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Abstract: The motion of a flexible elastic plate under wave action is simulated, and the well–known
phenomena of overwash is investigated. The fluid motion is modelled by smoothed particle
hydrodynamics, a mesh-free solution method which, while computationally demanding, is flexible
and able to simulate complex fluid flows. The freely floating plate is modelled using linear thin plate
elasticity plus the nonlinear rigid body motions. This assumption limits the elastic plate motion to be
small but is valid for many cases both in geophysics and in the laboratory. The principal conclusion
is that the inclusion of flexural motion causes significantly less overwash than that which occurs for a
rigid plate.
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very large floating structures; ice floes

1. Introduction

The interaction of a flexible floating plate with wave forcing has been the subject of extensive
research due to the application in offshore engineering, polar engineering, and geophysics [1–4].
The general assumption is that the wave amplitude is small enough that the problem may be treated
as linear. The first solution for a linear plate in two–dimensions was by [5,6] and in three–dimensions
for a circle [7,8] and for an arbitrary plate [9]. We refer to the review article [10] for an extensive
description of the literature. The primary focus of the research has been the linear response to small
amplitude waves, especially to model very large floating structures, such as a floating airport [11–13].
There has also been extensive work on the modelling of wave propagation in the frozen ocean [14–16].

Recently there has been a strong interest in understanding the nonlinear motion of a floating
elastic plate. While the wave amplitude may be assumed small enough that linear wave theory
applies [17], the floating elastic plate is generally employed to model bodies which have a minimal
freeboard. For example, the floating runway built in Japan has a freeboard of only around 1 m.
Similarly, ice floes have a freeboard of approximately 0.1m. This small freeboard means that it is
effortless for fluid to overtop the structure, a phenomenon referred to as overwash. This overwash has
been the subject of extensive recent research both theoretically and experimentally [18]. In particular,
experiments have shown that, even if the linear theory describes well the motion of the plate, there is
significant overwash [19,20]. This overwash has been shown to have a substantial effect on the
reflection and transmission [21–23] Moreover, overwash will considerably enhance the melting of
ice. The phenomenon of overwash is not limited to ice floes and appears in other areas of ocean
engineering [24].

There is a peculiar paradox when speaking of overwash. It is a feature of experiments conducted in
the laboratory [19,25], and often special barriers are required to avoid the phenomenon [25]. However,
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it has yet to be observed in the field, and there is some speculation that overwash only exists in
laboratory experiments. If this were the case, it would appear to contradict the scaling laws of fluid
motion. It seems likely that the phenomenon of overwash does exist in nature but that it leads to rapid
ice melting, and so is transitory and difficult to observe. We emphasise here that we do not regard
overwash as an event restricted to the laboratory setting.

The theoretical work on investigating overwash has focused on the use of either bespoke numerical
methods [20] or OpenFOAM [26–28]. However, only in the work of [27] was the elastic motion of
the floating plate included. This omission of flexure is even though the phenomenon of overwash
generally only appears when the body is sufficiently thin that the elasticity is important.

Smoothed particle hydrodynamics (SPH), a Lagrangian meshfree particle method, is now used
widely for computer simulations of free–surface and multiphase flows [29–31]. The evolution of
any interfaces is easily tracked just by the motions of the SPH particles. This characteristic is an
advantage of SPH over the conventional mesh methods in which additional tracking algorithms are
needed. Additionally, since the material derivative is used, convection terms are implicitly calculated,
and hence numerical diffusion is avoided. One of the earliest work on the application of SPH to
simulate water wave breaking on a beach, overwashing a flat plate, and from a dam break is due to
Dalrymple and Rogers [32]. Although it is just a phenomenological study, this study highlighted the
potential of SPH for challenging multiphase problems. Crespo et al. [33] then simulated the interaction
between sea waves and an oscillating water column device. Wen et al. [34] simulated wave interaction
with a vertically cylindrical breakwater in a water basin with SPH. In those studies, the structures are
undeformed and move as rigid bodies. For deformable structures, the problem becomes even more
challenging as a separate solver for the structure deformation is needed. Recently, the extension of the
SPH method to floating elastic bodies was considered by Zhang et al. [35]. In that study, Zhang et al.
investigated the response of an elastic plate in mild wave conditions with wave steepness ranging
from ka = 0.1 to 0.15, in which k and a are the wavenumber and wave amplitude, respectively, and the
ratio of the plate length to the wavelength is 1.0. Together with the wave steepness, this ratio is one
of the most critical factors influencing dynamical behaviour of floating structures [36]. For example,
iceberg velocity was found to be close to fluid particle velocity if the ratio is more than 3.0. Likewise,
heave amplitude is similar to the wave amplitude if this ratio about 0.1 [37] and heave resonance is
also observed if it is larger 12.0 [38].

In this study, water wave interacting with an elastic floating plate in a water basin is investigated.
In contrast to [35], wave conditions in this study are more severe with wave steepness up to 0.5,
plate stiffness varies in a wide range of values, from 25 MPa to 2.5 GPa, and the ratio of the plate
length to the wavelength is less than 11.0. The fluid phase is solved with an incompressible SPH.
In contrast, the elastic behaviour of the floating plate is solved using the thin plate theory with the
hydrodynamic force input from the fluid solver. In turn, the deformed plate has a forcing effect
on the fluid phase. Water waves are generated using a moving paddle at prescribed frequencies
and displacement amplitude. Our study has application to the storm damage of very large floating
structures and the melting and breakup of sea ice. However, our focus here is on simulating at the
laboratory scale where extensive experiments have been conducted. The rest of the paper is organised
as follows: wave generation in a water basin is discussed in Section 2, the SPH method and the
two-phase SPH model are presented in Section 3, numerical results are discussed in Section 4, and a
brief discussion is given in Section 5.

2. Wave Generation

Water waves are generated in a water basin, as illustrated in Figure 1. The left boundary is moved
to generate water waves. Its displacement follows sinusoidal rule,

xmw = S cos (ωt− π) . (1)
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Its velocity is then
umw = Sω sin (ωt) , (2)

in which ω = 2π/Tmw (where Tmw is the period of the moving boundary) and S are frequency
and displacement amplitude of the left boundary motion, respectively. From the wave-generation
theory [39], the generated water waves have the same period of the moving boundary, i.e., T = Tmw,
while its celerity is evaluated from

c =

√
gλ

2π
tanh

2πd
λ

(3)

in which d is the initial water height. Since λ = cT, wave length of the generated wave can be obtained
by numerically solving the non-linear equation

λ− T

√
gλ

2π
tanh

2πd
λ

= 0. (4)

Wave amplitude is estimated from

A =
2 sinh 2π

λ d
sinh 2π

λ d cosh 2π
λ d + 2π

λ d
S. (5)

The right boundary is a slope, behaving like a beach, to absorb the wave energy and therefore
suppress reflecting waves. Beach configuration for wave absorption is commonly used in water-basin
experiments due to its simplicity. In simulations, some other boundary conditions, such as opened
boundary [40] or sponge-like boundary [41], have also been utilised.

Figure 1. Water basin setup for wave generation.

3. SPH

SPH approximates a function by its convolution with a smoothing function having compact support,

f (X) =
∫

Ωi

f (Y)W(|X− Y|, h)dV. (6)

The smoothing function, W(r, h) is isotropic and∫
Ω

W(r, h)dV = 1. (7)

Upon domain partition into equal sub-domains, then referred as SPH particles, the integral in
Equation (6) becomes sum of weighted values of SPH particles within the support domain Ω,

f (Xi) = ∑
j

f (Xj)W(|Xi − Xj|, h)Vj. (8)
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Derivative of a function is approximated in the same manner,

∂ f (X)
∂X

=
∫

Ω

∂ f (Y)
∂X

W(|X− Y|, h)dV. (9)

Taking integration by parts and then discretizing, Equation (9) becomes

∂ f (Xi)

∂X
= −∑

j
Vj f (Xj)∇iWij, (10)

It is noted that ∇iWij = ∂W(|Xi −Xj|, h)/∂Xi is gradient of the weight function with respect to Xi.
The weight function plays a crucial role in precision of the SPH approximations. In the subsequent
simulations, the harmonic-like weight function is chosen since it produces the smallest numerical
errors for the SPH approximations [42],

W(rij, h) = αd


1 η = 0(

sin(πη/2)
(πη/2)

)5
0 < η ≤ 2

0 η > 2

, (11)

where η = rij/h is the dimensionless distance between i and j, αd for two-dimensional support domain
is 0.7103, and h = 1.24x is chosen.

3.1. Fluid Phase

The fluid phase is modelled by SPH particles whose motion is governed by Navier-Stokes equations,

∂ui
∂t

+ ui ·∇ui = −
1
ρi
∇Pi + νi∇2ui + g, (12)

in which ui, Pi, ν, and g are particle velocity, pressure, viscosity, and gravity acceleration, respectively.
Equation (12) is coupled with mass conservation equation,

dρi
dt

= −ρi∇ · ui. (13)

Here, an incompressible SPH (ISPH) scheme is utilized. Prediction-correction algorithm is adopted
here for solving Equations (12) and (13) [43–45]. Accordingly, intermediate value for SPH particle
velocity and position, in the prediction step, is estimated first

u∗i = un
i + νi∇2un

i + g (14)

r∗i = rn
i +4tu∗i . (15)

in which un
i and rn

i are velocity and position of SPH particles of the previous step. The viscous term in
the right hand side of Equation (14) is approximated by

νi∇2un
i = ∑

j
Vj

νi + νj(
rn

ij

)2
+ ε2

un
ij

(
rn

ij ·∇iWij

)
, (16)

in which νi and νj are viscosity of particle i and j, and Vj is the particle volume. The parameter
ε = 0.001 h is used to prevent numerical singularity if two particles come too close to each other,
that would occur sometimes, especially at the free surface.
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In the prediction step that the incompressibility has not been gained, the intermediate fluid
density is estimated using Equation (13), which is discretized by

dρ∗i
dt

= ∑
j

mju∗ij ·∇iWij. (17)

The pressure field is attained by solving the Poisson’s equation using the intermediate values
(un

i , rn
i , ρ∗i ),

∇ ·
(

1
ρ∗i

∇Pi

)
= ∇ · u∗i , (18)

which can be discretized as follows

∑
j

8mj(
ρ∗i
)2

+
(

ρ∗j

)2

(Pn+1
i − Pn+1

j )(
r∗ij
)2

+ ε2
r∗ij ·∇iWij = −∑

j
Vju∗ij ·∇iWij. (19)

On applying Equation (19) for all SPH particles, a system of linear algebraic equations is established.
Here, we adopt an iteration scheme [44] to solve Equation (19), as such

Pn+1
i =

∑j

(
−Vju∗ij + aijPn

j r∗ij
)
·∇iWij

∑j aijr∗ij ·∇iWij
, (20)

with

aij =
8mj[(

r∗ij
)2

+ ε2
] [(

ρ∗i
)2

+
(

ρ∗j

)2
] . (21)

The iteration starts with the pressure field of the previous step. For small time step, the scheme
converges quickly after a few iterations. The velocity field and particle location are then updated

un+1
i = u∗i −

1
ρ∗i

∇Pn+1
i . (22)

rn+1
i = rn

i +4t
un

i + un+1
i

2
. (23)

The pressure gradient is approximated by

1
ρ∗i

∇Pn+1
i = ∑

j
mj

 Pn+1
i(
ρ∗i
)2 +

Pn+1
j(
ρ∗j

)2

∇iWij. (24)

3.2. Solid Phase

The floating plate moves freely with the fluid phase except in the horizontal (x) direction. Hence,
the plate motions, in two dimensions, include heave (in the vertical direction), pitch (rotation about its
centre of mass), and elastic deformation. The heavy and pitch motions are determined from

v̇v =
1

Mp

∫ L

−L
(F · nz)dl, (25)

ω̇r =
1
I1

∫ L

−L
(F · np)ldl, (26)

in which F(x, t) is hydraulic force acting on the plate; nz and np are unit vector of the z-axis and the
unit normal vector of the plate, respectively; Mp and I1 are the plate mass and moment of inertia for
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rotation. The plate deformation is determined using the thin plate theory. Accordingly, equation of
motion for a thin plate is

EIb∂4
xζ + ρp A∂2

t ζ = F · np, (27)

where E, Ib, A, ρp are Young modulus, bending moment and cross area of the plate, and plate density,
respectively. It is noted that the bending moment of the plate is defined by Ib = 4WH3/3, in which
W and H are halves of the plate width and thickness, respectively, as illustrated in Figure A2. For a
free-moving plate, the following boundary conditions are applied

∂3
xζ
∣∣∣
x=±L

= ∂2
xζ
∣∣∣
x=±L

= 0. (28)

Variable-separated solution for the plate deformation under time-dependent acting force is
then written

ζ(x) = ∑
n

an(t)ζn(x), (29)

where ζn are the modes of vibration of the plate, as given in Appendix A. On substitution into
Equation (27), we obtain

EIyz ∑
n

λ4
nan(t)ζn(x) + ρp Ayz ∑

n
∂2

t an(t)ζn(x) = F · np. (30)

Then, we multiple by ζm and integrate from −L to L and obtain a set of second-order ODEs
for an(t),

ρp Ayz än(t) + EIyzλ4
nan(t) =

∫ L

−L
ζn(x)(F · np)dl, n ≥ 1, (31)

due to the orthogonality of the modes. Equation (31) is then solved with the initial conditions for the
plate at rest

an(0) = 0, (32)

ȧn(0) = 0, (33)

to determine the coefficient an(t) of each mode. In simulation, at every time step, the hydraulic force F
is known and therefore an(t) can be obtained numerically.

The plate is modelled by a set of SPH particles, whose velocity is

vt
i = vt

v + ωt
r × di + vt

i,e, (34)

in which di is distance vector from particle i to the centre of mass of the plate. The elastic velocity term
is obtained by taking derivative of ζ with respect to time,

vt
i,e = ζ̇(x, t) = ∑

n
ȧn(t)ζn(x). (35)

Then, position of the plate particles in the next time step is updated by

rt+4t
i = rt

i + vt
i,e (36)

SPH particles also model the fixed and moving walls. The velocity of the SPH particle representing
the fixed walls is set to be zero, while Equations (1) and (2) prescribe position and velocity for those of
the moving wall. The pressure of SPH particles representing the solid phase is obtained by solving
Poisson’s Equation (18) [46]. Accordingly, wall pressure arises if fluid particles penetrate the solid
phase, leading changes in local density.
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3.3. Free Surface

In the ISPH scheme, Dirichlet boundary condition P = 0 at the free surface, pressure of SPH

particles at the free surface is set to be zero [44]. There are a few algorithms used to identify free-surface
SPH particles, such as the weighted density less than 0.9 of the fluid density [47],

ρi = ∑
j

mjWij < 0.9ρ f , (37)

or divergence of the particle coordinates less than 1.5 [48], i.e.,

(∇ · r)i = ∑
j

Vjrij ·∇Wij < 1.5. (38)

Here, we adopt the latter in the simulations. In order to reduce particle clumping as well as
stabilize the free surface due to lack of surface tension, an extra viscosity is applied for the free-surface
particles [47]

νi = 4x2 |ui||∇ · ui|
umax

, (39)

in which umax is maximum flow velocity.

4. Results

The water basin has dimensions of Lbottom = 5 m, Lbeach = 4 m, and Hbeach = 1.6 m. Accordingly,
the inclined angle of the beach is α = 22o. The water depth is d = 1.0 m. Displacement amplitude of
the left moving boundary is S = 0.1 m and its moving period is varied from T1 = 1.2 s to T2 = 1.5 s to
produce intermediate-water waves. The floating plate has dimension of 2 cm thickness (2H) and 1 m
length (2L). The plate density is ρp = 500 kg/m3, which is half of the water density ρ = 1000 kg/m3,
and hence the draft is half of the plate thickness, i.e., 1 cm. Spatial resolution is set to be4x = 5 mm
and the corresponding number of SPH particles is about 259, 340. Time step is set to be 10−5 s. The fluid
viscosity is of 1 Pa s. The simulation length is 7 wave periods and it takes approximately 10 hours for
each simulation, which is run parallelly using 40 cores of Intel(R) Xeon(R) Gold 6136 CPU @ 3.00GHz.

4.1. Waves

Figure 2 shows the water waves with period of T1 = 1.2 s at the observing time of t = 3.5T1 = 4.2 s.
We restrict the domain to x < 8 because the fluid run-up does not extend beyond this point.
The longitudinal velocity component is positive in the proximity of the crests and negative in the
proximity of the troughs. On the other hand, the vertical velocity component is negative at the
upside of the waves and positive at the downside. This is expected to be observed in the propagation
process of water waves. The wave’s amplitude gradually diminishes as the waves enter the beach
region. The pressure field continuously increases, from zero at the free surface, towards the tank
bottom. For ease of visualisation and comparison, the pressure field is scaled by the hydrostatic
pressure of the water column, Phyd = ρgd = 9.8 KPa. The presence of the waves locally alters
the water height, that leads to pressure larger than 1 under the lifted regions and vice versa in the
trough region. The beach works pretty well in absorbing the energy of the waves and does not create
any significant disturbances in the pressure field. The simulated wavelength and amplitude are
λ = 2.35 m and A = 0.187 m, respectively. On adopting Equations (4) and (5), theoretical estimation
for those are λtheory = 2.23 m and Atheory = 0.191 m. In comparison to the theoretical wave magnitude,
the simulated one is slightly smaller due to the viscous effect causing energy dissipation, which is
ignored in the theoretical estimation, as well as reflections at the boundaries.
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Figure 2. Waves with T1 = 1.2 s observed at t = 3.5T1: (a) the longitudinal velocity, (b) the transverse
velocity, (c) the relative pressure P/Phyd.

The simulation is repeated for the wave period T2 = 1.5 s. The velocities and pressure are plotted
in Figure 3. The simulated wave magnitude and wavelength are 0.159 m and 3.38 m, respectively,
while they are 0.162 m and 3.35 m from the theoretical estimation. Again, the simulated wave amplitude
is smaller than the theoretical one due to the viscous effect. The good agreement also shows that the
particle size, which has specific effects on the generated waves [49,50], is fine enough to achieve the
numerical convergence. The pressure field is also linearly increasing from the free surface towards the
bottom, and local pressure is more considerable for the larger water depth. The waves are absorbed
pretty well by the beach without any significant pressure reflections. It is seen that the wavelength
is longer, and the wave amplitude is smaller as the wave period is increased to 1.5 s. In the two
cases, the ratio of the water depth to the wavelength is 0.43 and 0.3, respectively, and therefore the
generated waves are classified as the intermediate water wave. We note that the SPH method is highly
computationally demanding and we, therefore, restrict ourselves to the smallest domain possible in
which we have relatively uniform waves with little reflection.
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Figure 3. Waves with T2 = 1.5 s observed at t = 3.5T2 : (a) the longitudinal velocity, (b) transverse
velocity, (c) the relative pressure P/Phyd.

4.2. Dynamics of the Floating Plate

The centre of mass of the floating plate initially is placed at X0 = 4.0 m. The plate density is
half the water density, so both the draft and freeboard of the plate equal 1 cm. It is recalled that
since the longitudinal motion, or surge of the plate, is restricted, the plate’s motions include heave,
pitch, and elastic deformation. For ease of analysis, the scaled time t∗ = (t− t0)/T, in which T and
t0 = T(X0 − L)/λ are the wave period and the time for the first generated wave approaching the
floating plate, is introduced. Two values of Young modulus, E1 = 0.025 GPa and E2 = 2.5 GPa,
are considered to study the effect of elastic deformation on the overwash phenomenon. It should be
noted that we are simulating at the laboratory scale. To compare with the geophysical scale, careful
dimensional analysis is required. It is noted that conditions for the numerical experiments carried out
in the current work are different from the ones investigated by Zhang et al. [35], as summarised in
Table 1. More specifically, for observing the overwash phenomenon, wave conditions here are more
severe, and Young modulus of the plate is also varied in a broader range of values to examine how
elastic deformation affects the overwash. Vibration modes are also analysed.

Firstly, considering incident waves with a wavelength of λ = 3.38 m and wave amplitude of
A = 0.159 m. Correspondingly, wave steepness is ka = 0.295, and the ratio of the wavelength to the
plate length is 3.38. Figure 4 displays the dynamic response of the floating plate with E = 25 MPa
under successive attacks of the incident wave. It is seen that, in the early times, when the wave is
not well developed yet, the wave mildly passes underneath the plate. The overwash starts occurring
subsequently and gets stronger and stronger subsequently. The overwash is observed at both the
ends of the plate, but it occurs stronger at the front end. The plate is significantly bent under the
hydrodynamic load from the wave. The simulation is then repeated for a stiffer plate with Young’s
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modulus of E = 2.5 GPa, which is two orders of magnitude higher than the previous case. It is
observed in Figure 5 that the overwash phenomenon occurs in a reasonably similar way, but it is more
severe at both ends. The plate bending is not obviously observed. The results reveal that the elastic
bending of the plate has a specific role in reducing the overwash since it partly absorbs the kinetic
energy of the incident waves.

Table 1. Summary of the parameters used in the current study in comparison with those investigated
in Zhang et al. [35].

Parameters Current Work Zhang et al. [35]

Wave
Period T (s) 1.2, 1.5 0.6, 1.2
Amplitude A (m) 0.187, 0.159 0.0064, 0.016, 0.024
Length λ (m) 2.35, 3.38 1.0
Steepness ka 0.295, 0.5 0.04, 0.1, 0.15

Floating plate
Young modulus E ( GPa) 0.025, 2.5 0.5
Thickness 2H (m) 0.02 0.01
Length 2L (m) 1.0 1.0
Density ρp (kg/m3) 500.0 500.0

Ratio of wavelength to the plate length λ/2L 2.35, 3.38 1

Figure 4. Dynamics of the floating plate with Young modulus E = 250 MPa under less severe wave
conditions with wave steepness ka = 0.295. Ratio of the plate length to the wavelength is 2L/λ = 0.3.

The plate dynamically moves with the wave. As observed in Figure 6, heave motion of the plate is
also periodic, and its period is as same as that of the incident wave. The heave motion of the plate for
both the values of Young modulus is just slightly different, but its maximum and minimum values are
quite similar. Within the observing period, those values are 0.14 m and −0.1 m, respectively. In other
words, the amplitude of the heave is 0.12 m, which is approximately 0.75 of the wave amplitude.
This shows that the heave motion of the plate is not affected much by the elastic deformation of the
plate. The pitch motion of the plate is also recorded and shown in Figure 6. Similar to the heave,
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the pitch is also periodic with the same period of the incident wave, but the phase is slightly shifted.
In other words, the pitch motion comes after the heave. In the two cases, the pitch angle varies between
−15◦ and 16◦.

Figure 5. Dynamics of the floating plate with Young modulus E = 2.5 GPa under less severe wave
conditions with wave steepness ka = 0.295. Ratio of the plate length to the wavelength is 2L/λ = 0.3.

Figure 6. Heavy and pitch of the floating plate with Young modulus E = 250 MPa under less severe
wave conditions with wave steepness ka = 0.295. Ratio of the plate length to the wavelength is
2L/λ = 0.3.

The plate is deformed under the hydrodynamic load created by the incident waves. First four
vibration modes of the plate versus time are shown in Figure 7. It is seen that the second vibration mode
is dominant regardless of the plate stiffness, although its magnitude is reduced for the higher Young
modulus. The reduction in the magnitude of the second vibration mode is almost at the same reduction
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in the order of magnitude of the Young modulus. Interestingly, the second mode is also periodic with
the incident wave. The ratio of wavelength to plate length, (in this case 3.38), is an essential factor for
dynamics of the plate [36,38,51], and now it also plays a crucial role in the plate vibrations.

Figure 7. Amplitude of the vibration modes of the floating plate with Young modulus E = 250 MPa
under less severe wave conditions with wave steepness ka = 0.295. Ratio of the plate length to the
wavelength is 2L/λ = 0.3.

Now, the wave with a shorter wavelength, λ = 2.35 m, and a larger wave amplitude, A = 0.187 m,
is investigated. Accordingly, the wave condition now is more severe than the previous one because the
wave steepness increases to ka = 0.5. The plate dimensions are unchanged. Figure 8 displays dynamics
of the plate with E = 25 MPa under this wave condition. It is seen that the overwash occurs much
stronger at the front end of the plate. Most of the plate surface is covered by water at t∗ = 5 due to the
overwash. The height of the water layer on the plate surface is also significantly larger. The situation
becomes even worse for the stiffer plate with E = 2.5 GPa. The plate completely submerged in the
water at t∗ = 5, as observed in Figure 9. In comparison to the overwash phenomenon observed in the
numerical experiments carried out by Zhang et al. [35], it occurs much stronger in the current study.

The heave motion of the plate is still periodic with the incident waves regardless of the plate
stiffness, as seen in Figure 10. Within the observing period, the averaged heave amplitude is about
8 cm, which is slightly smaller than that in the previous wave condition. This could be caused by
the water layer on the top of the plate damping its heave motion. Also, due to the strong overwash,
the front end of the plate tends to be pushed downward, which is seen in positive pitch angles in most
of the observing period. Deviation in the pitch of the plate with different Young moduli is also seen
since t∗ = 4, that could be caused by varying levels of overwash.

The second vibration mode is seen as still periodic and predominant in this wave condition
(Figure 11). Unlike the previous wave condition where the coefficient a2 is negative at most of the
time, i.e., downward bending, the plate now is bent either upward or downward more equally and
forcefully, as seen in sign and magnitude changes of the coefficient a2. Another critical point is that
the first vibration mode is more evident in this case. This could come from the smaller ratio of the
wavelength to the plate length, which is 2.38. Physically, high vibration modes start emerging as the
wave frequency gets higher.
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Figure 8. Dynamics of the floating plate with Young modulus E = 250 MPa under severe wave
conditions with wave steepness ka = 0.5. Ratio of the plate length to the wavelength is 2L/λ = 0.43.

Figure 9. Dynamics of the floating plate with Young modulus E = 2.5 GPa under severe wave
conditions with wave steepness ka = 0.5. Ratio of the plate length to the wavelength is 2L/λ = 0.43.
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Figure 10. Heavy and pitch of the plate with Young modulus E = 2.5 GPa under severe wave
conditions with wave steepness ka = 0.5. Ratio of the plate length to the wavelength is 2L/λ = 0.43 .

Figure 11. Amplitude of the vibration modes of the plate with Young modulus E = 2.5 GPa under
severe wave conditions with wave steepness ka = 0.5. Ratio of the plate length to the wavelength is
2L/λ = 0.43.

5. Conclusions

The dynamics of flexible floating structures interacting with ocean waves has been a subject of
extensive research due to its application in offshore engineering, polar engineering, and geophysic.
More specifically, the overwash of a floating elastic plate is of interest since it is used for modelling
structures with small freeboard, for instance floating runways or ice floes. Here, the problem of
overwash is investigated using SPH, a Lagrangian solver ideally for simulating free surface and
interfacial flows. Both the fluid and the floating plate are represented by SPH particles. While the
incompressible Navier-Stokes equations dictate motions of the SPH particles representing the fluid
phase, SPH particles modelling the plate obey the governing equation from linear plate theory.
The SPH simulations are carried out for a laboratory–scale of the problem, i.e., in a water basin.
The water waves are generated using a paddle, or a wall, moving at the different periods, T = 1.2 s
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and 1.5 s, and with a fixed amplitude of = 0.1 m, to result in water waves with different amplitudes,
wavelengths, and wave steepnesses of ka = 0.5 and 0.295, respectively. This steepness corresponds to
moderately severe wave conditions in reality. Two values of Young modulus, E = 25 MPa and 2.5 GPa,
are adopted to investigate how the elastic behaviour of the plate affects the overwash. The numerical
results show that as the steepness increases, the overwash occurs more strongly, and the more flexible
the plate suffers less overtopping. The plate with E = 2.5 GPa was almost submerged under water
just after six wave periods for ka = 0.5. This indicates catastrophic destruction for a floating runway
or an ice floe. The study revealed that the deformation of the floating structure partly absorbs the
kinetic energy of the fluid phase. Consequently, less overwash is observed for a more flexible plate.
The finding agrees very well with observations of Huang et al. [52]. Future research is to build a model
in which we simulate ice floe breakup and melting.
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Appendix A. Vibrating Modes of a Thin Plate

The plate motion is expanded in terms of the free modes of vibration, which satisfy the
homogeneous equation

∂4
xζn = λ4

nζn. (A1)

and the boundary conditions
∂3

xζ
∣∣∣
x=±L

= ∂2
xζ
∣∣∣
x=±L

= 0. (A2)

Equation (A1) has solution of

ζn = A cos(λnx) + B sin(λnx) + C cosh(λnx) + D sinh(λnx). (A3)

We can decompose the solution into symmetric (even) and antisymmetric (odd) solutions.
On substitution of the solution form into the boundary conditions, Equation (A2), we obtain a set of
equations for determining the coefficients

−A cos(λnL) + C cosh(λnL) = 0, (A4)

A sin(λnL) + C sinh(λnL) = 0, (A5)

−B sin(λnL) + D sinh(λnL) = 0, (A6)

−B cos(λnL) + D cosh(λnL) = 0. (A7)

The non-trivial solutions of these equations are when

tanh(λnL) + (−1)n tan(λnL) = 0. (A8)

Table A1 lists value of λnL of the first six vibration modes of the plate. The modes are given by

ζ2n = N2n

(
cos(λ2nx)
cos(λ2nL)

+
cosh(λ2nx)
cosh(λ2nL)

)
, (A9)

ζ2n+1 = N2n+1

(
sin(λ2n+1x)
sin(λ2n+1L)

+
sinh(λ2n+1x)
sinh(λ2n+1L)

)
, (A10)
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where N2n and N2n+1 are determined from the orthonormality of the vibration modes,

∫ L

−L
ζn(x)ζm(x)dx = δmn. (A11)

The first six vibration modes are illustrated in Figure A1.

Table A1. The first six values of λnL.

n 1 2 3 4 5 6

λnL 3.926 2.365 7.068 5.497 10.210 8.639

Figure A1. Plate vibration modes.

Figure A2. Thin plate.

References

1. Bishop, R.E.D.; Price, W.G.; Wu, Y. A General Linear Hydroelasticity Theory of Floating Structures Moving
in a Seaway. Philos. Trans. R. Soc. 1986, 316, 375–426.

2. Kashiwagi, M. Research on Hydroelastic Response of VLFS: Recent Progressand Future Work. Int. J. Offshore
Polar Eng. 2000, 10, 81–90.



Water 2020, 12, 3354 17 of 19

3. Squire, V.A. Synergies Between VLFS Hydroelasticity and Sea Ice Research. Int. J. Offshore Polar Eng. 2008,
18, 1–13.

4. Watanabe, E.; Utsunomiya, T.; Wang, C.M. Hydroelastic analysis of pontoon-type VLFS: A literature survey.
Eng. Struct. 2004, 26, 245–256. [CrossRef]

5. Meylan, M.H.; Squire, V.A. The Response of Ice Floes to Ocean Waves. J. Geophys. Res. 1994, 99, 891–900.
[CrossRef]

6. Newman, J.N. Wave effects on deformable bodies. Appl. Ocean Res. 1994, 16, 45–101. [CrossRef]
7. Meylan, M.H.; Squire, V.A. Response of a Circular Ice Floe to Ocean Waves. J. Geophys. Res. 1996, 101, 8869–8884.

[CrossRef]
8. Peter, M.A.; Meylan, M.H.; Chung, H. Wave scattering by a circular elastic plate in water of finite depth:

A closed form solution. Int. J. Offshore Polar 2004, 14, 81–85.
9. Meylan, M.H. The Wave Response of Ice Floes of Arbitrary Geometry. J. Geophys. Res. 2002, 107. [CrossRef]
10. Squire, V.A. Ocean wave interactions with sea ice: A reappraisal. Annu. Rev. Fluid Mech. 2020, 52, 37–60.

[CrossRef]
11. Yago, K.; Endo, H. Model Experiment and Numerical Calculation of the Hydroelastic Behavior of Matlike

VLFS. In Proceedings of the International Workshop of Very Large Floating Structures, Hayama, Japan,
25–28 November 1996; pp. 209–216.

12. Kashiwagi, M. A Time-Domain Mode-Expansion Method for Calculating Transient Elastic Responses of a
Pontoon-Type VLFS. J. Mar. Sci. Technol. 2000, 5, 89–100. [CrossRef]

13. Kashiwagi, M. Transient responses of a VLFS during landing and take-off of an airplane. J. Mar. Sci. Technol.
2004, 9, 14–23. [CrossRef]

14. Williams, T.D.; Bennetts, L.G.; Squire, V.A.; Dumont, D.; Bertino, L. Wave–ice interactions in the marginal ice
zone. Part 1: Theoretical foundations. Ocean Model. 2013, 71, 81–91. [CrossRef]

15. Williams, T.D.; Bennetts, L.G.; Squire, V.A.; Dumont, D.; Bertino, L. Wave–ice interactions in the marginal
ice zone. Part 2: Numerical implementation and sensitivity studies along 1D transects of the ocean surface.
Ocean Model. 2013, 71, 92–101. [CrossRef]

16. Kohout, A.L.; Williams, M.J.; Dean, S.; Meylan, M.H. Storm-induced sea ice breakup and the implications
for ice extent. Nature 2014, 509, 604–607. [CrossRef]

17. Meylan, M.; Bennetts, L.; Cavaliere, C.; Alberello, A.; Toffoli, A. Experimental and theoretical models of
wave-induced flexure of a sea ice floe. Phys. Fluids 2015, 27, 041704. [CrossRef]

18. Bennetts, L.; Alberello, A.; Meylan, M.; Cavaliere, C.; Babanin, A.; Toffoli, A. An idealised experimental
model of ocean surface wave transmission by an ice floe. Ocean Model. 2015, 96, 85–92. [CrossRef]

19. Meylan, M.H.; Yiew, L.J.; Bennetts, L.G.; French, B.; Thomas, G.A. Surge motion of an ice floe in waves:
Comparison of theoretical and experimental models. Ann. Glaciol. 2015, 56. [CrossRef]

20. Skene, D.; Bennetts, L.; Meylan, M.; Toffoli, A. Modelling water wave overwash of a thin floating plate.
J. Fluid Mech. 2015, 777, R3. [CrossRef]

21. Toffoli, A.; Bennetts, L.G.; Meylan, M.H.; Cavaliere, C.; Alberello, A.; Elsnab, J.; Monty, J.P. Sea ice floes
dissipate the energy of steep ocean waves. Geophys. Res. Lett. 2015, 42, 8547–8554. [CrossRef]

22. Yiew, L.J.; Bennetts, L.G.; Meylan, M.H.; French, B.J.; Thomas, G.A. Hydrodynamic responses of a thin
floating disk to regular waves. Ocean Model. 2016, 97, 52–64. [CrossRef]

23. Dolatshah, A.; Nelli, F.; Bennetts, L.G.; Alberello, A.; Meylan, M.; Monty, J.; Toffoli, A. Hydroelastic
interactions between water waves and floating freshwater ice. Phys. Fluids 2018, 30, 091702. [CrossRef]

24. Zhang, X.; Draper, S.; Wolgamot, H.; Zhao, W.; Cheng, L. Eliciting features of 2D greenwater overtopping of
a fixed box using modified dam break models. Appl. Ocean Res. 2019, 84, 74–91. [CrossRef]

25. Montiel, F.; Bennetts, L.G.; Squire, V.A.; Bonnefoy, F.; Ferrant, P. Hydroelastic response of floating elastic
discs to regular waves. Part 1. Wave basin experiments. J. Fluid Mech. 2013, 723, 604–628. [CrossRef]

26. Skene, D.; Bennetts, L.; Wright, M.; Meylan, M.; Maki, K. Water wave overwash of a step. J. Fluid Mech 2018,
839, 293–312. [CrossRef]
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