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Abstract: The ANEMI model is an integrated assessment model of global change that emphasizes the
role of water resources. Securing water resources for the future is a key issue of global change and ties
into global systems of population growth, climate change carbon cycle, hydrologic cycle, economy,
energy production, land use and pollution generation. The focus of the presented work is on the
development of global water supplies necessary to keep pace with a growing population and global
economy. With the structure of the ANEMI model, a series of experiments are conducted in order to
assess: (i) the current role of water supply in the global Earth system; (ii) the level of water stress that
can be expected in the future; and (iii) what are the potential effects of water quality on global surface
water supply and the distribution of water supply types. The results of model simulations show that
surface water resources were sufficient to meet the water demand and water quality is not shown to
be a significant factor for the development of surface water supplies. Due to globally aggregated
scale, these impacts are averaged and likely understated.

Keywords: global change; integrated assessment modelling; system dynamics simulation;
water resources management; water supply; climate change; earth system; feedback

1. Introduction

Human impacts on the environment at global scales are being realized through our ability to
alter atmospheric concentrations of greenhouse gases and consequently global climate, creating the
need to consider environmental problems and their interactions with the Earth as a highly integrated
system. The Earth system is composed of biological, physical, chemical and human elements that
form a network of feedbacks through their interconnections [1]. The concept of global change becomes
increasingly important as the components of the Earth system such as population growth and
migrations, economic productivity, climate, food production and hydrology are interlinked through
dynamic non-linear feedback processes [2]. Within this system, changes in one component inevitably
lead to changes in another. This is why global change research focusses on interactions between
components of the Earth system as a whole, as opposed to only those of climate [1,3].

The main focus of the presented work is to answer the following questions through the
implementation of the global model of the Earth system: (i) What level of water stress can be
expected in the future?; (ii) Can alternative water supplies help to alleviate future water stress?;
and (iii) What are the potential effects of water quality on global surface water supply and the
distribution of water supply types?

1.1. Water in the Earth System

Water can be considered one of, if not the most, important drivers for human life as well as social
and economic development [4]. Water resources provide for the most basic human needs of drinking
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and sanitation, while allowing for irrigated agriculture to take place and industrial activities such
as thermal power generation, mining and manufacturing. Therefore, the use of, management and
availability of water resources plays a crucial role in the progression of global changes in the Earth
system as without it, societies cannot function.

A growing global population and its needs has put stress on water resources in many regions
around the World. This problem will continue to grow as the population is projected (a) to increase
42% by the year 2100 to 10.9 billion people [5]; and (b) migrate–1 billion people may become climate
refugees by 2050 [6]. The demand for water increases not only with the population but also with the
consumption of water on a per capita basis. Alcamo et al. in Reference [7], show that countries with
higher gross domestic product (GDP) per capita generally have higher water usage in the domestic
sector and follow a type of S-curve, while in the industrial sector, water usage decreases exponentially
to an equilibrium value. Therefore, as countries continue to develop economically the water usage
patterns will change. By continuing with the current trends in global population, economics and
technological change, water demand will continue to increase in most developing countries due
increased domestic water usage as well as agricultural production. In developed countries domestic
and industrial demands saturate and the expansion of irrigated land stagnates [8].

Water stress is often defined as the ratio of water withdrawals to the available water resources in a
region. The hydrologic cycle along with changes made to it through anthropogenic means dictates
the amount of water resources that are available for use. Although natural variability in weather
patterns can determine if a region will experience wet or dry seasons, human influence on hydrologic
cycles such as the construction and operation of dams and reservoirs, water diversions and water
withdrawals redistribute the water availability in time and space. Climate change is expected to alter
the spatial and temporal distribution of water resources on top of what is observed naturally and
through direct human influence [9]. Increased global temperature through the greenhouse effect is
expected to intensify the hydrologic cycle, leading to higher evapotranspiration rates, more frequent
and heavier storms and faster flowing rivers, along with the potential for longer periods of drought.
Because of this, there exists the potential for the availability of water resources to be changed for better
or worse in different areas of the world [10].

Water resources may be available in a given point in time and space; however, the quality of
that water can sometimes dictate whether or not it is available for a certain type of use. For example,
according to a national report from the US Environmental Protection Agency almost half of rivers
and streams across the US are categorized as with “poor biological condition” as a result of nutrient
and sediment pollution. The condition of the rivers and streams are deemed unfit for fishing and
recreational use [11]. In China, the situation is even worse with more than 70 percent of rivers and
lakes being polluted and almost half may contain water unfit for human consumption or contact [12].

Degrading water quality over time has been shown to cause maintenance and treatment issues
in drinking water treatment plants. There is evidence that increases in dissolved organic matter
can lead to fouling and blocking membranes and filters, cause harmful disinfection by-products,
facilitate biological re-growth in distribution systems and transport pesticides, pharmaceuticals and
heavy metal into treatment systems [13]. There are a number of studies that highlight the relationship
between the water quality and the water treatment, which can lead to water supplies inadequate for
human consumption. Changes in water quality on a global scale could be a significant concern for our
ability to maintain clean and sufficient water supplies.

Solutions to ensuring freshwater security vary from managing water demands and more accurately
modelling water resource availability (surface and ground water), to technological solutions such as
desalination and water reuse. Desalination involves the use of thermal evaporation or membrane
separation technology to remove dissolved solids that are present in saline water sources. Both methods
are highly energy intensive and can be costly when compared to traditional water supplies. Currently,
there are approximately 16 thousand operational desalination plants around the World producing over
95 million m3/day of desalinated water for human use [14]. The cost associated with producing this
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type of water supply is estimated to be between 0.45 to 2.51 $/m3, which is still 2 to 3 times higher
than conventional water supply but it is rapidly decreasing (approximately a factor of 10 since the
1960s [15].

Water reuse technologies involve the treatment of waste waters from a variety of different uses
such as agricultural, municipal and industrial. The level of treatment necessary is dependent on the
composition of waste waters being treated as well as the type of reuse that is under consideration.
For non-potable reuse, wastewater is treated to a lower standard while potable uses require more
advanced treatment methods capable of removing emerging pathogens, endocrine disrupting chemicals
and pharmaceuticals [16]. Treatment options vary from simple low-energy solutions such as lagoons
which allow wastewater to filter through media, to high-energy advanced treatment plants employing
activated sludge treatment along with different levels of disinfection ranging from ultra-violet to
membrane filtration.

1.2. Integrated Assessment Modelling

Water resources management in the context of global change involves many different disciplines
ranging from climate science, economics, hydrology, biology, engineering, governance, agriculture and
social sciences as outlined above. In order to address the problem of dealing with future water stress,
these disciplines must be put together in a comprehensive framework. This will allow decision makers
to explore policy options that consider the Earth system as a whole.

Assessment of various aspects of global change often requires the use of models from different
domains and new tools and modelling paradigms to analyze complex interactions in the Earth system
at a variety of spatial and temporal scales. The concept of integrated assessment (IA) has been defined
as an interdisciplinary process of bringing together knowledge from different disciplines, adding value
in contrast to a single disciplinary approach in order to provide information to decision and policy
makers [17]. It is performed to bring about understanding of an issue regardless of the discipline.

Tol and Vellinga in Reference [18] describe the process of IA in a set of stages. The first stage
involves structuring the problem that is to be assessed. The boundary of the problem must be defined
in a way that encompasses all the important components of the problem, as well as components that
may become important to the problem under different conditions or over time. Stage 2 involves the
use of participatory and modelling methods for assessment to engage stakeholders that play a role in
the problem at hand.

The integrated assessment modelling (IAM) approach involves the coupling of disciplinary
models. There are many different methods that can be used to form a model for integrated assessment.
Connections between disciplinary models can be made statically (output of one model is first obtained
then given as input to another) or dynamically (both models running at the same time). The latter of
which, is the only way that feedback loops can be created and studied. Dynamic connections can be
made by using a computer program to facilitate the exchange of information while the models are
running or both models can be combined into the same computer code [18].

1.3. System Dynamics Simulation for Integrated Assessment

The field of system dynamics focusses specifically on analyzing the dynamic nature of systems that
are composed of feedback loops. Therefore, the use of system dynamics is ideal for the construction of
integrated assessment models of global change. The system dynamics modelling process involves the
use of causal loop diagramming to map out the feedback loops that are driving system behavior. This is
effectively describing the boundary of the problem as well as the components that are responsible for
reproducing it. System dynamics simulation builds from the conceptual models developed through
systems thinking by adding structure to them. The addition of stocks or state variables and the flows
that affect them, takes the system from a conceptual model to a mathematical model through stock and
flow diagramming. Stock and flow diagrams illustrate the configuration of stocks and flows which
is essentially a visual representation of a system of first order differential equations. Most, if not all,
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IAMs can be represented in this way from a high level. Therefore, the system dynamics simulation
approach is ideal for the construction of IAMs and provides a formalized way for creating feedback
loops between disciplinary models of global change.

1.4. The Role of Water Supply Development in the Earth System

The ANEMI model [19,20] is an integrated assessment model of global change that emphasizes the
role of water resources. The model is based on the principles of system dynamics simulation in order
to analyze changes in the Earth system using feedback processes. Securing water resources for the
future is a key issue of global change and ties into global systems of population growth, climate change
carbon cycle, hydrologic cycle, economy, energy production, land use and pollution generation.

The main contribution of the presented work is the development of global water supplies necessary
to keep pace with a growing population and global economy using an integrated feedback-based
approach. With the structure of the ANEMI model, a series of experiments are conducted in order to
assess: (i) the current role of water supply in the global Earth system; (ii) the level of water stress that
can be expected in the future; and (iii) what are the potential effects of water quality on global surface
water supply and the distribution of water supply types.

Evaluation of the model performance demonstrates that the model can reproduce historical trends
related to global change within the Earth system. The experimental results show that investment in
alternative water supplies on a global scale should be made in advance of conventional water supply
depletion, as time delays may result in prolonged increases in global water stress. It was also found that
the role of technological change was a greater factor for meeting future food production requirements
than the effect of a changing climate. The impact of water quality degradation and the depletion of
available water resource on water supply development, was found to be understated when studied on
the global scale. It is recommended that the water supply development system developed in this work
be extended to a finer spatial scale where the effects of water depletion and water quality degradation
can be more thoroughly examined.

2. Overview of the ANEMI3 Model of Global Change

This chapter presents the ANEMI model, which is currently in version 3 [19,20], built upon
the first two iterations of ANEMI [21,22]. The model shares the same system dynamics simulation
paradigm that was used in the previous iterations of ANEMI, in that feedbacks and delays are used to
drive system behavior. ANEMI3 is a type of integrated assessment model that describes the state of
and interactions between model sub-systems that compose the Earth system. The main sub-systems
or ‘sectors’ used are that of the climate system, carbon, nutrient and hydrologic cycles, population
dynamics, land use, food production, sea level rise, energy production, global economy, persistent
pollution, water demand and water supply development.

Each individual sector in the model describes the relevant feedbacks that drive the state variables
in the sector. Connections between sectors form intersectoral feedbacks responsible for the functioning
of the Earth system. It is the intersectoral feedbacks that allow us to represent feedbacks that drive
global changes in the Earth system. Feedbacks driving global change are now evident, while is
expected that negative feedbacks acting on population and economic growth may be more evident in
the future. From a system dynamics perspective, effective policymaking should be based on addressing
the feedback structure of a system, not only on modifying the system parameters. This viewpoint
is what makes the ANEMI3 model unique and useful since in the current time global modelling is
becoming progressively more complex [23].

The boundary of the model is defined by the problem that is being explored. In this case, we are
modelling the role of water resources in various aspects of global change. Therefore, the spatial scale of
the model is mainly one that is global. In some sectors, the stocks are disaggregated to capture material
flows on a sub-global scale but not at a level that is location specific. This spatial scale limits the level
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of detail that can be used to describe the flows that act to change the model stocks, however it allows
us to effectively analyze feedbacks between water resources and other model sectors on a global scale.

The highly endogenous structure and coupling of sub-systems in the ANEMI3 model are part
of its novelty in the realm of integrated assessment modelling. Because of this, feedback processes
are responsible for the behavior that is exhibited in model runs. The model sectors that comprise the
ANEMI3 model are that of the climate system, carbon, nutrient and hydrologic cycles, population
dynamics, land use, food production, sea level rise, energy production, global economy, persistent
pollution, water demand and water supply development as shown in Figure 1. The model includes
over 2000 variables and 700 equations. Presentation in Figure 1 is focused on illustrating the high-level
model sectoral structure and relationships. Feedback loops between sectors or intersectoral feedback
loops are responsible for global change in this Earth system. Intersectoral feedbacks in the ANEMI3
model allow for the representation of various aspects of global change. In the Figure 1 diagram alone
there is a total of 89 possible intersectoral feedback loops. The size of the feedback loops range from
2 to 9 sectors included out of the 10 that are shown. An example is that of a growing global economy,
which drives energy production and industrial growth, thereby resulting in more greenhouse gas
emissions and climate change. This in turn results in negative feedbacks on economic growth through
climate damages, which can represent economic damages because of land and structures lost to coastal
flooding, for example. Creating a causal loop diagram from these connections between model sectors
allows us to view the feedbacks that are created by combining model sectors in this way.

Figure 1. High-level feedback structure of the ANEMI3 model illustrated as a causal loop diagram
(+ signs along causal relationships indicate change of connected variables in the same direction; − sign
indicates change in opposite direction).
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The main difference between ANEMI1, ANEMI2 and ANEMI3 is addition of intersectoral feedback
loops used to (a) analyze water supply development within the Earth system, (b) include of water
quality degradation and its impact on the development of surface water supplies and (c) assess of
global scale feedback related to water supply development. These main modifications are introduced
to represent the dynamics of global change at the global scale with an emphasis on the development of
water supplies.

The ANEMI model is developed using Vensim (https://vensim.com/ last accessed 20 November
2020) system dynamics simulation software. The current model code is archived using Zenodo
(https:doi.org/10.5281/zenodo.4025424) and details on how to run the model, modify inputs and
view the outputs in graphical or tabular formats are provided in the repository and discussed in
Reference [19]. Work presented in this paper is building on the work and data from previous versions
of the model [15,16,19].

2.1. Integrated Assessment of Global Water Resources

The new water supply sector in ANEMI3 was developed by incorporating water supply as a new
production sector within the newly added energy-economy sector [19,20,23]. This has been achieved by
adding capital stocks to produce water supply in the form of surface, ground, wastewater reclamation
and desalination water sources.

As available water resources become depleted, the water supply is reduced for the same input
intensity. This means that more effort is required to produce the same rate of water supply, which also
makes a given type of water supply that is depleted more expensive. For example, when the
groundwater elevation decreases from over abstraction, more pumping energy is required to extract the
same amount of water resource. The effect of saturation is also included in this relationship, assuming
the best or most cost-effective sites are used first for water supply infrastructures. An example of which
could include the construction of additional reservoirs, source water intakes, of groundwater wells in
areas that are less suitable or cost effective than those that were previously constructed.

The dotted causal link from water price to the capital order rate in Figure 2 indicates a connection
that is neither positive nor negative. Instead, this link is used to determine the amount of investment
that is made in the capital stocks of the different supply types (surface, ground, wastewater reclamation
and desalination water sources). Inputs from the nutrient cycle, hydrologic cycle and water demand
sectors are used to define the water price, water stress and water resource ratio variables respectively
in the water supply development sector.

https://vensim.com/
https:doi.org/10.5281/zenodo.4025424
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Figure 2. Causal loop diagram of the ANEMI3 water supply development sector. The dotted arrow from
water price to water supply indicates a causality that is neither positive nor negative. Different colors
identify inputs coming from different model sectors. Clockwise arrow with − sign designates negative
feedback loop and counter clockwise arrow with + sign designates positive feedback loop.

2.2. Mathematical Formulation of Water Supply Development Sector

Water resources, Ri are used in the production of water supplies, where the subscript i, denotes the
type of water supplies for which the water resources are being used.

Rsw = Sr × TRF−URW ×WPF
[
km3/y

]
(1)

Rgw = Qperc −Qdischarge
[
km3/y

]
(2)

Rww = TDW + TIW
[
km3/y

]
(3)

Rds = Oceans
[
km3

]
, (4)

where Rsw = Surface water resources
[
km3/y

]
; Rgw = Groundwater resources

[
km3/y

]
; Rww =

Wastewater resources
[
km3/y

]
; Rds = Desalination water resources; Sr = Stable and reusable runoff

fraction; TRF = Total renewable flow
[
km3/y

]
; WPF = Wastewater pollution factor; Qperc = Percolation

to groundwater
[
km3/y

]
; Qdiscahrge = Groundwater discharge

[
km3/y

]
; TDW = Treated domestic

wastewater
[
km3/y

]
; TIW = Treated industrial wastewater

[
km3/y

]
; URW = Untreated Returnable

Waters
[
km3/y

]
.
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The amount of water resources available for the development of water supplies is dependent on
the hydrologic cycle, water demand and water quality sectors of the model. In the case of surface water,
the stable and reusable portion of runoff is taken from the total renewable streamflow and is adjusted
for untreated wastewater discharge. The adjustment for wastewater discharge is based on [24] which
estimates that for every cubic meter of contaminated wastewater discharged into water bodies and
streams, makes unsuitable 8–10 cubic meters of fresh water. The difference in groundwater percolation
and discharge is used for the consideration of groundwater resources as this refers to renewable
groundwater. Only renewable groundwater resources are considered for the global scale. The inclusion
of non-renewable or fossil groundwater resources should be considered at the regional scale. For the
potential reuse of wastewater, industrial and domestic wastewaters are considered. Although the reuse
of wastewater is highly dependent on the type of wastewater and the use for which it is being treated,
it is considered here as a supplementary type of water supply in the case of groundwater and surface
water depletion. Water resources used for desalination are considered primarily from the ocean stock
in the hydrologic cycle. This results in a virtually limitless supply; however, it is very energy intensive
resulting in a high effective input intensity thereby limiting production.

The concept of resource depletion in energy production is also applicable to water supply
development. For example, in the case of surface water and groundwater resources, depleted water
resources will mean less suitable locations for water extraction and treatment plants. This might mean
that source waters could be further from where the water is being used, thus increasing distribution
costs. Pumping costs could also be increased by using deeper aquifers or surface water supplies that
have a greater difference in elevation from their point of use. Water resource depletion factors into the
water supply development process in much the same way as energy production, however there is
one key difference. The depletion effect for energy production is based on the ratio of current energy
resources remaining to the initial amount. In contrast, water resources are renewable to varying degrees.
Therefore, simply taking the ratio of the available water resources to the initial water resources is
insufficient. Here, the ratio of available water resources to the current production level is used. In order
to accomplish this structure, water production was changed to a stock variable to avoid creating an
indeterminate system (introduction of a new negative feedback by making water production a function
of itself).

WSi =

∫
WSi,0

(
αwi

(
WSi
AWi

)ρwi

+
(
1− αwi

)
EWIIρwi

i

) 1
ρwi
× dt

[
km3/y

]
, (5)

where WSi = Water supply from water resource i
[
km3/y

]
; WSi,0 = Initial water production

[
km3/y

]
;

AWi = Available water resource remaining
[
km3/y

]
; EWIIi = Effective water input intensity; αwi =

Water resource share; ρwi = Resource substitution coefficient.
In the case of surface water, the available water resources are a rate (runoff minus water quality

depletion effects) rather than a stock that can be depleted over time. If production equals this rate,
then there is no more surface water that can be utilized at this time step. For wastewater reuse if the
rate of reuse is equal to that of the amount of treated wastewater, then no more wastewater can be
reused unless wastewater treatment percentage increases.

In the energy capital sub-system of the energy-economy sector, the desired energy capital for each
source is determined by the perceived return on investment and the production pressure defined as
the ratio of the energy order rate or demand to energy production for each source [19,20]. In the case
of water supply, the term for perceived return on investment is removed, thereby making the primary
drive for new water supply capital based on production pressure, which resembles the definition of
water stress (withdrawal or demand to availability ratio). This value is multiplied by the current water
capital stocks to obtain the desired water capital stocks,

DKWi = KWi ×
Wdi

WSi
[$], (6)
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where DKWi. = Desired water capital for water source i
[
km3/y

]
; Wdi = Demand for water supply i[

km3/y
]
; WSi = Water supply from water source i

[
km3/y

]
.

Where i denotes the type of water supply for which desired water capital is being determined.
In order to obtain the demand for water supply from each source, Wood’s algorithm [21] is used
to allocate the total water demand (sum of domestic, industrial and agricultural water demand) to
each supplier. The geometric illustration of Wood’s algorithm is shown in Figure 3, where each
rectangle represents a different supplier (blue-surface, orange-ground, green-wastewater reclamation
and red-desalination water supplies). The area of each rectangle represents the capacity for a given
supplier to fulfil the demand for a product, while the position and width of each rectangle is based on
the “attractiveness” value and “width” parameters respectively. Here, the inverse water supply price
is used to represent the attractiveness value and the area of each rectangle would be the water supply
capacity for a given supply type. The total water demand is allocated to each supplier by the black
line in Figure 3 which moves from right to left until the area to the right of the line fulfils the demand.
The area of each rectangle that lies on the right of the black line represents the level of demand satisfied
by each supplier, therefore a water supply type with a high price would be placed farther to the left on
the attractiveness scale and would receive less of the total water demand.
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The inverse water supply price was chosen as the main driver for changes in supplier attractiveness
as this will vary with technological improvements, depletion, saturation and water quality in the case
of surface water supply. This formulation encapsulates the effects of global changes in technology,
water resource availability and water quality on the allocation of capital investments in different types
of water supply. The width factor determines how this allocation is distributed to suppliers which
are not necessarily the cheapest option. For example, on the global scale, although the use of surface
water supplies is likely the most cost-effective option in many regions, groundwater, water reuse and
desalination supplies are all being used simultaneously.

The concept of endogenous technological change applied to energy production [19,20] has
analogies to water supply development. In the case of surface water and groundwater supplies, it is
assumed that pumping, distribution and treatment technologies will remain largely the same but will
show some improvement over time. However, alternative water supplies such as wastewater reuse
and desalination are likely to see vast improvements in the near future. Factoring technological change
into the water supply development process is what will help make alternative water supplies more
feasible in the future, along with depletion and saturation of conventional water supplies.

A unique attribute of water resources when considering water supply development is water
quality. Degraded water quality can impact the functioning of water treatment facilities as well as
maintenance costs and the necessary configuration of unit processes [22]. This may also influence the
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ability to secure adequate source waters for extraction of water resources in the future as a result of
pollution and climate change. This could negatively impact production of conventional water supplies
by increasing the cost of implementing new capital as well as variable inputs needed for treatment and
distribution including energy, chemicals and labor.

In ANEMI3, nutrient concentrations in surface waters are used as an indicator of water quality
on a global scale [19,20,22]. Wastewater and agricultural inputs are used as the main contributors
to water quality degradation and changes in the levels of nutrients in the form of total nitrogen and
phosphorus are used as indicators of water quality from the nutrient cycle sector of the model. The ratio
of current to initial nutrient concentrations for surface water resources is used as a multiplier on the
water supply price,

Pwsw = PPwsw ×

(
NCE
NCE0

)γw[
$/km3

]
, (7)

where Pwsw = Water supply price for surface water
[
$/km3

]
; PPwsw = Producer price for surface

water
[
$/km3

]
; NCE = Nutrient concentration effect

[
(nN × nP)/

(
km3/y

)2
]
; NCE0 = Initial nutrient

concentration effect
[
(nN × nP)/

(
km3/y

)2
]
; γw = Influence of water quality on surface water

supply price.
The nutrient concentration effect takes into consideration the concentration of both total nitrogen

and phosphorus,

NCE =
NNRiver × NPRiver

SF2

[
(nN × nP)/

(
km3/y

)2
]
, (8)

where NNRiver = Nitrogen content of river stock [nN]; NPRiver = Phosphorus content of river stock [nP];
SF = Streamflow

[
km3/y

]
.

2.3. Integrating Water Supply Development Sector into ANEMI3 Structure

In order to include water supply development as an additional component within the
energy-economy sector, key connections needed to be made with the energy-economy sector of
the model. Those connections are detailed in Figure 4. Establishing these connections effectively
closes several feedback loops for water supply development to fit into this sector. Water supply
development is treated as an additional horizontal disaggregation of the global capital stock alongside
the energy sector.Water 2020, 12, x FOR PEER REVIEW 10 of 18 
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To accomplish this production structure, water production, capital, technological change and
pricing structures were replicated from that of the energy economy sector. Capital stocks were created
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to represent water supply infrastructures for surface water, groundwater, wastewater reuse and
desalination. The level of capital for each source refers to any infrastructure that relates to the global
capacity of the system to provide water supply. This includes reservoirs, pumping systems, treatment
systems and distribution networks. Economic output in the energy-economy sector is distributed
amongst energy and water production, investment and consumption. The inclusion of water supply
development adds an additional consumer of economic output (Figure 5).
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3. Model Experiments

To assess future levels of water stress and the role of alternative water supplies and water quality,
three experiments are used with ANEMI3 model. In the first, different formulations of water stress
are compared to examine the driving factors of water stress on a global scale. The second experiment
focusses on development pathways of alternative water supplies including water reclamation and reuse
and desalination. Different development pathways are examined to estimate whether it is possible that
sufficient supplies can be developed to alleviate global water stress. The final experiment is used to
examine the potential effect of water quality on surface water supply. Here an indicator of global water
quality is used to alter the production of surface water supplies, assuming that significantly lower
water quality source waters are more costly to make available to the population. Each of the three
experiments is discussed in detail below.

3.1. Experiment 1—Examination of Future Global Water Stress

Thresholds of water stress have been defined by Reference [23]. Low, moderate, medium-high
and high levels of water stress corresponds to values of less than 0.1, 0.1 to 0.2, 0.2 to 0.4 and greater
than 0.4 respectively, where water stress (WTA) is defined as the ratio of surface water withdrawals
(SWW) to availability (ASW),

WTA =
SWW
ASW

. (9)

In the ANEMI3 model, water stress can be calculated using different formulations. Water pollution
and green water dilution effects (WTApoll and WTApoll+gw can be applied to the WTA ratio in order to
gain a more conservative measure of water stress [24].

WTApollution =
SWW + URW ×WDF

TotalRenewableFlow
(10)

WTApollution+gw =
SWW + URW ×WDF + GWR

TotalRenewableFlow
, (11)

where URW = Untreated returnable water
[
km3/y

]
; WPF = Water pollution factor; GWR = Green water

requirement for crops and pasture
[
km3/y

]
.



Water 2020, 12, 3349 12 of 19

In this work, an additional representation is used based on the ratio of total water supply to the
amount of available conventional water resources of surface water (Rsw) and groundwater (Rgw).

WTAwatersupply =

∑
WSi

Rsw + Rgw
. (12)

The total amount of water supply includes both, conventional and alternative water resources,
allowing for increased alternative water resources to reduce water stress.

3.2. Experiment 2—The Role of Alternative Water Supplies

Growing populations and industrial output will increase the demand for water in the domestic,
industrial and agricultural sectors, thereby increasing the pressure on freshwater resources. It is
expected that these resources will become increasingly stressed over time, such that the ratio of demand
to available water resources will increase. To overcome water stress, alternative supplies in addition
to conventional surface water and groundwater will be needed, such as desalinated water and the
wastewater reuse. The ability to analyze the distribution of water supplies through time will provide
insight as to when the water resources become stressed and to what degree alternative water supplies
will be needed in the future.

Alternative water supplies are represented in ANEMI3 in the same way as conventional water
supplies including surface water and groundwater. However, the supply price starts at a higher value
initially and is gradually reduced through improvements to the technology over time. The cost of
producing alternative water supplies has decreased historically and is expected to decrease further.
The rate at which technology improves in a complex system cannot be simply calculated, therefore the
role of alternative water supplies in reducing future levels of water stress is examined through a Monte
Carlo sensitivity analysis. The parameters used to specify technological change rates for alternative
water resources is expressed using a probability distribution and the ANEMI3 model is then simulated
200 times to evaluate a range of pathways for alternative water supply development.

3.3. Experiment 3—Water Quality Effects on Surface Water Supplies

Water quality in ANEMI3 is represented by the changing concentrations of nutrient levels in
surface waters. It acts as a multiplier that increases the supply price of surface water resources through
hypothesized cost of increased treatment. This hypothesis is supported by the studies mentioned
previously [22] but the extent of this effect is unknown and has never been looked at on a global scale.
In addition to increased nutrients, wastewater inputs also render a portion of water resources unusable
for the purpose of water supply, thereby contributing directly to water stress. If water quality becomes
severely degraded in the future on a global scale, costs to produce water supplies could increase if
technology does not progress fast enough to address potential treatment issues. Because of this, it is
hypothesized that alternative water supplies may become more attractive and play a larger role in
the future.

In ANEMI3, nutrient concentrations in surface waters are used as an indicator of water quality on
a global scale. Wastewater and agricultural inputs are used as the main contributors to water quality
degradation and changes in the levels of nutrients in the form of total nitrogen and phosphorus are used
as indicators of water quality from the nutrient cycle sector of the model. The ratio of current to initial
nutrient concentrations for surface water resources is used as a multiplier on the water supply price,

Pwsw = PPwsw ×

(
NCE
NCE0

)γw[
$/km3

]
, (13)

where Pwsw = Water supply price for surface water
[
$/km3

]
; PPwsw = Producer price for surface water[

$/km3
]
; NCE = Nutrient concentration effect

[
nN·nP

(km3/y)
2

]
; NCE0 = Initial nutrient concentration effect
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[
nN·nP

(km3/y)
2

]
; γw = Influence of water quality on surface water supply price. The nutrient concentration

effect takes into consideration the concentration of both total nitrogen and phosphorus,

NCE =
NNRiver × NPRiver

SF2

[
(nN × nP)/

(
km3/y

)2
]
, (14)

where NNRiver = Nitrogen content of river stock [nN]; NPRiver = Phosphorus content of river stock [nP];
SF = Streamflow

[
km3/y

]
.

The effect of water quality on water supply development is examined by comparing development
pathways under different levels of nutrient inputs to surface waters via wastewater. Wastewater
treatment rates are set constant and compared to the baseline wastewater treatment levels.

4. Results

This section presents the results of ANEMI3 model simulations performed to address the three
research questions.

4.1. Experiment 1

The projected water stress values using the formulations mentioned above are shown in Figure 6.
When the effects of pollution and green water dilution are included, water stress values are much higher.
Using only the WTA ratio (Equation (9)), water stress values start initially at a value of 0.21 and rise up
to 0.24, which is on the low end of the medium-high water stress category. In contrast, when pollution
and green water effects are considered (Equation (11)), the starting values range between 0.32 to 0.35.
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Figure 6. ANEMI3 simulated levels of water stress using the withdrawal to availability ratio and
alternate formulations.

As the simulation progresses, water stress with only pollution effects considered (Equation (10))
on top of the WTA reaches a peak in the year 2010 and declines afterwards. This is because in this case
the pollution effects are represented only through wastewater inputs, which decrease as domestic and
industrial water demands decrease in the model due to reduced water intensities with greater global
economic output. When water pollution in the form of agricultural runoff or green water is included,
water stress values continue to rise to a value of 0.5 by the end of the simulation. This indicates severe
levels of water stress. Using the ratio of water supply to available water resource levels as an indicator
of water stress results in a starting value of 0.15 which follows S-shaped growth to 0.35. This indicates
a shift from low levels of water stress to the high end of the medium-high water stress category.
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4.2. Experiment 2

The development of water supplies for surface water, groundwater, wastewater reuse and
desalination under the ANEMI3 baseline scenario are shown in Figure 7. Surface water supplies on
a global scale have made up the largest fraction of water supply along with groundwater resources.
They are the least costly to find and extract and there is much more capital currently invested in
these supply types. However, in places where rivers or streams are not present, groundwater may
be a less costly option, especially if the quality of the surface water is poor. Surface water supplies
start at an initial value of 1504 km3/year and climb to a maximum of 4422 km3/year. Groundwater
supplies increase at a much slower rate from 877 km3/year to 1439 km3/year. Both wastewater reuse
and desalination supplies increase at a rate that is much faster than surface and groundwater, however
the amounts of which are also much smaller initially, with wastewater reuse and desalination reaching
292 and 87 km3/year by the end of the century, respectively.
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surface water and groundwater supply while the lower labels are for wastewater reuse and desalination.

Surface water supplies are the dominant source of water supply globally for the ANEMI3 baseline
run. This is because the supply is relatively inexpensive and abundant, compared to the other water
sources on a global scale. However, this is not always the case on a regional level. There are many
areas of the world where either surface or groundwater resources are currently depleted or unavailable
in time and space, thus prompting the use of alternative water resources, such as desalination and
wastewater reuse.

4.3. Experiment 3

The input of nitrogen to surface waters is increasing throughout the baseline simulation starting
at an initial rate of 3.1 trillion moles or 4.3 Mt per year to a rate of 7.6 trillion moles or 10.5 Mt per year
(Figure 8). Input of phosphorus to surface waters on the other hand, increases from 451 billion moles
or 13.5 Mt per year to a peak value of 681 billion moles or 20.4 Mt per year in the year 2025. After this
point phosphorus input decreases significantly, down to 126 billion moles per year.
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Left axis represents number of moles of nitrogen and phosphorus inputs to surface water per year.

The explanation for the difference in the pattern of nitrogen and phosphorus inputs lies in their
respective amounts in different sources. For nitrogen, on a global scale, agriculture is the main
anthropogenic source of nutrients to surface waters, while domestic and industrial wastewaters are the
main source of phosphorus. Phosphorus input decreases after the year 2025 due to increasing levels of
wastewater treatment on a global scale, which reduces the input significantly. The levels of treated and
untreated wastewater are shown in Figure 9. Initially, the amount of untreated wastewater is greater
than treated on a global scale in 1980. Under the ANEMI3 baseline scenario, wastewater treatment
increases from the initial rate of 160 km3/year and surpasses that of the untreated percentages in 2010.
After this point, treatment rate increases further to approximately 550 km3/year.
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Nutrient inputs act as an additional rate that affects the surface water stock in the nutrient cycle
model. Combining this with the stock of surface water in the hydrologic cycle model allows for the
concentrations of nutrients in surface water on a global scale to be examined, as shown in Figure 10.
The concentration considers changes in hydrologic cycle. The patterns are almost the same because the
global amount of streamflow does not change very much due to climate change increase and surface
water consumption having a balancing effect in the ANEMI3 baseline scenario.
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Figure 10. Surface water nutrient concentrations of nitrogen and phosphorus.

Nutrient concentrations are higher when constant wastewater treatment is implemented,
rather than exogenous increase in the ANEMI3 baseline scenario. Nutrient concentrations are
used as an indicator for water quality in the production of surface water supplies, whereby higher
concentrations act as a multiplier to the surface water production costs. The effect of constant wastewater
treatment on water supply development is shown in Figure 11. Under this scenario, the establishment
of surface water supplies is only slightly affected by the change in surface water quality on a global
scale (Figure 11a). Under the ANEMI3 baseline parameterization scheme, water quality does not
appear to play a significant role in the establishment of surface water supplies, even if wastewater
treatment levels are held at constant 1980 values for the entire simulation. Both wastewater reuse and
desalination supplies show major increases from 1980 to the year 2100. Wastewater reuse increases
from 10 to 280 km3/year, while desalination increases from 10 to 75 m3/year, although the absolute
numbers are small in comparison to conventional water supplies. With reduced wastewater treatment
rates there is a major difference in the level of wastewater reuse, as there is less available wastewater
resource to be used (Figure 11b). Due to scarce wastewater for reuse there is a drop from 274 km3/year
to 143 km3/year by the year 2100.
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Figure 11. Development of water supplies under the baseline and constant wastewater treatment
scenarios for (a) conventional water supplies and (b) alternative water supplies.

5. Discussion

The paper explores the utility of adding the feedback-driven, economically based water supply
development sector in ANEMI3 global change model. Capital stocks for each type of water supply
grow over time with investment, which is made based on the inverse supply prices and allocated using
Wood’s algorithm. Endogenous technological change is also incorporated for the desalination and
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wastewater reuse technologies, as well as the effects of depletion and diminishing water quality of
conventional supplies.

In the ANEMI3 baseline scenario, water stress values are decreasing due to technological
change and investments in water supply capital over time. The ANEMI3 baseline simulation for the
development of water supplies shows that surface water resources are dominating the share of water
supply during the entire simulation period from the year 1980 to 2100. This is because surface water
resources are by far the least expensive option for water supply in the ANEMI3 baseline scenario.
When only the global scale is considered, there is enough stable and renewable surface water resources
to satisfy the demand of a growing population by the year 2100.

The potential for water quality impacts on the development of surface water supplies is assessed.
Nutrient concentrations in surface water resources is calculated using the global cycles of water,
nitrogen and phosphorus. The difference in sources of nitrogen and phosphorus inputs to the nutrient
cycles, result in different long-term behaviors in their respective surface water concentrations.

6. Conclusions and Future Work

The ANEMI3 model structure is novel in that global water supply is able to evolve endogenously
and allows for the development of conventional and alternative water supplies, while including
effects of water quality on surface water resources. The development of water supply infrastructure is
assessed from an economic perspective.

6.1. Main Conclusions

Under the current parameterization scheme, water quality is not shown to be a significant factor
for the development of surface water supplies. When wastewater treatment rates are fixed at their
initial values, surface water nutrient concentrations increase but not enough to show large impacts on
surface water production.

Using increased nutrient concentrations as an indicator for water quality provides a way to
represent the impact of different sources of water pollution but on a globally aggregated scale these
impacts are averaged and likely understated. The reduced wastewater treatment scenario did however
influence wastewater reuse. The lower quantity of treated wastewater available for reuse resulted in a
greater saturation effect on the development of water supplies from wastewater reuse, thereby reducing
its potential to develop as an alternative water resource.

6.2. Future Work

There are some limitations in presenting dynamics of the water supply development sector
incorporated into ANEMI3 model on the global scale in the baseline ANEMI3 scenario. This is because
surface water resources were enough to sustain the water demand when the available water resources
consider the entire amount on Earth. This was also true for water quality, as it is averaged across the
globe as well.

If the water supply development model is regionalized or adapted for use in a grid-based model,
the effects of resource depletion and water quality effects on surface water supply could be explored in
more detail. This is selected to be the major direction for future work. In doing this, location specific
details with regards to water supply development could be considered, such as distribution costs for
areas that are further away from coastlines in the case of desalination or the depth of regional aquifers
for groundwater extraction costs.
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