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Abstract: Eutrophication and global climate change gather advantageous conditions for cyanobacteria
proliferation leading to bloom formation and cyanotoxin production. In the Azores, eutrophication
is a major concern, mainly in lakes where fertilizers and organic matter discharges have increased
nutrient concentration. In this study, we focused on understanding the influence of environmental
factors and lake characteristics on (i) cyanobacteria diversity and biomass and (ii) the presence of toxic
strains and microcystin, saxitoxin, anatoxin-a, and cylindrospermopsin cyanotoxin-producing genes.
Fifteen lakes from the Azores Archipelago were sampled seasonally, environmental variables were
recorded in situ, cyanobacteria were analyzed with microscopic techniques, and cyanotoxin-producing
genes were targeted through conventional PCR. Statistical analysis (DistLM) showed that lake
typology-associated variables (lake’s depth, area, and altitude) were the most explanatory variables
of cyanobacteria biomass and cyanotoxin-producing genes presence, although trophic variables
(chlorophyll a and total phosphorus) influence species distribution in each lake type. Our main results
revealed higher cyanobacteria biomass/diversity, and higher toxicity risk in lakes located at lower
altitudes, associated with deep anthropogenic pressures and eutrophication scenarios. These results
emphasize the need for cyanobacteria blooms control measures, mainly by decreasing anthropogenic
pressures surrounding these lakes, thus decreasing eutrophication. We also highlight the potential for
microcystin, saxitoxin, and anatoxin-a production in these lakes, hence the necessity to implement
continuous mitigation protocols to avoid environmental and public health toxicity events.

Keywords: anthropogenic impacts; eutrophication; phosphorus; temperature; microcystin;
anatoxin-a; saxitoxin; cylindrospermopsin

1. Introduction

Eutrophication is a major factor leading to the development of blooms and the appearance of
surface accumulations of cyanobacteria in inland waters [1,2]. The combination of eutrophication with
global climate change is leading to the rapid increase in cyanobacteria dominance and toxic blooms
(cyanoHABs) [3–7]. The rise of temperature, nutrients, and atmospheric CO2 are all advantageous
scenarios for cyanobacteria rapid proliferation, bloom formation, and toxin production [3,8,9].
Some cyanobacteria develop better at higher temperatures (≥25 ◦C) than most phytoplankton
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algae [5,10,11]. They can move vertically in stratified waters (due to gas vesicles), allowing them to
have direct access to sunlight and shade epilimnion and hypolimnion [1,3,8]. Moreover, they can fix
atmospheric nitrogen (due to heterocytes), enabling them to resist nitrogen-limited conditions [5,12].
All these characteristics give cyanobacteria an ecological advantage and ultimately drive the
development of cyanobacteria communities [8].

Cyanobacteria can produce a wide range of toxins, such as Microcystin (MC), Saxitoxin (STX),
Anatoxin-a (ATX-a), and Cylindrospermopsin (CYN) [13,14]. These cyanotoxins are a threat not only
to environmental health but also to public health, affecting the well-being of many organisms [13–17].
Several studies deal with cyanotoxin production, regulation, and function [18–20], but still gaps in the
knowledge remain [21,22]. Higher nutrients (e.g., nitrogen and phosphorus) concentrations and their
synergy with other environmental factors (e.g., temperature and light) are key to toxic strain growth,
rather than non-toxic, and higher cyanotoxin production [2,7,23]. Besides the not well-defined reasons
for toxin production, cyanobacterial blooms may be comprised of various species including toxin and
non-toxin producers within the same species [24,25].

In recent years, molecular methods have been applied to identify toxigenic cyanobacteria strains,
prior to toxin production [16,24,26–28]. Mitigation actions that reduce the favorable conditions for
cyanoHABs development and allow the identification of cyanotoxin production potential in water
bodies are essential to avoid risks to public health [16,29].

In the Azores, eutrophication has become a major concern in lakes conservation due to discharges
of fertilizers and organic matter from human activities in the catchments [30,31]. As it is observed
worldwide [32–35], eutrophication in the Azorean lakes has led to the increase of cyanobacteria
abundance and the formation of cyanoHABs [30,35,36]. References to the presence of cyanobacteria
in the Azores date back to the late Nineteenth century [37–39], but the current knowledge on their
distribution and ecology is still limited [35,36], and even less is known about the presence of toxigenic
strains in the Azorean lakes [7,30,40,41]. Considering that several species known from the literature as
producers of MC, STX, ATX-a, and CYN, such as Aphanizomenon gracile [42], Microcystis aeruginosa [43],
and Raphidiopsis curvata [44], were found in the Azores lakes [45], the presence of toxigenic strains and/or
cyanotoxins should be further investigated, in order to determine the present risk in these waters.

In this context, we aimed to determine the occurrence of toxic cyanobacteria in the Azorean lakes
through the detection of cyanotoxins biosynthesis genes to identify lakes in the Azores Archipelago
with a potential risk of cyanotoxin production and to understand which physical and chemical factors
(e.g., temperature, O2, pH and nutrients) and lake characteristics (e.g., depth, location, and catchment
land use) drive toxic strains distribution.

2. Materials and Methods

2.1. Study Site

The Azores Archipelago is located in the Northeast Atlantic Ocean, about 1300 km from Europe
and 1600 km from North America. Due to its geographical dispersion, the nine volcanic islands
that comprise the archipelago are divided into three groups: Eastern (Santa Maria and São Miguel),
Central (Terceira, Graciosa, São Jorge, Pico, and Faial), and Western (Corvo and Flores). Influenced by
their oceanic basin location, the prevalent climate in these islands is classified as oceanic temperate,
with regular and abundant rainfalls and winds, low thermal amplitude, and high air humidity [46].

Despite their small size, the Azores are rich in lentic habitats, with 88 lakes mainly located in
the islands of São Miguel, Pico, and Flores [47]. An increase in anthropogenic activities in the lake
catchment (e.g., deforestation, agriculture, and urbanization) has resulted in the eutrophication of
several lakes [30,31,48,49].

For this study, fifteen volcanic lakes from the Azores archipelago were sampled: 12 in São
Miguel Island, two in Pico Island, and one in Flores Island (Figure 1). The main geographical,
morphological, physical, chemical and biological properties of the studied lakes are presented in
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Table 1. Physical, chemical, and biological properties are presented as mean values, with standard
deviation, of all campaigns. Latitude, longitude, altitude, and lake surface area data were retrieved
from Pereira et al. [50].
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Table 1. Hydromorphological and physicochemical characterization of sampled lakes.

Lake Name Lake

Hydromorphological Characteristics Physicochemical Variables

Lat (UTM) Lon (UTM) Alt (m) Area
(km2)

Zmax
(m) ZSD (m) T (◦C) pH O2 (mg L−1) C (µS cm−1) TN (mg L−1) TP (µg L−1) Chla (µg L−1)

Azul Az(Mi) 4,192,417.68 608,243.52 260 3.587 25.4 3.2 ± 0.7 19.0 ± 3.7 7.5 ± 0.2 9.3 ± 0.8 102 ± 5 1.1 ± 0.1 20.6 ± 7.4 2.8 ± 1.3
São Brás Br(Mi) 4,184,056.94 640,013.62 610 0.058 2.0 0.5 ± 0.4 16.2 ± 3.5 6.7 ± 0.4 9.7 ± 0.6 38 ± 4 0.9 ± 0.3 109.4 ± 47.3 24.4 ± 14.5
Caiado Cd(Pi) 4,257,155.56 390,879.19 810 0.055 4.7 2.7 ± 0.4 14.2 ± 3.0 6.6 ± 0.3 9.9 ± 0.9 30 ± 3 0.5 ± 0.3 17.8 ± 7.0 2.0 ± 0.9
Congro Cg(Mi) 4,179,982.69 640,241.90 420 0.037 17.6 2.4 ± 0.7 18.0 ± 4.1 8.2 ± 1.0 9.4 ± 1.6 98 ± 3 1.0 ± 0.2 17.6 ± 9.2 12.5 ± 7.4
Canário Cn(Mi) 4,188,336.28 609,147.63 750 0.018 2.7 1.0 ± 0.2 16.6 ± 4.8 7.0 ± 0.8 8.9 ± 0.9 38 ± 4 0.4 ± 0.1 37.4 ± 12.6 8.1 ± 3.7
Capitão Cp(Pi) 4,260,771.00 384,929.00 790 0.027 4.3 0.9 ± 0.1 14.4 ± 2.8 6.0 ± 0.9 10.5 ± 1.2 35 ± 7 0.6 ± 0.3 45.0 ± 15.6 23.3 ± 15.3

Empadadas-N Em-N(Mi) 4,187,226.07 610,176.10 740 0.018 2.7 1.8 ± 0.4 16.8 ± 5.0 7.2 ± 0.5 9.1 ± 0.7 39 ± 4 0.5 ± 0.3 19.4 ± 6.2 5.8 ± 3.4
Empadadas-S Em-S(Mi) 4,187,091.70 610,274.94 750 0.005 2.7 2.0 ± 0.5 15.6 ± 3.4 7.6 ± 0.4 9.0 ± 0.7 51 ± 6 1.1 ± 0.5 13.8 ± 1.8 4.5 ± 2.7

Fogo Fg(Mi) 4,180,740.35 633,514.96 574 1.437 26.6 3.1 ± 0.4 15.8 ± 3.0 7.5 ± 0.4 9.1 ± 1.2 48 ± 2 0.7 ± 0.2 17.6 ± 2.6 4.0 ± 2.1
Funda Fn(Fo) 4,363,277.32 653,537.56 360 0.355 33.8 1.8 ± 1.1 17.0 ± 2.8 7.9 ± 0.7 10.2 ± 1.5 120 ± 0 0.5 ± 0.2 25.1 ± 5.3 19.6 ± 14.8
Furnas Fr(Mi) 4,180,143.86 647,150.83 280 1.926 12.0 0.8 ± 0.3 18.2 ± 3.7 8.0 ± 0.5 10.1 ± 1.3 148 ± 13 1.2 ± 1.0 59.4 ± 25.1 25.0 ± 14.6

Rasa das Sete Cidades Rt(Mi) 4,189,125.49 607,359.61 545 0.039 3.9 3.8 ± 0.3 16.6 ± 4.2 6.1 ± 0.6 9.3 ± 0.6 48 ± 3 0.5 ± 0.3 21.0 ± 19.0 1.6 ± 0.7
Rasa da Serra Devassa Rs(Mi) 4,187,131.44 609,876.37 765 0.033 0.4 0.6 ± 0.4 15.2 ± 4.0 7.0 ± 0.6 9.1 ± 0.6 40 ± 5 0.4 ± 0.2 20.0 ± 12.2 2.3 ± 1.2

Santiago Sn(Mi) 4,189,551.18 607,989.45 360 0.254 26.0 2.6 ± 0.8 18.7 ± 4.0 7.5 ± 0.5 8.5 ± 0.1 123 ± 6 0.4 ± 0.0 17.0 ± 4.4 9.9 ± 6.0
Verde Vr(Mi) 4,189,071.90 606,553.94 260 0.856 22.4 3.3 ± 3.2 18.0 ± 3.7 8.2 ± 1.0 9.6 ± 1.4 126 ± 5 0.5 ± 0.2 26.8 ± 17.8 17.7 ± 14.9

Mi: São Miguel Island; Pi: Pico Island; Fo: Flores Island, Lat = Latitude, Lon = Longitude, Alt = Altitude, Area = Lake Surface Area, Zmax = Maximum Depth, ZSD = Secchi Depth,
T = Temperature, pH (20 ◦C), O2 = Dissolved Oxygen, C = Conductivity (epilimnion), TN = Total Nitrogen, TP = Total Phosphorus, Chla = Chlorophyll a.
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2.2. Sample Collection and Environmental Variables

For molecular analysis plankton samples were collected from surface waters with a 10 µm net.
At the same time, water samples from the photic zone were collected for phytoplankton, chlorophyll a
(Chla), and chemical analysis. Sampling was carried out in October 2015, February 2016, April 2016,
August 2016, and November 2016, except in lake Santiago, where the sampling was done three times
(October 2015, August 2016, and November 2016).

Chla (µg L−1) was analyzed using spectrophotometric methods following the Portuguese standard
4237 [51], and the concentrations were determined according to Lorenzen [52].

At each sampling, conductivity (C, µS cm−1), dissolved oxygen (O2, mg L−1), temperature (T, ◦C),
and pH profiles of each lake were recorded in situ using the multiparameter probe Horiba U-52
(Horiba, Pasadena, TX, USA). Water transparency (ZSD, m) was taken with a 20 cm diameter Secchi
disk and maximum depth (Zmax, m) was measured with the echo sounder HUMMINBIRD 385 CI GPS
(Humminbird®, Eufaula, AL, USA).

Total nitrogen and total phosphorus were determined in the laboratory at the Instituto de Inovação
Tecnológica dos Açores (INOVA), according to international standard protocols [53].

2.3. Phytoplankton Analysis

For phytoplankton analyses, combined samples from the photic zone were obtained by mixing
1 L of discrete samples collected at 1 m intervals from the surface to the bottom of the euphotic zone
and preserved with a 1% Lugol solution. Cyanobacteria and remaining phytoplankton biomass was
based on cell or colony volume, which was estimated for individual species by assigning a geometric
shape similar to that of each phytoplankton species [54]. Cell or colony dimensions were determined
by measuring at least 30 cells/colonies of each species. Total species biomass was then calculated
by multiplying cell/colony counts with the respective average volume. Cell and colony counts were
determined with the Utermöhl method following international recommendations [54,55].

General and more specialized cyanobacteria floras were used for taxonomic identification [56–58].
Cyanobacteria nomenclature was updated according to Komárek et al. [59] and AlgaeBase [60].

2.4. DNA Extraction and PCR Amplification

DNA extraction was performed directly in environmental samples, after centrifugation of 6–10 mL,
using the PureLinkTM Genomic DNA Mini Kit (Invitrogen, Carlsbad, CA, USA), according to the
gram-negative bacteria protocol, supplied by the manufacturer. DNA samples were stored at −20 ◦C.

Cyanotoxin production potential was assessed by PCR, targeting genes mcyA, mcyB, mcyC, mcyD,
mcyE, and mcyG for MC, sxtA for STX, anaC for ATX-a, and cyrB and cyrC for CYN. All the primer
pairs used to target cyanotoxin-producing genes are listed in Table S1. PCR reactions were carried out
in Biometra Tone (Analytik Jena AG, Jena, Germany), according to the literature [42,61–65]. All PCR
amplification products were visualized by electrophoresis on 1.5% agarose gels stained with SYBR™
SAFE (0.2 g mL−1) and visualized using the transilluminator Molecular Imager® Gel Doc™ XR+

(BioRad, Hercules, CA, USA).

2.5. Statistical Analysis

Lake environmental variables (morphological, physical, and chemical characteristics),
cyanobacteria biomass, and the presence of toxic strains were analyzed using PRIMER-E Software
V.6 [66]. The data set was first divided into three data matrices: (i) environmental data (temperature,
pH, conductivity, dissolved oxygen, total nitrogen, total phosphorus, chlorophyll a, Secchi depth,
maximum depth, area, and altitude), (ii) cyanobacteria species biomass, and (iii) presence or absence
of cyanotoxin-producing genes. Environmental data was normalized and cyanobacteria biomass was
transformed (square root) to reduce differences in scale [67].
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Distance based linear modeling (DistLM) was performed to identify if cyanobacteria biomass
and diversity were associated with lakes environmental factors, testing distribution patterns between
environmental variables and cyanobacteria. Analyses were run in PERMANOVA+ for PRIMER
software V.6 [66,68].

3. Results

3.1. Environmental Variables

The studied Azorean lakes have a wide range of characteristics, located at mid (260–420 m)
to high altitude (740–810 m), with different surface areas (0.005–3.6 km2) and depths (0.4–33.8 m).
These lakes are slightly alkaline (pH 8.2 in lake Congro) to slightly acidic (pH 6.0 in lake Capitão)
and have low mineralization (C from 30 ± 3 to 148 ± 13 µS cm−1), that generally decreases with
altitude (Table 1). Water temperature (14.2 ± 3.0–19 ± 3.7 ◦C), Secchi depth (0.5 ± 0.4–3.8 ± 0.3 m),
phosphorus (17.0 ± 4.4–109.4 ± 47.3 µg L−1), and chlorophyll a (1.6± 0.7–25.0± 14.6 µg L−1) also varied
substantially between the sampled lakes (Table 1 and Table S2).

According to the international criteria of lake trophic status classification [69], lakes Caiado, Rasa da
Serra Devassa and Rasa das Sete Cidades are oligotrophic, lakes Azul, Empadadas-N, Empadadas-S
and Fogo are mesotrophic, and lakes Canário, Capitão, Congro, São Brás, Funda, Furnas, Santiago,
and Verde are eutrophic.

3.2. Cyanobacteria and Environmental Drivers

Fifteen cyanobacteria taxa from the orders Synechococcales, Chroococcales, Oscillatoriales,
and Nostocales were observed (Tables S3 and S4). Cyanobacteria were the dominant phytoplankton
group in several lakes, representing more than 50% of total phytoplankton abundance and biomass in
one-third of the lakes (Tables S3 and S4). Lakes Azul, Capitão, Fogo, Furnas, Funda, Santiago, São Brás,
and Verde had the highest cyanobacteria biomass, although with seasonal fluctuation (Figure 2).
The dominant cyanobacteria species in these lakes were Aphanizomenon gracile, Dolichospermum
planctonicum, Microcystis flos-aquae, Planktolyngbya limnetica, and Pseudanabaena limnetica (Figure 2;
Tables S3 and S4).

DistLM analysis shows that maximum depth (Pseudo-F = 9.48; p = 0.001), altitude
(Pseudo-F = 8.62; p = 0.001), conductivity (Pseudo-F = 8.07; p = 0.001), area (Pseudo-F = 5.59;
p = 0.001), pH (Pseudo-F = 4.37; p = 0.001), total phosphorus (Pseudo-F = 2.71; p = 0.006), temperature
(Pseudo-F = 2.40; p = 0.016), and chlorophyll a (Pseudo-F = 2.35; p = 0.019) are the environmental
variables that better explain cyanobacteria biomass variability among lakes (Table 2). The first two
axes of the model (dbRDA1 and dbRDA2) indicate that the selected environmental variables explain
23% of total variation (Figure 3). Shallow lakes located at higher elevations have negative scores on
dbRDA1 (Figure 3). These lakes have lower values of conductivity and pH but contrasting values of
chlorophyll a and phosphorus (Table 1). In this group (shallow lakes), lakes Capitão and São Brás have
the highest’s concentration of phosphorus and chlorophyll a (Table 1) and are also the only ones with
high cyanobacteria biomass, mainly Ps. limnetica and Dolichospermum (Figure 2). Contrarily, deep and
larger lakes (higher values of maximum depth and surface area) are plotted on the positive side of
dbRDA1, thus, dbRDA axis 1 is interpreted as a gradient of lake’s depth, which is in accordance with
the typology of the Azorean lakes [70]. Deep lakes are separated into two groups along dbRDA2,
separating Lakes Azul and Fogo on the positive side from the remaining deep lakes that have negative
scores on this dbRDA axis 2. The main difference between these two groups is the productivity
(chlorophyll a) and cyanobacteria species composition. Deep Mesotrophic lakes (Lakes Azul and Fogo)
have lower chlorophyll a concentration (Table 1) and cyanobacteria are dominated by Pl. limnetica
and Ps. limnetica (Figure 2). Deep eutrophic lakes (Lakes Congro, Verde, Santiago, Funda, and Furnas)
have high chlorophyll a concentration (Table 1) and high biomass of cyanobacteria dominated by
Aphanizomenon, Dolichospermum, and Microcystis (Figure 2).
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1 
 

 

Figure 2. Cyanobacteria biomass (µg L−1) in the photic zone of the 15 sampled lakes, by sampling
campaign. Aphanizomenon: A. gracile; Dolichospermum: Dolichospermum sp., D. planctonicum, and D.
spiroides; Planktolyngbya: Pl. limnetica; Woronichinia: W. naegeliana; Pseudanabaena: Ps. limnetica;
Microcystis: M. aeruginosa and M. flos-aquae; Other: Coelosphaerium kuetzingianum; Chroococcus minutus;
C. turgidus; Oscillatoria tenuis; Snowella lacustris and Synechocystis sp. Grey shadow: Shallow Lakes;
Green shadow: Deep Mesotrophic lakes; Orange shadow: Deep Eutrophic Lakes.
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Table 2. Summary of Distance-based linear modeling (DistLM) procedure for environmental variables
for cyanobacteria diversity and cyanotoxin producing genes amplification.

Variable

Cyanobacteria Species Cyanotoxin-Producing Genes

SS
(Trace) Pseudo-F p Prop SS

(Trace) Pseudo-F p Prop

Zmax (m) 34,170.0 9.48 0.001 0.118 5.97 13.89 0.001 0.0164
Alt (m) 31,393.0 8.62 0.001 0.108 10.96 30.40 0.001 0.300

C (µS cm−1) 29,600.0 8.07 0.001 0.102 10.97 30.43 0.001 0.300
Area (Km2) 21,175.0 5.59 0.001 0.073 2.58 5.39 0.003 0.071

pH 16,805.0 4.37 0.001 0.058 5.72 13.18 0.001 0.157
TP (µg L−1) 10,648.0 2.71 0.006 0.037 1.59 3.23 0.025 0.044

T (◦C) 9490.4 2.4 0.016 0.033 1.2 2.42 0.073 0.033
Chla (µg L−1) 9279.2 2.35 0.019 0.032 2.15 4.44 0.007 0.059

ZSD (m) 6824.9 1.71 0.085 0.024 0.44 0.88 0.430 0.022
O2 (mg L−1) 3259.7 0.81 0.603 0.011 0.64 1.26 0.282 0.017
TN (mg L−1) 1844.8 0.45 0.875 0.006 0.54 1.06 0.371 0.015

C = Conductivity, TP = Total Phosphorus, T = Temperature, ZSD = Secchi Depth, Chla = Chlorophyll a,
TN = Total Nitrogen, O2 = Dissolved Oxygen, Zmax = Maximum Depth, Area = Lake Surface Area, Alt = Altitude.
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Figure 3. Distance-based redundancy analysis (dbRDA) plot of Distance-based linear modeling
(DistLM) results in 2-dimensional space for environmental variables and cyanobacteria biomass across
the studied lakes. The length and direction of the vectors represent the strength and direction of the
relationship (see Table 1 for environmental variables and lake codes).
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3.3. Distribution of Cyanotoxin-Producing Genes

Microcystin, saxitoxin, and/or anatoxin-a genes were detected in most of the studied lakes. At least
one group of cyanotoxin-producing genes was found in lakes Azul, Verde, São Brás, Congro, Capitão,
Fogo, Funda, Furnas, Rasa das Sete Cidades, Rasa da Serra Devassa, and Santiago (Table 3). Contrarily,
toxin-producing strains were absent in lakes Caiado, Canário, Empadadas-N, and Empadadas-S,
as neither cyanotoxin-producing genes were detected in these lakes (Table 3).

Table 3. Cyanotoxin-producing genes, cyanobacteria abundance, biomass, and dominant species
(>2% of total cyanobacteria biomass) in the 15 sampled lakes, by sampling campaign.

October 2015 February 2016 April 2016 August 2016 November 2016

Az(Mi) Cyanotoxins genes * MC, STX STX MC, STX
Abundance (cells mL−1) 15,944 12,772 52,286 230,568 26,482

Biomass (µg L−1) 2334.87 1571.97 5223.30 6231.13 3961.86

Dominant Species Plli, Maer Plli, Wnae, Maer,
Mflo, Dpla

Plli, Syne, Mflo,
Dpla Psli Ckue, Plli, Dpla

Br(Mi) Cyanotoxins genes * MC STX
Abundance (cells mL−1) 4635 8611 200,670 812 48,477

Biomass (µg L−1) 125.15 867.40 13,351.60 59.43 1819.47
Dominant Species Psli Plli, Doli Psli, Doli Psli, Doli Psli, Doli

Cyanotoxins genes *
Cd(Pi) Abundance (cells mL−1) 9 45 238 235 3

Biomass (µg L−1) 0.62 6.59 10.90 10.92 0.21
Dominant Species Doli Plli, Doli Wnae, Doli Wnae Doli

Cg(Mi) Cyanotoxins genes * MC MC MC, STX MC MC, STX
Abundance (cells mL−1) 292 13,689 577 6360 474

Biomass (µg L−1) 8.53 2332.32 40.79 205.87 38.61
Dominant Species Mflo, Oten, Dpla Maer, Mflos, Dpla Psli, Mflo, Dpla Wnae, Mflo Wnae, Dpla

Cn(Mi) Cyanotoxins genes *
Abundance (cells mL−1) 0 226 0 0 914

Biomass (µg L−1) 0.00 6.10 0.00 0.00 138.93
Dominant Species Psli Plli

Cp(Pi) Cyanotoxins genes * STX
Abundance (cells mL−1) 104,020 100,169 10,125 258,102 1130

Biomass (µg L−1) 5329.63 6910.65 691.44 29,215.45 83.93
Dominant Species Psli, Doli Doli. Doli Doli Psli, Oten

Em-N(Mi) Cyanotoxins genes *
Abundance (cells mL−1) 329 0 268 0 456

Biomass (µg L−1) 8.88 0.00 27.93 0.00 16.45
Dominant Species Psli Doli, Dpla Psli, Wnae

Em-S(Mi) Cyanotoxins genes *
Abundance (cells mL−1) 97 24 2768 1811 230

Biomass (µg L−1) 9.36 1.56 124.97 90.13 10.35
Dominant Species Doli, Dpla Cmin Wnae Psli, Wnae, Agra Wnae

Fg(Mi) Cyanotoxins genes * STX STX
Abundance (cells mL−1) 282,656 4572 3182 73,514 46,632

Biomass (µg L−1) 42,963.71 694.94 477.61 11,174.13 7088.06
Dominant Species Plli Plli Plli Plli Plli

Fn(Fo) Cyanotoxins genes * STX, ATX-a STX ATX-a STX, ATX-a STX
Abundance (cells mL−1) 89,471 23,415 25,835 14,331 76,323

Biomass (µg L−1) 7713.89 2512.88 3902.39 803.95 5722.07
Dominant Species Plli, Agra Plli, Agra Plli Mflo, Dspi Agra

Fr(Mi) Cyanotoxins genes * MC, ATX-a MC MC, ATX-a MC, ATX-a MC, STX, ATX-a
Abundance (cells mL−1) 451,520 40,027 32,841 483,184 486,886

Biomass (µg L−1) 6796.31 821.51 775.22 7261.64 7841.75

Dominant Species Mflo Ckue, Plli, Maer,
Mflo Syne, Dspi Ckue, Mflo Ckue, Maer, Mflo

Rs(Mi) Cyanotoxins genes * STX
Abundance (cells mL−1) 1159 128 971 461 0

Biomass (µg L−1) 32.11 8.83 47.66 20.75 0.00
Dominant Species Psli Doli Wnae, Doli Wnae
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Table 3. Cont.

October 2015 February 2016 April 2016 August 2016 November 2016

Rt(Mi) Cyanotoxins genes * MC
Abundance (cells mL−1) 11,259 9143 245 13,027 11,113

Biomass (µg L−1) 724.86 594.30 15.93 846.76 720.95
Dominant Species Psli, Cmin Cmin Cmin Cmin Cmin

Sn(Mi) Cyanotoxins genes * STX, ATX-a ** ** STX
Abundance (cells mL−1) 25,099 ** ** 13,011 107,668

Biomass (µg L −1) 1657.79 ** ** 368.50 7742.28
Dominant Species Psli, Mflo, Agra ** ** Ckue, Maer, Mflo Mflo, Agra

Vr(Mi) Cyanotoxins genes * MC, STX MC, STX MC, STX MC, STX MC, STX
Abundance (cells mL−1) 2148 1901 239,905 23,878 53,100

Biomass (µg L−1) 57.21 139.58 27,168.49 536.99 3057.41

Dominant Species Mflo, Dpla
Ckue, Plli, Snow,

Wnae, Mflos,
Agra

Syne, Mflo, Dpla Ckue, Plli, Syne,
Mflo

Ckue, Plli, Maer,
Mflo, Doli

* Positive PCR results for cyanotoxin-producing genes (see Table S5 for each gene amplification), MC = Microcystin,
STX = Saxitoxin, ATX-a = Anatoxin-a, CYN = Cylindrospermopsin; ** Without sampling. CKue = Coelosphaerium
kuetzingianum, Plli = Planktolyngbya limnetica, Psli = Pseudanabaena limnetica, Snow = Snowella lacustris,
Syne = Synechocystis sp., Wnae = Woronichinia naegeliana, Cmin = Chroococcus minutus, Maer = Microcystis aeruginosa,
Mflo = Microcystis flos-aquae, Oten = Oscillatoria tenuis, Agra = Aphanizomenon gracile, Dpla = Dolichospermum
planctonicum, Dspi = Dolichospermum spiroides, Doli = Dolichospermum sp.

According to the DistLM analysis, several environmental variables can explain cyanotoxins
producing genes distribution among lakes (Table 2), such as conductivity (Pseudo-F = 30.43;
p = 0.001), altitude (Pseudo-F = 30.40; p = 0.001), maximum depth (Pseudo-F = 13.89; p = 0.001),
pH (Pseudo-F = 13.18; p = 0.001), area (Pseudo-F = 5.39; p = 0.003), chlorophyll a (Pseudo-F = 4.44;
p = 0.007), and total phosphorus (Pseudo-F = 3.23; p = 0.025). The first two axes of this model (dbRDA1
and dbRDA2) show that the selected environmental variables explain 42.5% of total variation (Figure 4)
and that most of the variation is along the dbRDA1 (34.5%) that represents an altitudinal gradient
along which conductivity, pH, and lake area decreases with altitude (Figure 4).

Lakes located at higher altitude (545–810 m), plotted on the negative side of the dbRDA1,
have low frequency of toxic cyanobacteria (0–2 samples with cyanotoxins genes). In four of those lakes
(Caiado, Canário, Empadadas Norte, and Empadadas Sul), cyanotoxin genes were never detected.
In the remaining five lakes of this group, only in one (Capitão, Rasa da Serra Devassa and Rasa das
Sete Cidades) or two (Fogo and São Brás) samples was a single cyanotoxin gene detected (Table 3).
This group of lakes was considered to have a lower toxicity risk (Figure 4). Cyanobacteria species
found in these lakes were mainly Ps. limnetica, Dolicospermum sp., and Pl. limnetica.

Larger and deeper lakes that are located at lower altitude (260–420 m), associated with higher
conductivity, pH, phosphorus, and/or chlorophyll a, have positive scores on dbRDA1 (Figure 4).
Whereas in Lakes Furnas and Verde multiple cyanotoxin genes (MC, STX, ATX-a) were detected in
all sampling campaigns and thus were considered to have higher toxicity risk, Lakes Azul, Congro,
Funda, and Santiago have lower frequency (2–5 samples with cyanotoxins genes) and diversity of toxic
cyanobacteria and were considered to have medium toxicity risk (Figure 4). In these two groups of lakes,
the dominant cyanobacteria were Aphanizomenon gracile, Dolichospermum spp., Microcystis flos-aquae,
and/or Pl. limnetica (Table 3).
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Figure 4. Distance-based redundancy analysis (dbRDA) plot of Distance-based linear modeling (DistLM)
results in 2-dimensional space for environmental variables and cyanotoxin genes amplification across
the studied lakes. The length and direction of the vectors represent the strength and direction of the
relationship (see Table 1 for environmental variables and lake codes). MC+ = amplification of MC
producing gene(s), STX+ = amplification of STX producing gene(s), ATX-a+ = amplification of ATX-a
producing gene(s).

4. Discussion

4.1. Toxigenic Cyanobacteria

Microcystis aeruginosa is the most studied cyanobacteria when it comes to cyanoHABs and
cyanotoxins, mainly MCs [17,71]. However, MCs are known to be produced by a wider variety of
cyanobacteria, as species from genera Anabaena, Aphanizomenon, Dolichospermum, Nostoc, Oscillatoria,
and Tolypothrix [71]. Our results showed that MC-producing genes amplification was mainly related
to M. aeruginosa and M. flos-aquae presence. In Lake Azul, the genus Microcystis is present in
almost all the sampling campaigns (Tables S3 and S4); however, the amplification of MC-producing
genes was not necessarily related to this genus. Other species might also be contributing, such as
Dolichospermum spp., Planktolyngbya limnetica, and Woronichinia naegeliana, since samples without
Microcystis had positive results for MC biosynthesis genes. Other studies have reported these
species as MC producers [43,72–74]. In the Azores, MC has been previously reported in Lakes
Azul, Congro, Furnas, São Brás, and Verde, by molecular methods [40] and by analytical methods
(high-performance liquid chromatography—HPLC) [30,36]. In Portuguese freshwaters, the presence
of MC has been reported since the 1990s [75], and according to Menezes et al. [76], a high diversity of
toxic cyanobacteria species has also been reported, being the most prevalent genera Aphanizomenon,
Dolichospermum, and Microcystis, just as observed in this work.
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For ATX-a, amplification of gene anaC seems to be mainly related to the presence of A. gracile,
D. planctonicum, and M. aeruginosa, known ATX-a producers [43,77] (Tables S4 and S5). ATX-a was
never reported in the Azores; however, on Portugal’s mainland, some studies already suggested the
presence of this toxin. Osswald et al. [77], although without toxin identification in environmental
samples, reported isolated strains from genus Anabaena, Aphanizomenon, Microcystis, and Oscillatoria as
ATX-a producers. Moreira et al. [28] identified ATX-a (ELISA: Enzyme-Linked Immunosorbent Assay)
and the anaC gene in some environmental samples (freshwater).

Contrary to the previous study performed in 2008 to detect STX production potential in the
Azorean lakes, where no positive results were found [40], we detected STX genes in most of the
studied lakes (Lakes Azul, São Brás, Congro, Fogo, Funda, Furnas, Rasa das Sete Cidades, Santiago,
and Verde). In our study, sxtA gene amplification was mostly related to the presence of A. gracile,
a known STX producer [42,78,79]. However, A. gracile may not be the only species with the sxtA
gene in this set of lakes, as seen by the positives results in lakes where this species was not observed
(Table S5). On the other hand, in Lake Santiago, where this species is present in high abundance
throughout the year, the sxtA gene was not amplified in August 2016 (Table S5). These results suggest
that the relative abundance of toxigenic and non-toxigenic strains from the same species may depend
on a synergy between environmental conditions (e.g., temperature [18,80], phosphorus, light intensity,
CO2), as reported by several authors [7,18,80–83].

As reported in the literature, by several authors, toxic strains are not morphologically different
from non-toxic strains [18,84]; however, through molecular methods, it is possible to identify which
strains have the genes responsible for cyanotoxin production [16,29,84]. The presence of the sxtA
gene in Lakes São Brás, Capitão, and Furnas may be related to species that might have the gene
and be potential STX producers, not described in the literature. For instance, several cyanobacteria
species have been reported, more recently, as saxitoxin producers, such as Anagnostidinema amphibium,
Anagnostidinema lemmermannii, Cylindrospermum stagnale, and Phormidium uncinatum [85]. In Lake Rasa
da Serra Devassa, the presence of sxtA in the sample from February 2016 (Table S5) might be due to
unknown STX producing strains of Dolichospermum (Table S4). In Portugal’s mainland, STX has been
reported, similarly to ATX-a, with an identification of a producing strain of Aphanizomenon flos-aquae [86]
and identification of SXT through ELISA and identification of biosynthesis genes (sxtG and sxtI) in
some environmental samples [28].

CYN production potential was not found in our samples; however, in a previous study, the cyrB
and cyrC genes were amplified in lake São Brás and lake Azul, respectively [40]. Furthermore, no other
records of CYN detection (identification or quantification) or producing gene amplification in these
lakes have been published. CYN has been reported to be produced by several species, including
A. gracile [87], Crysosporum ovalisporum [88,89], Raphidiopsis raciborskii [65,90], D. planctonicum [43],
and Raphidiopsis curvata [44]. In this work from the observed species, only D. planctonicum and A.
gracile are potential CYN producers. Previous reports of R. curvata [91] and unidentified Aphanizomenon
species [36] might also indicate CYN potential production in the Azores. In contrast, in Portugal’s
mainland, Moreira et al. [92] reported the first identification of CYN (by HPLC, ELISA, and cyrC
amplification) in lake Vela (Figueira da Foz, Portugal), likely associated with the regular presence
of R. raciborskii in high abundance. Lakes with “High Toxicity Risk”, where cyanotoxin production
potential was identified in all or most of the samples (Figure 4; Table 3), are related to the observation
of known toxic cyanobacteria (e.g., Aphanizomenon gracile, Dolichospermum spp., Microcystis flos-aquae,
and Pl. limnetica) and associated mainly to the lake’s morphometrics (depth, area, and altitude), as well
as temperature, pH, conductivity and/or chlorophyll a. These synergies are supported by the DistLM
analysis (Figure 4; Table 2) and reinforced by the literature [7,41,93,94]. Some studies also confirm that
toxic strain blooms and toxin release are enhanced by temperature, in interaction with other factors
such as nutrients and light absorption [2,7,10,18,20,93].
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4.2. Environmental Drivers of Cyanobacteria Occurrence and Cyanotoxins Production Potential

Most of the studied lakes are surrounded by agricultural/cattle fields and forested/recreational
activities areas that promote eutrophication [30,31,33,36]. Anthropogenic effects in the Azorean lakes
have impacted the lake’s trophic state. In fact, according to Cruz et al. [31], eutrophication is a serious
issue in the Azores archipelago since the ’80s, besides the many efforts and mitigations measures
applied. However, eutrophication in the Azorean lakes is not equally distributed among lake types.
Lake types were defined in the Azores based on common European typology schemes, according to the
Water Framework Directive (WFD) [95], and two lake types were designated: Type B-L-M/MI-MP/S/P
includes deep lakes, warm monomictic, small to median surface area, located at median altitude
inside volcanic calderas or maars; Type B-L-M/MI/S/PP comprehends shallow lakes, without summer
stratification, very small and located at high altitude inside scoria cone craters, tectonic or topographic
depressions [70]. Due to their location at lower altitudes, deep lakes are more exposed to human
activities and most of them have become eutrophic [31,36]. Moreover, lower altitude lakes have larger
catchments where the increase in water-rock interaction results in higher values of conductivity and
nutrients [96].

The distribution of cyanobacteria and toxigenic species in the studied lakes follows, generally,
the typology of the Azorean lakes, and, thus, geographical (altitude) and hydromorphological
(deep and area) characteristics seem to be more important drivers of cyanobacteria in these lakes than
other environmental variables, such as pH or nutrients (Table 2). Altitude, lake’s area, and depth have
already been shown to be important drivers of cyanobacteria distribution, e.g., [96,97]. The importance
of these variables could be explained by differences in water retention time, mixing regime [97],
and temperature [98,99], among other factors. Nevertheless, eutrophication still is an important driver
of cyanobacteria species composition, biomass, and toxicity inside each type of the Azorean lakes.

Although the mesotrophic lakes Fogo and Azul, included in the deep type, have high cyanobacteria
biomass, the dominant species are the Oscillatoriales Pl. limnetica, and Ps. limnetica and these lakes only
occasionally have toxigenic potential. These species have been found to occur in several lake types and
trophy [100] but were found to be dominant in some deep mesotrophic lakes [98,99]. Contrarily, the deep
eutrophic lakes (Congro, Funda, Furnas, Santiago, and Verde) present higher cyanobacteria diversity,
mostly dominated by Microcystis spp., Dolichospemum spp., and A. gracile. All these cyanobacteria are
well known to dominate in deep stratified eutrophic lakes [98,101,102] where their buoyancy, low light
toleration, and ability to fix atmospheric nitrogen gives them competitive advantages over other
cyanobacteria and microalgae [1,3,8]. In the deep, larger, and eutrophic lakes Congro, Funda, Furnas,
Santiago, and Verde, MC, STX, and/or ATX-a production potential were identified simultaneously
and in almost all sampling campaigns, despite season fluctuations in environmental conditions
(e.g., temperature, pH, nutrients), reinforcing the importance of geographical and hydromorphological
variables in the distribution of toxic cyanobacteria. In these lakes, nutrients and temperature conditions
are probably suitable for the maintenance of cyanobacteria toxigenic strains throughout the year.
The climate in the Azores is characterized as oceanic temperate, constant throughout the year with
low thermal amplitude [46], hence the absence of strong seasonal impacts on cyanobacteria dynamics
(diversity and biomass), despite some effects on lakes dynamics (e.g., stratification, nutrients run-off).
Furthermore, the lower altitude location of lakes Azul, Congro, Funda, Furnas, Santiago, and Verde is
related to higher temperatures and longer water column stratification [31], characteristics that could
lead to the exponential growth of cyanobacteria [33]. As stated before, toxigenic cyanobacteria species
such as A. gracile, M. aeruginosa, M. flos-aquae, and/or D. planctonicum persist in these lakes throughout
the year.

Shallow lakes located at higher altitudes, with lower temperature, pH, and conductivity, have low
cyanobacteria biomass, except for the eutrophic lakes Capitão and São Brás (Figure 2; Table 1). The low
abundance and biomass of cyanobacteria are common in shallow oligotrophic and mesotrophic
lakes worldwide [89,103]. Contrarily, the shallow eutrophic lakes Capitão and São Brás have high
cyanobacteria biomass (Figure 2, Table 3), dominated mainly by Ps. limnetica and Dolichospermum
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sp. (Table 3). These two lakes, despite their higher altitude location, are surrounded by cattle fields
and forested areas with anthropogenic influences, contributing to nutrients discharges leading to
eutrophication and cyanobacteria extreme proliferation [3,104]. Phosphorus high concentration in
Lakes Capitão and São Brás may be related to their elevated cyanobacteria biomass (Tables S2 and S4).
As shown by the literature, the proliferation of cyanobacteria in eutrophic lakes is often associated
with the rise of phosphorus concentration, mainly on account of anthropogenic effects [33,104,105].

5. Conclusions

Toxin-producing cyanobacteria were detected in most lakes through the detection of
cyanotoxin-producing genes mcyA, mcyB, mcyC, mcyD, mcyE, mcyG, sxtA, and anaC. Lakes Azul, Verde,
Furnas, Santiago, Congro (São Miguel Island), and Lake Funda (Flores Island), are the ones with
higher cyanobacterial biomass and species diversity, and with high toxicity risk, where cyanotoxins
production potential was frequently identified. Aphanizomenon gracile, D. planctonicum, M. aeruginosa,
M. flos-aquae, and Ps. limnetica are the most prevalent species and might be the potential producers for
MC, STX, and/or ATX-a. Isolation and cultivation of cyanobacteria strains from these lakes should be
done to determine which strains are MC, STX, and/or ATX-a producers.

Cyanobacteria distribution seemed to be mainly related to lake typology (lake’s depth, size,
and altitude), although species composition and biomass vary in each lake type according to the trophic
status. Altitude was found to be the main driver of toxic cyanobacteria distribution, with lakes located
at high altitudes presenting low toxicity risk and lakes located at low altitude having high toxicity risk.

With the present study, we report for the first time the presence of genes anaC and sxtA and
therefore the production potential of ATX-a and STX in lakes of the Azores islands.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/12/12/3385/s1.
Table S1: Primers used to detect cyanotoxin-producing genes. Table S2: Environmental variables of sampled
lakes by sampling campaign. Table S3: Cyanobacteria species abundance (cells mL−1) of sampled lakes by
sampling campaign. Table S4: Cyanobacteria biomass (µg L−1) of sampled lakes by sampling campaign. Table S5:
PCR results for the detection of microcystin, saxitoxin, anatoxin-a, and cylindrospermopsin, of sampled lakes by
sampling campaign.
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