOC removals to 77% and 86%, at pH 4 and pH 7, respectively,
suggesting a synergetic effect of both Zr and Cu on the photocatalytic degradation process. In this
case, Zr acts as a semiconductor that is excited by photons with an energy greater than its band gap
(5.8–7.1 eV), generating electron–hole pairs, which migrates to the photocatalyst surface yielding
radical species that can react with organic molecules upon redox reactions. The electron transfer
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process is enhanced by the successive redox of Cu2+, a transition metal which is continuously releasing
e- species, induced by the presence of a permanent irradiation source (UV-C).

During these processes, a decrease in catalyst stability, caused by the increase in Cu leaching
levels from 0.0 to 1.4 mg/L, was also observed from the acidic to the neutral conditions. However,
all the Cu leaching concentrations are lower than or very close to the legal discharge limit imposed by
EU legislation (1.0 mg Cu/L), and only 5.0% of the Cu immobilized was released at neutral conditions,
confirming that Cu immobilization on pillared clay support was successful.

Water 2020, 12, x FOR PEER REVIEW 9 of 15 

 

improved its catalytic activity, promoting an increase in TOC removals to 77% and 86%, at pH 4 and 
pH 7, respectively, suggesting a synergetic effect of both Zr and Cu on the photocatalytic degradation 
process. In this case, Zr acts as a semiconductor that is excited by photons with an energy greater 
than its band gap (5.8–7.1 eV), generating electron–hole pairs, which migrates to the photocatalyst 
surface yielding radical species that can react with organic molecules upon redox reactions. The 
electron transfer process is enhanced by the successive redox of Cu2+, a transition metal which is 
continuously releasing e- species, induced by the presence of a permanent irradiation source (UV-C). 

During these processes, a decrease in catalyst stability, caused by the increase in Cu leaching 
levels from 0.0 to 1.4 mg/L, was also observed from the acidic to the neutral conditions. However, all 
the Cu leaching concentrations are lower than or very close to the legal discharge limit imposed by 
EU legislation (1.0 mg Cu/L), and only 5.0% of the Cu immobilized was released at neutral conditions, 
confirming that Cu immobilization on pillared clay support was successful. 

 
Figure 3. Evolution of TOC removal by adsorption: (a) pH 4.0 and (b) pH 7.0 (catalyst dosage = 3.0 g/L, 
[TOC]0 = 500 mg C/L). 

Comparing both Zr-MT and (Zr)Al-PILC performances at both pH conditions, it is possible to 
conclude that Zr-MT has shown increased catalytic activity, mainly from 180 min, with TOC removals 
of 60% at both pH conditions for Zr-MT, and 46% at both pH conditions for (Zr)Al-PILC. This behavior 
could be explained by the competition between Zr and an excess of Al for the Si tetrahedral sites on 
(Zr)Al-PILC, which may have hampered the Zr incorporation onto the montmorillonite crystal lattice. 
The lower catalytic activity observed using (Zr)Al-PILC is even more pronounced in acidic conditions, 
where the TOC conversion is very similar to MT along the treatment process. This could be explained 
by the increased adsorption capacity obtained by MT at pH 4.0 (Figure 3), associated with its higher 
CEC (Table 2), which despite the lower BET surface area of MT, when compared with (Zr)Al-PILC, has 
contributed to enhanced adsorption capacity and improved catalytic activity. 

 

Figure 3. Evolution of TOC removal by adsorption: (a) pH 4.0 and (b) pH 7.0 (catalyst dosage = 3.0 g/L,
[TOC]0 = 500 mg C/L).

Comparing both Zr-MT and (Zr)Al-PILC performances at both pH conditions, it is possible to
conclude that Zr-MT has shown increased catalytic activity, mainly from 180 min, with TOC removals
of 60% at both pH conditions for Zr-MT, and 46% at both pH conditions for (Zr)Al-PILC. This behavior
could be explained by the competition between Zr and an excess of Al for the Si tetrahedral sites on
(Zr)Al-PILC, which may have hampered the Zr incorporation onto the montmorillonite crystal lattice.
The lower catalytic activity observed using (Zr)Al-PILC is even more pronounced in acidic conditions,
where the TOC conversion is very similar to MT along the treatment process. This could be explained
by the increased adsorption capacity obtained by MT at pH 4.0 (Figure 3), associated with its higher
CEC (Table 2), which despite the lower BET surface area of MT, when compared with (Zr)Al-PILC,
has contributed to enhanced adsorption capacity and improved catalytic activity.
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3.3. Kinetic Study

In order to better understand the effect of the operational conditions on the induction period,
the transition time between the induction period and the fast oxidation reaction (t * TOC) was obtained
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through the fitting of Fermi’s equation based on lumped kinetic model to the experimental data.
The results obtained for the different parameters are displayed in Table 4, and the fittings obtained for
different catalysts are illustrated in Figure 5. The results reveal a good fitting of the kinetic model to the
experimental data obtained for different catalysts, with R2 values higher than 0.983. Considering the
different parameters obtained from the modelling, it is assumed that the experimental conditions
influenced the kinetic performance of our processes.
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equation based on lumped kinetic model to the experimental data.

As observed in Figure 5, the transition point is significantly affected by the pH conditions, as well
as the heterogeneous catalyst used. Accordingly, a significant decrease in t * TOC was observed,
from 279 to 121 min (pH 7) and from 253 to 137 min (pH 4), using raw-montmorillonite and AlCu-MT,
respectively, suggesting a significant reduction in the surface activation period when the heterogeneous
catalyst was applied, as well as a quicker production of HO• species. This tendency was even more
pronounced after Zr-dopage at neutral conditions, once the transition time has decreased from 121 to
119 min using (Zr)AlCu-PILC.

In both cases, the evolution of the H2O2 concentration along the photocatalytic experiments
shows a decrease and subsequent increase in concentration in the first 60 min (Table 5), which suggests
a possible adsorption and desorption of H2O2 on pillared montmorillonite. Therefore, the results
suggest that the first 60 min of reaction were mainly associated with the formation of surface complexes
between the H2O2 and catalyst surface, whereas the additional period, which completes the total
induction period, may be associated with the time required for the surface activation, i.e., the time
required for catalytic decomposition of the oxidant in the presence of the active phase (production
of HO•).

Concerning the reaction rates of the different photocatalytic processes, higher reaction rates
were observed using both (Zr)AlCu-PILC and AlCu-PILC catalysts when compared with the other
catalysts applied (Table 4), confirming an improvement of catalytic performance during the oxidation
processes. Comparing both catalysts, AlCu-PILC has the higher reaction rates at both pH conditions,
3.54 × 10−2 min−1 and 2.87 × 10−2 min−1, at pH 4 and 7, respectively. However, (Zr)AlCu-PILC
(kTOC = 2.58 × 10−2 min−1) has contributed to lower fractions of non-oxidazable compounds formed
during the reaction (xTOC = 0.11, pH 7), when compared with AlCu-PILC (xTOC = 0.26, pH 7), which is
in agreement with the higher TOC removals obtained.
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Table 4. Kinetic parameters obtained by fitting Fermi’s model to the experimental data (TOC/TOC0 as
function of time) using different catalysts.

Heterogeneous Catalyst Variables
Kinetic Parameters

kTOC (min−1) t∗TOC (min) xTOC r2

(Zr)AlCu-PILC pH 4.0 2.35 × 10−2 148 0.14 0.990
pH 7.0 2.58 × 10−2 119 0.11 0.996

AlCu-PILC
pH 4.0 3.54 × 10−2 137 0.28 0.998
pH 7.0 2.87 × 10−2 121 0.26 0.997

(Zr)Al-PILC pH 4.0 1.90 × 10−2 158 0.45 0.992
pH 7.0 2.16 × 10−2 140 0.50 0.993

Zr-MT
pH 4.0 1.83 × 10−2 183 0.19 0.983
pH 7.0 1.56 × 10−2 214 0.0 0.990

MT
pH 4.0 1.23 × 10−2 253 0.0 0.960
pH 7.0 1.50 × 10−2 279 0.0 0.980

Table 5. H2O2 removal in the photocatalytic experiments using different catalysts. General conditions:
pH 4.0 and pH 7.0, catalyst dosage = 3.00 g/L, [TOC]0 = 500 mg C/L, UV-C irradiation.

Experiment Time (min)
H2O2 Removal (%)

Blank (H2O2 Only) (Zr)AlCu-PILC AlCu-PILC

pH 4.0

0 0.00 0.00 0.00
15 2.03 14.03 11.18
30 9.03 10.88 9.73
60 20.2 54.38 35.63
120 38.3 47.39 41.89
180 51.1 79.04 83.58
240 62.0 96.86 93.13

pH 7.0

0 0.00 0.0 0.00
15 12.7 16.0 12.06
30 8.61 12.9 10.05
60 16.3 8.19 49.30
120 28.5 45.6 53.29
180 37.0 69.3 83.07
240 46.0 88.4 94.69

3.4. Catalyst Regeneration

Considering the best performance of (Zr)AlCu-PILC, the catalyst reuse capacity was evaluated
throughout three consecutive cycles of H2O2-assisted photocatalytic AIW treatment. The experiments
were carried out at pH 7.0, using a catalyst dosage of 3.0 g/L and a H2O2 concentration of 98 mM.
The results show that the TOC removal obtained using (Zr)AlCu-PILC corresponds to 86%, 66%
and 63% after 240 min, for the first, second and third cycles, respectively. In general, a decrease
in efficiency was observed from the first to the second cycle (with a loss of 20% in TOC removal).
However, no additional loss of activity was observed from the second to the third cycle. All the leaching
concentrations along the different cycles were very close to the legal limits imposed (1.0 mg Cu/L) and
tended to decrease as the number of cycles increased, from 1.4 to 0.97 mg/L of Cu, from the first to the
third cycle, revealing that the catalyst stability is not affected along the cycles.

4. Conclusions

Different catalysts submitted to different chemical treatments and/or the Zr-dopage process,
were applied in the H2O2-assisted treatment of recalcitrant winery wastewater in order to evaluate
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the influence of the surface chemical properties of the doped supports on their adsorption and
catalytic properties.

FTIR results show that the incorporation of Zr in the crystal lattice of montmorillonite and PILC
through isomorphic substitution between Si and Zr was traduced by significant modifications on
Si-OH stretching vibrations, due to the shift of the main band from 1016 cm−1 to 1040 cm−1, and the
decrease in intensity of the additional stretching vibrations assigned to the Si-O group, at, respectively,
1150 cm−1 and 1100 cm−1.

In general, the results show that Zr-dopage on AlCu-PILC has improved its adsorption and
catalytic activity, promoting an increase in TOC removals to 77% and 86%, with 8.85% and 10.35% of
TOC removed through adsorption, at pH 4 and pH 7, respectively. It suggests a synergetic effect caused
by the combination of Zr and Cu on the photocatalytic degradation process, once the semiconductor
electron transfer process is enhanced by the successive redox of Cu(II), induced by the presence of the
UV-C irradiation source.

A significant decrease in t * TOC was observed for AlCu-PILC and (Zr)AlCu-PILC, at both pH
conditions, suggesting a significant reduction in the surface activation period when the heterogeneous
catalyst was applied, as well as a quicker production of HO• species. As a result, higher reaction rates
were obtained using both (Zr)AlCu-PILC (2.58× 10−2 min−1) and AlCu-PILC (kTOC = 3.54× 10−2 min−1)
catalysts, confirming an improvement in catalytic performance along the oxidation processes.
Comparing both catalysts, AlCu-PILC has the higher reaction rates at both pH conditions. However,
(Zr)AlCu-PILC has contributed to lower fractions of non-oxidazable compounds formed during the
reaction (xTOC = 0.11, pH 7.0), making it a more efficient process.
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