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Abstract: Drought is a natural disaster that affects a country’s economy and food security. The 

monitoring of droughts assists in planning assertive actions to mitigate the resulting environmental 

and economic impacts. This work aimed to evaluate the performance of the standardized 

precipitation index (SPI) using rainfall data estimated by orbital remote sensing in the monitoring 

of meteorological drought in the Cerrado–Amazon transition region, Brazil. Historical series from 

34 rain gauge stations, in addition to indirect measurements of monthly precipitation obtained by 

remote sensing using the products CHIRPS-2.0, PERSIANN-CDR, PERSIANN-CCS, PERSIANN, 

GPM-3IMERGMv6, and GPM-3IMERGDLv6, were used in this study. Drought events detected by 

SPI were related to a reduction in soybean production. The SPI calculated from the historical rain 

series estimated by remote sensing allowed monitoring droughts, enabling a high detailing of the 

spatial variability of droughts in the region, mainly during the soybean development cycle. Indirect 

precipitation measures associated with SPI that have adequate performance for detecting droughts 

in the study region were PERSIANN-CCS (January), CHIRPS-2.0 (February and November), and 

GPM-3IMERGMv6 (March, September, and December). The SPI and the use of precipitation data 

estimated by remote sensing are effective for characterizing and monitoring meteorological drought 

in the study region. 

Keywords: agricultural planning; soybean; climate risk; natural disaster; water resource 

management 
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1. Introduction 

Drought is one of the most challenging and complex natural disasters, with negative impacts on 

the economy and environment [1–6]. Agriculture activities are highly impacted by drought, putting 

food production at risk, especially in regions with a predominance of rainfed agriculture. Losses due 

to droughts in regions whose economy is based on agribusiness affect the entire sector, such as 

services suppliers, machinery and agricultural implements, and fertilizers and agricultural 

defensives [2,4,7–11]. 

As the drought persists over time, other problems can directly affect the population, such as 

water supply, conflicts of water use, reduced electrical energy generation, and risks to public health 

due to low water quality [7,9,11–13]. Brazil is highly dependent on hydraulic energy and severe 

droughts have already caused energy rationing and an increase in the prices of electricity. 

Droughts reduce biodiversity, leading to vegetation and animal death, increase the risk of forest 

fires, and alter soil physical properties, with a consequent change in runoff [8,10,14,15]. The work in 

[16] observed that droughts result in a reduction in the vegetative development rate and biomass 

accumulation, with significant consequences for carbon sequestration. [17,18] pointed out that 

droughts in the Amazon rainforest increased deforestation due to forest fires, with an increase in 

forest fragmentation and greenhouse gas emission. 

With climate change, the events of droughts have shown a tendency to increase in its intensity 

and occurrence [2,7,19–22]. Thus, the development of methodologies for monitoring drought events 

is essential for proper planning of water use and decision making to prevent and mitigate drought 

impacts. 

According to [20,23], the monitoring of drought can be obtained by applying drought indices to 

characterize its severity and impacts. There are several drought indices, with different input data 

specific to the type of drought aimed to be studied (meteorological, agricultural, or hydrological) 

[24,25]. 

Among these drought indices, [26] highlighted that the standardized precipitation index (SPI) is 

the most used and recommended by the World Meteorological Organization (WMO) as the standard 

drought index. The great advantage of SPI relative to the other indices is that it needs only the rainfall 

data as an input variable [27]. 

In many developing countries the monitoring of rainfall does not continue over time and the 

spatial distribution of the rain gauge stations is not enough to precisely estimate the drought on a 

large scale. In this context, the rainfall data estimated by orbital remote sensing is a powerful tool 

with great potential for monitoring droughts, as it provides a synoptic and repetitive view of the 

surface and allows a consistent, and systematic collection of data [26]. However, it is necessary to 

evaluate the application of the estimated rainfall products to obtain the drought indices [28]. 

Thus, this paper tested different products of rainfall data estimated by orbital remote sensing, 

which can be an alternative for regions that have a lack of rain gauge stations. This work provides 

information that can be used by decision-makers to monitor the drought events aimed to minimize 

the impacts of this natural phenomenon on agricultural activities. In addition, this information can 

help the government to adopt policies to mitigate this problem, guaranteeing the sustainability of 

agricultural activities in the study area. In this context, this work aimed to evaluate the performance 

of the standardized precipitation index (SPI) using rainfall data estimated by orbital remote sensing 

in the monitoring of meteorological drought in the Cerrado–Amazon transition region, Brazil. 

2. Materials and Methods 

2.1. Study Area and Database 

The study area was the north–central region of the State of Mato Grosso, Brazil (Figure 1), located 

in the transition between the Cerrado and the Brazilian Amazon. It is a region that stands out for 

grain production, with a soybean and corn production in the 2019/2020 growing season of 11,867 and 

15,079 thousand tons, respectively, according to the Instituto Mato-grossense de Economia 

Agropecuária [29,30]. These values correspond to approximately 34% and 45% of the soybean and 
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corn production, respectively, in the entire State of Mato Grosso in the 2019/2020 growing season. 

Most of the region’s grain production is carried out under rainfed conditions, which makes it highly 

vulnerable to drought. 

 

Figure 1. Map of the study area, location of the rain gauge stations belonging to the 

hydrometeorological network of the National Water Agency, and municipalities included in the 

north–central region of the State of Mato Grosso, Brazil. 

The normal soybean sowing season in the region occurs in the second half of October and 

November [31], while the harvest is carried out from February to March. The second crop corn is 

sown right after the soybean harvest, with a sowing time limit until 15 March [32]. The second crop 

corn is usually harvested between June and July. These periods refer to the normal sowing time and 

disregard the development variability between cultivars. According to the Köppen classification, the 

regional climate is Aw, i.e., a tropical warm and humid climate with two well-defined seasons: 

drought from May to September and rainy from October to April [33]. 

Thirty-four historical rain series recorded in rain gauge stations located in and around the north–

central region of the State of Mato Grosso and belonging to the hydrometeorological network of the 

Agencia Nancional de Águas (ANA) were used to carry out this study. The location and information 

related to the rain gauge stations are shown in Figure 1 and Appendix Table A1. The historical 

precipitation data series was obtained through the Sistema de Informações Hidrológicas (HidroWeb) 

[34]. 

Figure 2 shows the behavior of the probable average monthly precipitation for the study region. 

In this case, the probable precipitation refers to the height of rain that has a probability of occurrence 

higher than or equal to 75%. The probable annual precipitation (PAP) of the region has an average 

value of 1622 mm. The monthly rainfall probability was obtained following the methodology 

proposed by [35]. Two well-defined seasons are found in the north–central region of the State of Mato 

Grosso, i.e., a rainy season from October to April and a dry season between May and September. The 

months from April to October are considered the transition between both seasons. January has the 

highest probable amount of rain, but it presents a value very close to that of December. 

June, July, and August show a zero probable average precipitation. The lowest rain values occur 

between May and September, a period in which agricultural production requires supplementary 

irrigation since the possibility of replacing water in the soil due to a natural rain event is very small. 

That is, it is not possible to produce in this period with rainfed agriculture, which is usually practiced 

during the other months of the year. The soybean sanitary break is practiced in the region from 15 



Water 2020, 12, 3366 4 of 17 

 

June to 15 September, i.e., the presence of live soybean plants on the properties is prohibited [36]. The 

objective of the sanitary break is to reduce the occurrence of diseases that affect soybean cultivation, 

especially Asian rust. Thus, the main soybean development period is between October and March. 

 

Figure 2. Probable average monthly precipitation (mm) estimated at the 75% probability level for the 

north–central region of the State of Mato Grosso, Brazil. 

2.2. Drought Detection with SPI Obtained Based on Data from Rain Gauge Stations 

The drought was characterized using the SPI (SPI) [37] because it is the main index 

recommended by the WMO, as mentioned by [20]. The historical precipitation series of 34 rain gauge 

stations (Appendix Table A1) were used as the input variable for calculating SPI, organized for the 

monthly time scale (SPI-1). The adoption of SPI on a monthly scale was performed because periods 

longer would cause difficulties for the drought analysis and its relationship with the phenological 

development phases of the region’s crops, especially soybeans. The monthly SPI represents the 

meteorological drought that occurred prior to the agricultural drought; however, there is a direct 

relationship between these two types of drought. However, June, July, and August were disregarded 

because these months had a zero probable average precipitation under normal conditions (Figure 2). 

The cumulative probability of occurrence of rain P(x) was determined using the theoretical 

gamma probability model after organizing the historical precipitation series on the monthly scale 

[36]. The probability density function of this model is shown in Equation (1). 

f(x)=
1

βγΓ(γ)
xγ�1e

�x
β ; para β>0 e γ>0 (1) 

where x is the monthly precipitation for a given time scale (mm), γ is the shape parameter, β is the 

scale parameter, and Γ is the gamma function. This function was obtained by Equation (2). 

Γ(γ) = � xγ�1e�xdx , γ>0 

∞

0

 (2) 

where x is the monthly precipitation for a given time scale (mm) and γ is the shape parameter. 

The shape and scale parameters of the gamma distribution were obtained using the maximum 

likelihood method from historical rain data. More information on the maximum likelihood method 

can be obtained in [36]. 

The confirmation of the adherence of the gamma probability distribution to the rain data series 

was verified by the Kolmogorov–Smirnov (KS) adherence test at the 10% significance level, according 

to [38]. The choice of a higher significance level makes the KS test more rigorous to verify the 

adherence of a given probability distribution to the data series. For this reason, the KS test was 

applied at the 10% probability level. 

After obtaining the parameters and verifying the adherence of the gamma distribution to the 

rain data series in the north–central region, the cumulative probability (P) of precipitation occurrence 

was calculated through the numerical integration of Equation (1), as shown in Equation (3). 
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P(x)= �
1

βγΓ(γ)
xγ�1e

-x
β

x

0

dx (3) 

where P(x) is the cumulative probability of monthly precipitation, x is precipitation (mm), γ is the 

shape parameter, β is the scale parameter, and Γ is the gamma function. 

The cumulative probability value was corrected using Equations (4) and (5) because the gamma 

distribution is undefined for values equal to zero, that is, the absence of rain. 

P(x)=q+(1 − q).p(x) (4) 

q= 
m

n
 (5) 

where P(x) is the corrected probability of precipitation occurrence, q is the probability of zero 

precipitation, m is the number of rain values equal to zero, and n is the total number of values in the 

sample. 

The probability value P(x) was transformed into a normal variable using Equations (6) and (7) 

proposed by [39]. This transformation resulted in the SPI value. 

SPI = − �t −
c0+c1t+c2t2

1+d1t+d2t2+d3t3
� , 0 < P(x) ≤ 0.5 (6) 

SPI = + �t −
c0+c1t+c2t2

1+d1t+d2t2+d3t3
� , 0.5 < P(x) ≤ 1 (7) 

where c0 = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and d3 = 0.001308. 

Moreover, 

t= �ln �
1

(P(x))2
�   , para 0 <  P(x)  ≤  0.5 (8) 

t= �ln �
1

(1-P(x))2
� , para 0.5 <  P(x) ≤  1 (9) 

The SPI value was classified according to the limits established in Table 1, modified from [27]. 

In this case, drought occurs when the SPI value is lower than or equal to −1. The severity of drought 

or humidity is classified by considering the magnitude of SPI. 

Table 1. Classification of rain anomaly according to the standardized precipitation index (SPI) values 

obtained using Equation (6) or (7) (modified from [27]). 

Class SPI Value Simplified Classification 

Extremely wet (EW) SPI ≥ 1.5 

Without drought Moderately wet (MW) 1 ≤ SPI < 1.5 

Normal precipitation (NP) 1 < SPI < −1 

Moderately dry (MD) −1.5 < SPI ≤ −1 
With drought 

Extremely dry (ED) SPI ≤ −1.5 

The Mann–Kendall test at a 5% significance was used to verify the existence of a significant trend 

in the historical series of monthly SPI. 

2.3. SPI Estimation Using Orbital Remote Sensing 

This study used the precipitation data recorded on the surface and those estimated by remote 

sensing. Table 2 shows the precipitation products from remote sensing used in this study, their spatial 

resolution, the extent of the historical series, and the electronic address where the images were 

downloaded. The information related to the databases is detailed in these electronic addresses. 
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The time scale of all products (Table 2) is monthly, except for GPM-3IMERGDLv6, which is daily, 

and the total precipitated accumulation was performed for each month. 

Table 2. Information related to rain estimations by remote sensing used in this study. 

Product Spatial Resolution Period Database Address 

CHIRPS-2.0 0.05° 1981–2020 https://www.chc.ucsb.edu/data/chirps 

PERSIANN-CDR 0.25° 1983–2020 

https://chrsdata.eng.uci.edu/ PERSIANN-CCS 0.04° 2003–2020 

PERSIANN 0.25° 2000–2020 

GPM-3IMERGMv6 0.10° 2000–2020 
https://giovanni.gsfc.nasa.gov/giovanni/ 

GPM-3IMERGDLv6 0.10° 2000–2020 

The SPI was determined using a routine developed in the software Matlab R2016b 

(OPENCADD, São Paulo, Brazil) for reading the images and forming a historical series of monthly 

rain for each pixel of the products described in Table 2. The same statistical procedure described 

above was performed to determine SPI-1 with the historical series obtained pixel by pixel. Thus, the 

monthly precipitation images for each year of the historical series were transformed into SPI-1 

images. 

A preliminary analysis showed a divergence between the categories of SPI (Table 1) obtained 

with data from rain gauges (Appendix Table A1) compared to satellite images (Table 2). The results 

of the satellite data did not allow adequate characterization of the severity of drought or humidity 

according to the classification shown in Table 1, but they presented a satisfactory agreement in 

indicating the existence or not of the drought event. Thus, two SPI classes were considered at this 

stage: With drought (SPI ≤ −1) and Without drought (SPI > −1). 

The validation of the accuracy of SPI, obtained from satellite images (Table 2), in detecting 

drought events was carried out by calculating the global accuracy, confidence interval of the global 

accuracy, tau index (τ) [40], and kappa index [41] and performing the McNemar test [42] at the 5% 

significance level. For this, an error matrix was constructed considering as reference the SPI values 

obtained for the rain gauges and the classes WITH drought and Without drought (Table 1). The 

quality of the drought classification associated with the values of the kappa and tau (τ) indices was 

performed according to the criteria shown in Table 3. 

Table 3. Quality of drought classification associated with kappa and tau (τ) statistics. 

Kappa or Tau (�) Drought Map Quality 

<0.00 Very poor 

0.00–0.20 Poor 

0.20–0.40 Moderate 

0.40–0.60 Good 

0.60–0.80 Very good 

0.80–1.00 Excellent 

Source: adapted from [41]. 

The global accuracy (P0), and the tau (τ), and Kappa (K) indices were obtained according to [43]. 

After the construction of the error matrix, the general accuracy was calculated by Equation (10). 

P0=
∑ Nij

M
i=j

N
= (10) 

where: N is the total number of samples; Nij, whenever i = j, represents the number of correct 

classifications; M the number of classes, in this work equal to 2 (“with drought”; “without drought”). 

Then the Kappa index was determined using Equations (11) and (12). 
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K= 
P0 − Pc

1 −  Pc

 (11) 

Pc= 
∑ Ni+N+j

M
i=1

N2
 (12) 

where P0 is the global accuracy; Pc the proportion of units that agree by chance; m, the number of 

classes present in the error matrix; Ni+ and N+j the marginal totals of row i and column j, respectively; 

and N, the total number of samples. 

The calculation of the tau index was performed with Equation (13). 

τ = 
Po − 1

M

1 − 1
M

 (13) 

where P0 is the global accuracy and M the number of classes, in this work equal to 2 (“with drought”; 

“without drought”). 

The McNemar test was used in this study, as recommended by [44]. The null hypothesis (H0) of 

the statistical test states that there is no significant difference between classifiers. Therefore, the 

drought detection performed with the rain gauge and satellite data does not differ statistically if the 

null hypothesis is not rejected. Only the products shown in Table 2 were considered able for detecting 

drought, as they showed an overall accuracy higher than or equal to 0.7 (70%), kappa and tau values 

higher than 0.21, and the non-rejection of the H0 hypothesis of the McNemar test. 

McNemar’s test is based on a chi-square statistic, calculated using Equation (14). 

X2= 
(|N12 − N21| − 1)2

N12+N21

 (14) 

where: N12 represents the number of misclassified of the first classifier and the right classification of 

the second classifier; N21 the number of times the first classifier estimated drought correctly and the 

number of misclassified of the second classifier. 

3. Results and Discussion 

3.1. Drought Detection with SPI Obtained Based on Data from Rain Gauge Stations 

Figure 3 shows the mean values of the monthly standardized precipitation index (SPI-1) of the 

north–central region of the State of Mato Grosso for the period from 1985 to 2017. June, July, and 

August were disregarded from the analysis because they were in the normally dry period and 

presented a rain value equal to zero, as shown in Figure 2. 
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Figure 3. Annual average monthly SPI based on data from 34 rain gauge stations located in the north–

central region of the State of Mato Grosso from 1985 to 2017. EW: extremely wet; MW: moderately 

wet; NP: normal precipitation; MD: moderately dry; ED: extremely dry. 

The analysis of the average monthly SPI values (Figure 3) showed that more than 91.9% of the 

monthly accumulated precipitation occurring in the study region can be categorized by SPI as normal 

precipitation (NP), while 4.7% was classified as extremely dry (ED) and moderately dry (MD) and 

3.4% as moderately wet (MW) and extremely wet (EW). 

Figure 3 shows that the extreme drought (ED) occurred in three months of three distinct years 

of the historical series, that is, January 1993, December 2015, and February 2016. These events 

occurred exactly during the soybean development period in the study region. The 2015/2016 soybean-

growing season was one of the most affected due to drought. An 11% reduction in production was 

observed in this growing season compared to the previous growing season (2014/2015), even with an 

increase in planted area by 1% (Figure 4). There was a production increase in 2015/2016, even with 

drought greater than 2012/2013, due to an increase in planted area. The location of the study region 

is in the north and central west of Brazil, where the exploitation of land by primary production is still 

expanding, with the removal of vegetation cover for the implementation of agriculture. 

Agricultural production in the region is conducted under rainfed conditions and the sensitivity 

of SPI for detecting droughts and its impact on the grain-growing season in the region is evident. The 

study in [20] used SPI to monitor droughts in the north and northwest regions of the State of Rio de 

Janeiro, Brazil, and concluded that the monthly SPI is efficient for detecting extreme droughts. The 

results of this research corroborate those obtained for the north–central region of the State of Mato 

Grosso regarding SPI, but the data of Figures 3 and 4 also show that this index is related to a decrease 

in soybean production, such as that which occurred in the 2015/2016 growing season (Figure 4). 
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The study in [45] used the monthly SPI to monitor droughts in the State of Espírito Santo, Brazil, 

and found that its values could detect droughts, leading to a reduction in coffee production. This 

result and that obtained for the region under study demonstrate that the monthly SPI can detect 

droughts and their consequences for different crops. 

 

Figure 4. Production per growing season and the annual area used for soybean sowing in the north–

central region of the State Mato Grosso, Brazil. Source: [46]. 

The trend analysis of the monthly SPI values (Table 4) by the Mann–Kendall hypothesis test 

indicated that the series has stationarity, that is, the SPI values are invariant regarding the chronology 

of their occurrences, except for random fluctuations. Thus, there is no trend to increase or decrease 

dry and humid events in the north–central region of the State of Mato Grosso for the analyzed period. 

Table 4. Results of the Mann–Kendall trend test at the 5% significance level for the monthly SPI data 

shown in Figure 3. 

Result January February March April May September October November December 

Z 0.418 0.201 −0.124 −0.759 −0.232 −0.961 −1.224 1.038 0.294 

p-value 0.676 0.840 0.901 0.448 0.816 0.337 0.221 0.299 0.768 

3.2. Drought Detection with SPI Obtained Based on Orbital Remote Sensing Data 

Table 5 shows the validation of different rain estimations by remote sensing to detect droughts 

in the study region using SPI. The simplified SPI scale is shown in Table 1 with the classes With 

drought and Without drought. The results in bold indicate an adequate performance of the products 

for detecting droughts according to criteria established in the methodology. June, July, and August 

were also disregarded from the analysis, as these months are usually dry in the region under study. 
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Table 5. Validation of drought estimations based on remote sensing data using the simplified SPI 

classification. 

Month Product 
Global 

Accuracy 

CI-

Accuracy 
Tau Kappa 

Kappa 

CLASSIFICATION 

p-Value—

McNemar 

January 

CHIRPS-2.0 0.86 0.82–0.89 0.72 0.50 Good 0.228 

PERSIANN-CDR 0.84 0.80–0.87 0.68 0.41 Good 0.018 

PERSIANN-CCS 0.81 0.76–0.85 0.62 0.31 Moderate 0.791 

PERSIANN 0.85 0.81–0.88 0.70 0.43 Good 0.161 

GPM-3IMERGMv6 0.86 0.81–0.89 0.72 0.46 Good 0.112 

GPM-3IMERGDLv6 0.86 0.83–0.88 0.72 0.50 Good 0.097 

February 

CHIRPS-2.0 0.85 0.82–0.88 0.7 0.50 Good 0.723 

PERSIANN-CDR 0.82 0.79–0.85 0.64 0.37 Moderate 0.299 

PERSIANN-CCS 0.84 0.79–0.88 0.68 0.40 Good 0.567 

PERSIANN 0.79 0.74–0.83 0.58 0.24 Moderate 0.194 

GPM-3IMERGMv6 0.84 0.79–0.87 0.68 0.47 Good 0.504 

GPM-3IMERGDLv6 0.84 0.79–0.88 0.68 0.44 Good 0.418 

March 

CHIRPS-2.0 0.82 0.78–0.85 0.64 0.31 Moderate 0.668 

PERSIANN-CDR 0.80 0.76–0.83 0.60 0.26 Moderate 0.121 

PERSIANN-CCS 0.82 0.77–0.86 0.64 0.31 Moderate 0.418 

PERSIANN 0.72 0.66–0.76 0.44 0.04 Poor 0.036 

GPM-3IMERGMv6 0.79 0.75–0.84 0.58 0.30 Moderate 0.228 

GPM-3IMERGDLv6 0.79 0.74–0.83 0.58 0.27 Moderate 0.342 

April 

CHIRPS-2.0 0.83 0.79–0.86 0.66 0.42 Good 0.030 

PERSIANN-CDR 0.80 0.76–0.83 0.6 0.36 Moderate 0.001 

PERSIANN-CCS 0.84 0.79–0.88 0.68 0.41 Good 0.999 

PERSIANN 0.82 0.78–0.86 0.64 0.41 Good 0.093 

GPM-3IMERGMv6 0.83 0.78–0.86 0.66 0.40 Good 0.434 

GPM-3IMERGDLv6 0.81 0.76–0.85 0.62 0.35 Moderate 0.175 

May 

CHIRPS-2.0 0.83 0.80–0.87 0.66 0.38 Moderate 0.075 

PERSIANN-CDR 0.78 0.74–0.81 0.56 0.18 Poor 0.021 

PERSIANN-CCS 0.78 0.72–0.84 0.56 0.16 Poor 0.033 

PERSIANN 0.81 0.76–0.85 0.62 0.17 Poor 0.048 

GPM-3IMERGMv6 0.82 0.77–0.86 0.64 0.28 Moderate 0.007 

GPM-3IMERGDLv6 0.80 0.75–0.84 0.6 0.27 Moderate 1.17 × 10−4 

September 

CHIRPS-2.0 0.88 0.85–0.91 0.76 0.55 Good 0.602 

PERSIANN-CDR 0.87 0.84–0.90 0.74 0.52 Good 0.335 

PERSIANN-CCS 0.80 0.74–0.85 0.60 0.14 Poor 3.47 × 10−4 

PERSIANN 0.82 0.78–0.87 0.64 0.38 Moderate 0.504 

GPM-3IMERGMv6 0.88 0.84–0.91 0.76 0.55 Good 0.154 

GPM-3IMERGDLv6 0.87 0.83–0.91 0.74 0.52 Good 0.291 

October 

CHIRPS-2.0 0.79 0.75–0.83 0.58 0.25 Moderate 0.028 

PERSIANN-CDR 0.75 0.71–0.78 0.5 0.10 Poor 0.046 

PERSIANN-CCS 0.77 0.72–0.82 0.54 0.12 Poor 0.039 

PERSIANN 0.75 0.70–0.79 0.5 0.04 Poor 0.027 

GPM-3IMERGMv6 0.77 0.73–0.82 0.54 0.18 Poor 0.004 

GPM-3IMERGDLv6 0.81 0.77–0.85 0.62 0.19 Poor 0.011 

November 

CHIRPS-2.0 0.82 0.78–0.85 0.64 0.33 Moderate 0.594 

PERSIANN-CDR 0.81 0.77–0.84 0.62 0.27 Moderate 0.430 

PERSIANN-CCS 0.81 0.76–0.85 0.62 0.33 Moderate 0.895 

PERSIANN 0.76 0.72–0.81 0.52 0.13 Poor 0.037 

GPM-3IMERGMv6 0.80 0.75–0.84 0.6 0.29 Moderate 0.999 

GPM-3IMERGDLv6 0.81 0.77–0.85 0.62 0.33 Moderate 0.900 

December 

CHIRPS-2.0 0.82 0.79–0.86 0.64 0.35 Moderate 0.278 

PERSIANN-CDR 0.81 0.78–0.84 0.62 0.31 Moderate 0.617 

PERSIANN-CCS 0.78 0.73–0.83 0.56 0.25 Moderate 0.456 

PERSIANN 0.76 0.71–0.80 0.52 0.18 Poor 0.022 

GPM-3IMERGMv6 0.83 0.79–0.87 0.66 0.38 Moderate 0.999 

GPM-3IMERGDLv6 0.77 0.71–0.81 0.54 0.13 Poor 8.22 × 10−4 

Results in bold indicate adequate product performance for drought detection. 
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The results in Table 5 show that a single product to estimate the rain by remote sensing, used to 

calculate SPI, could not detect droughts in the region for all months of the year, requiring the use of 

other products to characterize better the drought regime in the region. Drought estimation with rain 

estimated by PERSIANN-CCS presented good performance for detecting droughts in April. CHIRPS-

2.0 was the precipitation product that resulted in the best performance in January, February, March, 

May, September, and November. The product GPM-3IMERGMv6 presented a moderate performance 

for detecting droughts in December. 

The study in [22] concluded that the PERSIANN-CDR and CHIRPS data were suitable for 

monitoring droughts with SPI in eastern mainland China. However, the results for western China 

indicated their inadequacy for monitoring droughts. In the case of the north–central region of the 

State of Mato Grosso, these products were effective in detecting droughts in January, February, 

March, May, September, November, and December, but only CHIRPS was valid for January and May 

(Table 5). The study in [47] used CHIRPS data to monitor drought and humidity throughout the semi-

arid region of Midwest Argentina. According to these authors, CHIRPS is an adequate tool to monitor 

precipitation anomalies for periods longer than one month. The results obtained in the present study 

diverge from that research since the CHIRPS data were used for monthly drought monitoring. 

The H0 hypothesis of the McNemar test was rejected for all products in October indicating a 

significant difference between the drought detection with data from rain gauge stations and products 

derived from remote sensing. Therefore, drought monitoring using satellite information is not 

recommended during this month. 

The study in [48] found that the accuracy of rainfall data estimated by the TRMM depends on 

several factors such as region, the season of the year, time and space scales. These authors also 

presented the results of other studies that showed the variability of the TRMM accuracy for different 

regions of the world as well as for the intensity and other characteristics of the rain. The results 

presented in Table 5 indicate that this variability in the accuracy of the orbital remote sense rainfall 

measurement is also valid for the CHIRPS, PERSIANN, and GPM products tested in this work and 

detailed in Table 2. 

The causes for this variability are related to different factors such as seasonality, type of rain, the 

influence of synoptic systems, and surface factors such as soil occupation/roughness. Because of this, 

further studies should be carried out in the region to identify the intervening factors in the rain 

performance estimated by remote sensing and in the drought estimate with the SPI. 

The results show that the rain deficit in the study region can be monitored with remote sensing 

during practically the entire soybean development period, that is, from October/November to 

February/March. Moreover, soybean is the preferred crop for producers, showing the highest 

commercial value other than corn. 

Figure 5 shows the drought maps for the period from November 2015 to March 2016, obtained 

from the remote sensing products validated in Table 5. These maps corroborate with those obtained 

with rain gauge data measured on the surface (Figure 3), but with higher detailing regarding the 

spatial variability of the drought event in the region. 

Most of the region in November 2015 had no drought, but some municipalities such as Cláudia 

and Santa Rita do Trivelato had most of their area affected by a rain deficit. Almost the entire north–

central region of the State of Mato Grosso was affected by drought in December and February. 

Moreover, January and March presented no rain below normal. 

As previously discussed, the drought that occurred in certain locations in November and almost 

the entire region in December and February was the main factor responsible for the soybean crop 

shortfall in the 2015/2016 growing season. 
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Figure 5. Drought maps resulting from the calculation of SPI-1 with CHIRPS-2.0 (November, January, 

February and March) and GPM-3IMERGMv6 data (December) for the period from November 2015 to 

March 2016 in the north–central region of the State of Mato Grosso, Brazil. 

Researchers from the Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) made a 

technical report in March 2016 on the situation of the 2015/2016 growing season in the study region 

requested by the Associação Brasileira de Produtores de Soja (Aprosoja). Details of this report are 

available in [49]. This report confirms the results obtained in this research, as it associates a reduction 

in soybean production with the water deficits that occurred from 30 November to 24 December, 2015, 

and February 2016. The researchers highlighted that the periods with low precipitation coincided 

with the vegetative development and flowering and grain-filling stages of many soybean 

cultivations, resulting in a low development and abortion of flowers and empty pods, respectively. 

In addition, [49] associated the soybean production losses with an increase in the incidence of 

plants with black root rot caused by Macrophomina phaseolina. According to the authors, the 

occurrence of a drought period followed by a humidity period favored the root invasion by the 

fungus, leading to wilt and deterioration of the woody root tissue as it progresses. Figure 5 shows 

the alternation of dry and wet periods, mainly between December 2015 and March 2016, which may 

have favored the increased incidence of Macrophomina phaseolina on soybean plants. 

The analyses showed the possibility of monitoring droughts with SPI calculated through 

historical rain series derived from remote sensing. This approach, even not characterizing the 
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drought severity, allows a synoptic analysis of this natural disaster and can optimize the direction of 

measures to mitigate impacts. 

The density of rain gauge stations in the Amazon region, where the study area is located, is very 

low compared to other regions of Brazil. The promising results obtained in this study for monitoring 

droughts with indirect rain measurements originating from remote sensing validate an important 

resource to deal with the limitations of the hydrometeorological information collection network in 

the region. 

According to [50], the estimation of rain with a high spatial and temporal resolution by remote 

sensing (radar) can be a promising approach to mitigate the uncertainty resulting from the high 

spatial variability of precipitation in an area, particularly in combination with surface data (rain 

gauges). The results obtained for the north–central region of the State of Mato Grosso (Table 3 and 

Figure 5) prove that this statement is also valid for the drought estimation using orbital remote 

sensing products duly validated with surface data. 

A comparative analysis of the results obtained in this study with those recently published show 

that drought indices and indirect satellite rain measurements work specifically for different world 

regions, as well as their correlation with the agricultural production. In this sense, studies that use 

procedures similar to those employed in this research and that validate a given index regarding its 

ability to characterize the drought of a region and its impact on the agricultural sector are essential 

and strategic. 

The use of soil moisture estimated by remote sensing also can be used in further research to 

improve the drought monitoring in the study region. Works such as [51,52] evaluated different 

estimates of soil moisture derived from remote sensing and found that these products have adequate 

performance for this purpose. The soil moisture and other physical characteristics of the soil would 

make detection of droughts and their impacts on crops more robust. In this work, we do not use the 

soil moisture estimated by satellite due to the absence of a soil database for the validation of satellite 

products, such as the soil moisture and the water storage capacity in the soil measured in-situ. These 

are not only a limitation of the study region but many in developing countries. There are works aimed 

to improve the soil database conducted by the association of soy producers in partnership with 

universities in the northern middle region of Mato Grosso, which will allow future work to validated 

soil moisture products to monitor drought. 

4. Conclusions 

The obtained results allow us to conclude that: 

- The standardized precipitation index (SPI) is effective in characterizing and monitoring the 

meteorological drought in the north–central region of the State of Mato Grosso. There is a 

relationship between the drought events detected by SPI and the reduction in grain production 

that occurs under rainfed conditions. 

- The SPI calculated from historical rain series estimated by remote sensing allows monitoring 

droughts. This approach allows for a higher detail of the spatial variability of droughts in the 

Cerrado–Amazon transition region located in the north–central region of the State of Mato 

Grosso, especially during the soybean development period. 

- The indirect measures of precipitation from remote sensing associated with SPI on the monthly 

scale (SPI-1) that best perform for detecting droughts in the study region are PERSIANN-CCS 

(April), CHIRPS-2.0 (January, February, March, May, September and November), and GPM-

3IMERGMv6 (December). 
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Appendix A 

Table A1. Information related to the rain gauge stations used in the study. 

ID Code Name Latitude (°) Longitude (°) Available Data 

1 01052000 Vila São José Xingu −10.81 −52.75 1976–2017 

2 01053001 Fazenda Santa Emília −10.54 −53.61 1976–2017 

3 01055003 Fazenda Tratex −10.96 −55.55 1994–2017 

4 01056001 Estância Buriti −10.40 −56.42 2000–2017 

5 01154000 Rancho de Deus −11.00 −54.81 1985–2017 

6 01154001 Santa Felicidade −11.93 −55.00 1982–2017 

7 01154002 Fazenda Rio Negro −11.52 −54.36 1999–2017 

8 01154004 Cláudia −11.49 −54.87 2004–2017 

9 01154005 Riacho de Deus −11.13 −54.48 2006–2017 

10 01155000 Cachoeirão −11.65 −55.70 1975–2017 

11 01156000 Fazenda Itauba −11.47 −56.43 1982–2017 

12 01156001 Sinop (Fazenda Sempre Verde) −11.69 −56.45 1983–2017 

13 01156002 Tabaporã −11.30 −56.83 2004–2017 

14 01156003 Nova Americana −11.64 −56.16 2004–2017 

15 01157000 Porto dos Gaúchos −11.54 −57.42 1973–2017 

16 01157001 Juara −11.25 −57.51 1983–2017 

17 01157002 Olho D’água −11.77 −57.04 1999–2017 

18 01254001 Agrovensa −12.81 −54.75 1982–2017 

19 01254002 Consul −12.37 −54.49 1997–2012 

20 01254003 Agropecuária Três Irmãos −12.80 −54.25 2000–2017 

21 01255001 Teles Pires −12.68 −55.79 1976–2017 

22 01255002 Núcleo Colonial Rio Ferro −12.52 −54.91 1976–2017 

23 01256002 Fazenda Divisão −12.98 −56.18 1999–2017 

24 01257000 Brasnorte −12.12 −58.00 1984–2017 

25 01354000 Fazenda Agrochapada −13.45 −54.28 1976–2017 

26 01354001 Agropecuária MALP −13.34 −54.08 1999–2017 

27 01354002 Fazenda Itaguaçu −13.14 −54.44 2003–2017 

28 01355001 Porto Roncador −13.56 −55.33 1985–2017 

29 01356002 Nova Mutum −13.82 −56.12 1985–2017 

30 01356004 São José do Rio Claro −13.45 −56.73 2004–2017 

31 01357000 Nova Maringá −13.03 −57.09 1982–2017 

32 01357001 Campo Novo do Parecis −13.69 −57.89 2000–2017 

33 01455009 Fazenda Rio Novo −14.22 −55.51 2000–2017 

34 01457003 Deciolândia −14.18 −57.51 1982–2017 
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