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Abstract: The air-water two-phase flow model is developed to study the transformation of
monochromatic waves passing over the submerged structure. The level set method is employed to
describe the motion of the interface while the effect of the immersed object on the fluid is resolved
using the ghost-cell immersed boundary method. The computational domain integrated with the
air-water and fluid-solid phases allows the use of uniform Cartesian grids. The model simulates the
wave generation, wave decomposition over a submerged trapezoidal breakwater, and the formation
of the vortices as well as the drag and lift forces caused by the surface waves over three different
configurations of the submerged structures. The numerical results show the capability of the present
model to accurately track the deformation of the free surface. In addition, the variation of the drag
and lift forces depend on the wavelength and wave induced vortices around the submerged object.
Hence, the study observes that the triangular structure experiences the relatively small wave force.

Keywords: ghost-cell immersed boundary method; water wave transformation; wave-structure
interactions; two-phase flows

1. Introduction

There are great demands to protect coast from the impact of ocean wave forces. This is mostly
considered for locations with high population density such as the western Taiwan where many human
and industrial activities are present and close to shores. In addition, climate change makes the sea level
rise and produces extreme meteorological events such as the increase of typhoon intensity and hence
formation of large waves. Coastal protection has become essential to prevent the loss of life and damage
of economy [1–3]. A submerged breakwater is commonly constructed to diminish significant wave
loadings, which is also in advantage of preserving natural features. Hence, understanding the wave
evolution over submerged obstacles and the resultant flow fields to characterize the dynamic response
in the wave-structure interaction is important to gain the knowledge for the design of breakwaters in
terms of safety considerations.

For surface waves traveling over the submerged body, the physical process considers the incident
waves propagate along with downstream distance, which are deformed by the shallow water and
subsequently transmitted into the deeper water region. It has been known from direct field and
laboratory observations that the interaction between the waves and submerged structure contributes
to the generation and growth of higher harmonic waves [4–7]. In the experiment of Beji and Battjes
and Luth et al. [6,7], the formation of higher harmonic waves was caused by the wave shoaling on the
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top surface of the bar with shallow water and the transformation lasted with the waves moving away
from the submerged structure and into the deeper water region.

With the improvement of numerical algorithms and rapid advances in computing technology,
modeling of wave tanks to generate progressive waves has been widely used to study the transformation
of the waves over submerged structures. Various numerical models have been developed, for example,
the nonlinear shallow water wave equations, Boussinesq type equations, nonlinear inviscid Laplace’s
equation and Navier-Stokes equations [8–14]. It is likely that the Navier-Stokes equation with the
momentum source wave-maker predicts the wave deformation well and velocity distribution close
to the obstacle. Huang and Dong [13] numerically solved the 2D unsteady Navier-Stokes equations
to simulate the wave deformation and vortex generation for propagative waves traveling over a
submerged dike, for which the incident waves were generated using a piston-type wave maker.
Based on the model of Huang and Dong [13], the numerical experiment of Huang and Dong [14]
studied the solitary wave interacting with the submerged rectangle dike. Kawasaki [15] proposed the
model in conjunction with volume of fluid (VOF) method to investigate the wave breaking over the
submerged breakwater with various configurations.

The immersed boundary (IB) method is a powerful technique to effectively solve problems with
the embedded boundary in the fluid. The approach directly introduces a body force to the momentum
equations in advantage of neglecting the mapping procedures to simulate the force of the immersed
body on the fluid flow. The IB method is originally developed by Peskin [16] to study cardiac mechanics
associated with the blood flow. Important development was made by Goldstein et al. [17] and Saiki
and Bringen [18] to employ an imposed force to the boundary condition at the immersed boundary.
The approach has attracted a great deal of interest to simulate the fluid flows with embedded bodies in
various fields, for example, the prediction of turbulent flow around the solid cylinder [19], development
of ghost-cell immersed boundary method (GCIBM) to model the complex geometries over a wavy
boundary and a three dimensional bump [20], combination of Lattice Boltzmann and IB method to
study the transport and deformation of capsules [21,22], and simulations of the air-water entrainment
and wave breaking [23,24]. Comprehensive reviews of the IB method applications are presented in
Anderson et al. [25], Scardovelli and Zaleski [26], and Mittal and Iaccarion [27].

In the modeling of the fluid-structure interaction, the IB method is very useful to solve the problems
with efficiency and ease of generation Cartesian grids [28]. Shen and Chan [29,30] developed the
combined IB-VOF model to simulate the surface waves propagating over submerged bars. The studies
concluded that the combined model is effective to treat the irregular rigid boundaries, giving rise
to the accurate predictions of free surface evolutions and velocity features around the structures as
well as the drag force. The modified IB-VOF model was suggested by Zhang et al. [31], which was
capable of computing free surface transformations and their interaction with stationary or moving
structures. It is noted that the difficulty of the VOF method is that complicated procedures of the
interface reconstruction is required during computation [32,33]. In contrast, the level set (LS) method
is a relatively simple alternative to track the front interface. It is shown that the combined scheme of
LS and IB becomes popular because the method is cost effective and useful to characterize problems of
the wave-structure interaction in the multiphase flows [34–36]. Recently, Lo et al. [37] integrated the
LS and IB methods to study the dynamic response for, particularly, the floating body induced by the
surface waves.

In the present study, a hydrodynamic model combining LS and GCIB methods [20] is developed
to predict the phenomenon of nonbreaking waves passing over submerged objects. Moving interface
between air and water is tracked using LS method based on the weighted essentially non-oscillatory
(WENO) scheme [35,38]. The GCIB method is used to treat the interaction between fluid and immersed
bodies in which a novel weighted interpolation method, accounting for the influence of arbitrary solid
boundary, is contrived to accurately calculate the velocity and hence the virtual force at the image
point. In addition to solving the highly deformed free surface in the process of the wave transformation
at the air-water interface, the modeling gives attention to the simulations of vortex formations and
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drag and lift forces produced by the submerged structures with three configurations, which are
the semicircular, trapezoidal, and triangular types. For the specific shape, Young and Testik [39]
observed the wave reflection coefficient and Jiang et al. [40] studied the wave loads on semicircular
submerged breakwaters. However, the examination of forces acting on triangular submerged bars
appear to be rare. The comparison between the three types shows that the triangular bar produces
smaller drag forces (discussed in Section 3.3.3). This is important for potentially optimal design of the
submerged breakwaters.

The numerical experiments are achieved via generation of the monochromatic surface waves
with various periods in a wave flume. The computational effort is accordingly conducted to solve 2D
Naiver-Stokes equations for the present air-water two-phase model with the interaction between the
surface waves and the submerged structure. The structure of this paper is as follows. Section 2 explains
the present numerical scheme and procedure of computation. Section 3 presents the numerical results
of the numerical wave generations and their transformations validated with the physical experiment
and the further simulations are carried out on the generated waves passing over the different types of
the submerged structures. Conclusion remarks are made in Section 4.

2. Numerical Model

2.1. Governing Equation

To describe surface waves propagating in a wave flume with the immersed rigid body,
the governing equations are formulated with the conservation of mass and momentum for the
air-water two-layer flows with different densities and viscosities, where the interface is defined using
the LS function (φ) and Dirac delta function δ (explained in Section 2.2). Considering the surface
tension, body force, gravity, and wave-absorbing layer, the equations are expressed as follows:

∇·u = 0 (1)

∂u
∂t

+∇uu = −
∇p
ρ(φ)

+
µ(φ)

ρ(φ)
∇·

(
∇u +∇Tu

)
−
σk(φ)∇φδ(φ)

ρ(φ)
+ g + f−Abu (2)

Equation (2) is the Navier-Stokes equation with the integral air and water two phase domains
where the bold symbol hereinafter represents a vector, u denotes the velocity, t denotes time, ρ denotes
the density, µ denotes the viscosity, σ denotes the coefficient of surface tension, k denotes the curvature
of the air-water interface, f denotes the forces induced by the immersed body, g denotes the gravitational
acceleration, p denotes the pressure, and Ab denotes the absorbing coefficient which is proposed by
Lin and Liu [41] and formulated as follows:

Ab = Cα
exp

[(
|x−xxt |

xab

)nc]
− 1

exp(1) − 1
, xxt < x < xxt + xab (3)

where xxt and xab represent the starting position and length of the absorbing region. Cα and nc

represent the empirical damping coefficients to be determined via the numerical test where Cα = min
{200, 0.9/∆t}, and ∆t is the computational time step. With this method Cα ensures a positive value to
prevent a negative value when the time step is large. Cα = 200 and nc = 10 was recommended by [41],
which are also used in the prediction of motions for the floating structure in [37]. The damping region
with source function −Abu is implemented to be the sponge layer in this study.

2.2. Level Set Method

The air-water interfacial flow is modeled using the scalar LS function to track the transient
movement of the free surface. The function represents the shortest distance from the grid cell to the
interface with negative value representing the air phase, positive value representing the water phase,
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and zero representing the interface. The LS function is governed by the transport equation expressed
as follows:

∂φ
∂t

+ u·∇φ = 0 (4)

In the Navier-Stokes equation to solve the two-layer fluid flows, significant gradient of the fluid
properties ρ and µ across the interface yields numerical instabilities. To eliminate these interfacial
discontinuities, a thin layer ε is facilitated using a smoothed Heaviside function H(φ) and Dirac Delta
function δ(φ). The transition layer of the density and viscosity distributed over the interface is shown
as follows:

ρ(φ) = ρwH(φ) + ρa(1−H(φ)), µ(φ) = µwH(φ) + µa(1−H(φ)) (5)

where the subscribe a denotes the upper layer in the air and w denotes the lower layer in the water
and H(φ) represents the smoothed Heaviside function:

H(φ) =


0

1
2

(
1 + φ

ε + 1
π sin

(
πφ
ε

))
1

φ < −ε
−ε ≤ φ ≤ ε

φ > ε
(6)

Typical values for ε are required between one or three times of the smallest grid size. In the
present model using the uniform grid, ε is given with the value of 2∆z where ∆z denotes the vertical
grid size. The smoothed delta function is the derivative of the smoothed Heaviside function given by:

δ(φ) =
dH
dφ

=

 1
2

(
1 + cos

(
πφ
ε

))
/ε

0
|φ| ≤ ε

otherwise
(7)

where the surface geometry is represented by the normal vector n and curvature k(φ) of the LS function
defined as follows:

k(φ) = ∇·n = ∇·

(
∇φ

|∇φ|

)
φ=0

(8)

The LS equation (Equation (4)) is spatially and temporally discretized using WENO scheme [37,38]
and third-order Runge-kutta scheme, respectively. As the thickness of the interface has to be uniform,
each fractional time step a function is a signed distance function near the front interface. The previous
LS function φ(x, tn) is updated to new φ(x, tn+1) corresponding to the new profile of interface by
solving Equation (4).

2.3. Numerical Scheme Based on Projection Method

The time-dependent Navier-Stokes equation is discretized using the finite difference method with
the staggered arrangement of the uniform Cartesian grids. The fractional step projection method [42]
is employed to decouple the velocity and pressure. The direct numerical simulation is adopted
to solve the unsteady Navier-Stokes equation. To calculate the velocities of the time step from n
to n+1, the convective and diffusion terms in Equation (2) are manipulated using the second-order
Adams-Bashforth scheme and an implicit Crank-Nicolson method, respectively, which are second-order
accuracy and ensure the numerical stability. The following predictor-corrector scheme based on the
projection method is used to discretize the continuity and momentum equations given as follows:

u∗ − un−1

∆t
=

1
2

(
3Cn−1

−Cn−2
)
+

1
2

(
D∗ + Dn−1

)
−
∇Pn−1

ρ(φ)
+ fn−1

α + fn (9)

∇·

(
∇p
ρ(φ)

)n

=
1

∆t
∇u∗ +∇·

(
∇p
ρ(φ)

)n−1

(10)
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un = u∗ − ∆t
(
∇Pn

ρ(φ)
−
∇Pn−1

ρ(φ)

)
(11)

where the superscript n denotes the time step and * denotes the intermediate values, ∆t represents the
size of time step, u∗ is the predicted velocities, un and un−1 denote the divergence-free velocities, Pn and
Pn−1 related to the pressure field at time-step n and n−1, respectively, C and D represent the convective
terms and diffusion terms, respectively, fα represents the forces including the surface tension, gravity,
and wave absorbing.

2.4. Evaluation of Forcing Term and Ghost Cell

The velocity distribution constrained around the immersed structure is modeled using GCIB
method. The forcing term f imposed on the Navier-Stokes equation shown in Equation (9) compensates
the differences between the intermediate velocities and the resultant velocities at the ghost-cell forcing
points. As the intermediate velocity is undetermined, the forcing term cannot be known explicitly.
Hence, an iterative procedure is contrived to compute the intermediate velocity u∗ and forcing term fn

in each time step to make the velocity at the boundary surface in agreement with the ghost-cell velocity
ug. The forcing term is therefore obtained via rearranging Equation (9) with the implementation of ug

expressed as follows:

fn =
ug − un−1

∆t
+

1
2

(
3Cn−1

−Cn−2
)
−

1
2

(
D∗ + Dn−1

)
+
∇Pn−1

ρ(φ)
− fn−1
α (12)

A novel interpolation technique is proposed to calculate the velocity at the image point using the
velocities of the surrounding grid points as illustrated in Figure 1. The figure sketches the ghost forcing
point in the solid cell, body intercept point at the immersed boundary, and corresponding image point
in the fluid cell. The three points are located at the line normal to the boundary with the intercept
point at the middle. It is observed that an image point is usually projected inside the rectangular
fluid cell enclosed by the four fluid points as shown in Figure 1a. Additionally, the image point is
probable to locate inside the cell in presence of the immersed boundary. As illustrated in Figure 1b
the image point is enclosed by three fluid points and the body intercept point. The image velocity up

is therefore interpolated using the velocities at the three fluid points and at the body intercept point,
which forms the quadrilateral stencil marked as dash line in Figure 1b. A particular case is given in
Figure 1c because the image point is surrounded by two fluid points, one solid point, and the intercept
point. To solve this problem, the stencil is extended to include the nearest fluid cell and hence the up is
interpolated by the all fluid points on the stencil and the body intercept point.
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The image velocity is obtained using the weighting function: 
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Figure 1. Uniform Cartesian grids around the immersed boundary with three types of the image points
inside the rectangular cell (a) in the fluid without solid point, (b) crossed by the boundary with one
solid point, and (c) crossed by the boundary with two solid points. The points on the stencil marked
by the dashed line are used to compute the velocity ug at the ghost cells. (• Ghost-cell forcing points;
# Image points; � Fluid points; � Solid points; N Body intercept point).
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The image velocity is obtained using the weighting function:

up =
ns∑

i=1

wk
i ui (13)

where wi is the weight of grid point, subscript i indicates the number represented the fluid and
body intercept points used to interpolate up and ns represents the total number of the quadrilateral
stencil, superscript k marks the kth image points in the computational domain, and w represents
the weighting function. The value of weighting function ensures the consistent condition of the total
velocity source from the surrounding points to the image point. The weighting summation of kth
marker point satisfies:

ns∑
i=1

wk
i = 1 (14)

The weighting function for the image node to smooth a quantity from the kth marker point is
given by:

wk
i =

w̃k
i∑ns

i=1 w̃k
i

(15)

The weight is obtained using the reciprocal of distances between the image point and the
interpolated points represented as:

w̃k
i = 1/

(
rpi + α

)
(16)

where α represents the regularization parameter with a constant value of 10−6 and

rpi =

√(
xp − xi

)2
+

(
zp − zi

)2
denotes the distance to the position of the image point

(
xp, zp

)
. If the

image and interpolated point is identically located or the distance between two points is very
small, Equation (16) approaches to infinite without adding α. The values at ghost-cell forcing
points are computed using the present interpolation method with the capability of minimizing the
numerical instability.

After calculation of the velocity at the image point, the velocity at ghost cell point is extrapolated
through the boundary condition and hence:

ug = 2uΓ − up (17)

where uΓ denotes the velocity at the boundary.
For the engineering design of breakwaters, it is important to evaluate the wave force acting on the

structure. This is calculated directly using the pressure and the viscous shear stress on the wall and
integrating along with the surface Ω of the solid body:

F =

∫
Ω
(−np + n·τ)dΩ (18)

where τ represents the shear stress on the wall. As the Navier-Stokes equation formulated in
Equation (2) includes the gravity force the pressure indicates the summation of the hydrostatic and
dynamic pressure.

2.5. The Numerical Procedure

The computational procedure for the present numerical scheme is described as follows:

1. Equation (9) is solved to obtain the intermediate velocity u∗ without consideration of the forcing
term fn. However, at this moment u∗ does not satisfy the boundary condition at the rigid
body surface.
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2. The velocity at the forcing point is computed using the interpolation method and hence the
forcing term fn in Equation (12) is obtained.

3. Equation (9) is recalculated to provide a new u∗. As the forcing term fn and intermediate
velocity u∗ are implicit variables, an iterative scheme between steps 2 and 3 is used to ensure the
convergence of both fn and u∗.

4. Pressure is computed via the Pressure Poisson equation of Equation (10).
5. The velocity is corrected using Equation (11).
6. In the successive time step, the velocity, forcing function, and pressure calculated from the

previous time step are employed to be the initial conditions. The above explained procedure is
iterated until the required time step is completed.

A code was written to conduct the numerical modeling using a personal computer with the CPU
of I5 10400. The present model took approximately 10 min to run a relatively complex case of wave
passing over the submerged body with a specific wave height and period. In contrast, as given in
Section 3.2.1 for the model validation, the a commercially available CFD package, Flow-3D, using the
renormalized group (RNG)-turbulent flow model took approximately 12.8 min. This reveals the
efficiency of the present numerical scheme with the combined LS and GCIB methods.

3. Results and Discussion

3.1. Monochromatic Wave Generations

The present model was firstly validated via the generation of progressive waves in the rectangular
wave flume with a constant depth to compare with the theoretical solutions [43]. The domain size of
the flume is 30 m in length, 0.4 m in water depth, and 0.2 m in height for the upper air layer as the
schematic diagram shown in Figure 2. The numerical flume is consistent with the physical wave flume
and layout of Luth et al. [7]. In the modeling, the horizontal and vertical grid sizes are ∆x = 0.02 m and
∆z = 0.005 m, respectively, with total nodes of 180,000 and time step ∆t = 0.002 s. Numerical waves
are simulated using the relaxation zone method [44] with the analytically small amplitude waves fed
into the inlet boundary. This method is in advantage of adopting the momentum equations with the
source function to generate arbitrary waves. The waves are produced in a relaxation zone with the
typical range of one wavelength. At the outlet of the flume, the thick sponge, two to three times of the
wavelength, is arranged to dissipate the incoming waves and hence reduce the wave reflection.
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Figure 2. Sketch of the computational domain for the linear wave generation.

The linear wave is generated in still water with the incident wave height Hi = 0.02 m and
period T = 2 s. The wavelength L is approximately 3.69 m calculated using the linear dispersion
relationship in the intermediate water depth. As the steepness kA0 = 0.017 is significantly smaller
than the nonlinear wave criteria of 0.1, where k represents wavenumber and A0 represents the incident
wave amplitude, the nonlinear effect is not considerable and the waveform is maintained uniformly
with respect to the downstream distance [45]. The numerical results of the wave profiles are shown
in Figure 3 with the dimensionless form of η/A0 where η indicates the surface elevation observed
at two wave gauges with the downstream distances of x = 19 and 21 m, respectively. The wave
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amplitudes show regular and consistent at the two stations with time. The numerical wave profiles
are in very good agreement with the analytical solutions, particularly with the dimensionless time
t/T larger than 10. Small discrepancies are observed with t/T smaller than 10, which appears in the
development stage with weak instability. The root mean square (RMS) errors between the numerical
and analytical results during several periods are 0.1% and 0.12 % at the two gauge stations of x = 19 m
and x = 21 m, respectively.Water 2020, 12, x FOR PEER REVIEW 8 of 25 

 

 
Figure 3. Simulation results of the surface elevation for linear progressive waves at the two gauge 
stations of x = 19 m (upper) and x = 21 m (lower) with the incident wave amplitude H୧ = 0.02 m and 
period T = 2 s. 

 

Figure 4. Simulation results for grid independent test using two different mesh sizes at the two gauge 
stations of x = 19 m (upper) and x = 21 m (lower). The condition of wave generation is identical to 
Figure 3. 

3.2. Wave Transformation Over a Trapezoidal Submerged Breakwater 

Wave transformation over a submerged bar involves in the classical problem of nonlinear wave 
shoaling to produce the higher harmonics and redistribution of the wave energy between the primary 
wave and high frequency waves. Beji and Battjes and Luth et al. [6,7], summarized by Dingemans 
[46], conducted the well-known laboratory experiment to examine the waves transformed over a 
trapezoidal submerged bar. The experiments become standards to validate the numerical study of 
the wave transformation caused by the submerged breakwater. To verify the present two-phase flow 
model, the observation of Luth et al. [7] is employed to compare with the numerical results. More 
studies are carried out to observe wave transformations with different wavelengths. 

3.2.1. Validation 

The computational domain and layout of the submerged bar is displayed in Figure 5. The 
incident waves are numerically generated in the relaxation zone with the wave height and period of H୧ = 0.02 m and T = 2.02 s. Free surface elevations are measured at nine downstream wave gauges 
denoted as Station P1 to Station P9 as sketched in Figure 5. The flume layout, condition of the wave 
generation, and measurement locations are in agreement with the experiment of Luth et al. [7]. 

0 4 8 12 16 20

-2

-1

0

1

2
Δx=0.04 m,Δz=0.01 m
Δx=0.02 m,Δz=0.005 m

t/T

 η/A0

x=19 m

0 4 8 12 16 20

-2

-1

0

1

2
Δx=0.04 m,Δz=0.01 m
Δx=0.02 m,Δz=0.005 m

t/T

 η/A0

x=21 m

Figure 3. Simulation results of the surface elevation for linear progressive waves at the two gauge
stations of x = 19 m (upper) and x = 21 m (lower) with the incident wave amplitude Hi = 0.02 m and
period T = 2 s.

The test of grid independence is conducted using the coarse grids with the mesh size ∆x = 0.04 m
and ∆z = 0.01 m. The number of the nodes is reduced to 45,000. Figure 4 presents the very good
agreement between the simulation results with the two different mesh sizes at the two stations,
indicating the grid convergence.
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3.2. Wave Transformation Over a Trapezoidal Submerged Breakwater

Wave transformation over a submerged bar involves in the classical problem of nonlinear wave
shoaling to produce the higher harmonics and redistribution of the wave energy between the primary
wave and high frequency waves. Beji and Battjes and Luth et al. [6,7], summarized by Dingemans [46],
conducted the well-known laboratory experiment to examine the waves transformed over a trapezoidal
submerged bar. The experiments become standards to validate the numerical study of the wave
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transformation caused by the submerged breakwater. To verify the present two-phase flow model,
the observation of Luth et al. [7] is employed to compare with the numerical results. More studies are
carried out to observe wave transformations with different wavelengths.

3.2.1. Validation

The computational domain and layout of the submerged bar is displayed in Figure 5. The incident
waves are numerically generated in the relaxation zone with the wave height and period of Hi = 0.02 m
and T = 2.02 s. Free surface elevations are measured at nine downstream wave gauges denoted as
Station P1 to Station P9 as sketched in Figure 5. The flume layout, condition of the wave generation,
and measurement locations are in agreement with the experiment of Luth et al. [7].
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Figure 6 shows the prediction of the wave evolution at the nine stations in comparison with the
simulation of the Flow-3D and the experimental measurements. The Flow-3D computation is based on
the renormalized group (RNG)-turbulent flow model. Both models successfully simulate the wave
transformation over the obstacle and demonstrate good agreement with the experiment [7] in terms of
the development of high frequency waves. Better agreement is given by the present predictions at each
station from Station P1 to P9, particularly for the highly deformed surface after the waves passing the
submerged object and arriving at Station P8 and P9 as shown in Figure 6. The discrepancies between
the simulations and the experimental observation are quantified using the RMS error analysis.

The two largest amplitude differences are given at Station P4 over the trapezoidal bar and Station
P9 far away from the bar with the errors of 5.12% and 4.42% for the present model, and 6.13% and
5.63% for the Flow-3D. The corresponding phase errors are of 0.92% and 1.03% for the present model
and 3.31% and 2.66% for the Flow-3D. The results indicate that the present numerical scheme is capable
of accurately predicting the surface distortion with the rapid growth of the higher harmonic waves at
the air-water interface with high resolution.

3.2.2. Wave Transformation with Three Wavelengths

To understand the influence of wavelengths on the transformation, the incident wave height
Hi = 0.02 associated with three different wave periods with T = 1.01 s, 2.02 s (the validation case in
Section 3.2.1), and 3.03 s are produced with the computational domain and embedded body identical
to Figure 5. As explained in Section 3.1, for these waves with very small steepness, they propagate
monochromatically with respect to the downstream distance to the stage experiencing the external
force driven by the rigid bar in the water.
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Station P1 to P9 for wave passing over the trapezoidal bar with the incident wave height Hi = 0.02 m
and period T = 2.02 s.

The surface undulation due to wave decomposition with the dimensionless time series scaled by
the wave period were analyzed using the fast Fourier transform to observe the higher harmonics in the
amplitude spectra as demonstrated in Figure 7 with T = 2.02 s. At Station P2 over the upward slope of
the trapezoidal dike, the shoaling effect has caused the moderate growth of the second harmonic on
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the amplitude spectrum as shown in Figure 7b associated with the asymmetry of the primary wave
profile slightly titled backwards and positive skewness with the larger amplitude of the crest than
the trough. The definition of wave asymmetry and skewness was explained by Bananin et al. [47].
As the waves continuously deformed at Station P3 over the crest surface of the bar, substantial increase
of skewness and asymmetry related to the growth of the third and fourth harmonics are observed
due to the significant wave shoaling effect. When the waves travel further downstream with the crest
at Station P4, Figure 7d demonstrates that small and high frequency waves appear at the trailing
edge of the dominant waves [13]. Meanwhile, it is noted the considerable decrease of the amplitude
at the dominant frequency and increase of the high frequency waves. For the Stations P5 and P6
over the downward slope, Figure 7f reveals that the wave profiles become more sophisticated and
the spectra show comparable amplitudes between the primary and secondary harmonics. With the
waves moving away the submerged structure and transmitted to the deeper water at Stations P7,
P8, and P9, the surface oscillation appears unpredictable in spite of regular recurrence of the profile
in a wave period. The spectrum in Figure 7g shows the higher amplitude of the second harmonic
than the primary component, indicating that the nonlinear mechanism primarily varies the originally
sinusoidal waves.

It is interesting to know the wave deformations influenced by the wave periods, that is, the wave
wavelengths. Figure 8 demonstrates the prediction results for the incident wave period T = 1.01 s
and wavelength L = 1.46 m. For this relatively short wave, the wave amplitudes behave slightly
unevenly with absence of the significant shoaling effect when the waves move over the top surface
of the breakwater as exhibited in Figure 8c,d. The spectra show the growth of amplitudes at the
primary frequency and weak development of the second harmonics. However, after the waves pass
the structure and propagate into the deeper water region, Figure 8h,i shows the disappearance of the
second harmonics. The viscous effect dissipates the small and higher harmonic waves and the waves
return to the sinusoidal profiles.

The transformation arising from the incident wave period T = 3.03 s and wavelength L = 5.77 m
is demonstrated in Figure 9. With this longer wavelength passing over the crest of the submerged
structure at Stations P3 and P4, the asymmetry and skewness of wave profiles are more significant
than the condition of T = 2.02 s shown in Figure 7, indicating a relatively strong wave shoaling due to
the increase of the ratio of L/qhi = 57.7 where hi denotes the still water depth, q denotes the ratio of
the still water to the shallow water depth, and qhi denotes the shallow water depth above the crest
of the structure. Figure 9e,f reveals that the effect continuously influences the waveform with rapid
growth of high frequency waves at Stations P5 and P6. Besides, with wave transmitted to Stations
P7 to P9 at the deeper water region, Figure 9g,f shows that the formation of the distinctly irregular
waves is associated with the energy distributed from primary waves to the high frequency waves of
the second to fourth harmonics in the wave spectra.

3.3. Progressive Waves Over Three Types of Submerged Breakwaters

The monochromatic waves passing over submerged structures are further modeled with three
different configurations, which are semicircle, trapezoid, and triangle, to study the velocity fields and
hydrodynamic forces acting on the bodies. The semicircular submerged breakwater is interested in
contributing a stable structure under the wave action [39]. All three types of the structures have equal
area of 1 m2 with the height of 0.8 m. Figure 10 shows the sketch of the computational domain with
the flume of 60 m in length, 1 m in water depth, and 0.5 m in height for the air. Both sides of the flume
were allocated with absorbing regions to prevent wave reflection. The uniform grid sizes used for the
numerical computation are ∆x = 0.1 m and ∆z = 0.05 m, respectively. The linear waves are generated
at x = −L/2 m with the incident wave height Hi = 0.2 m and periods T = 3 and 4 s corresponding
to the wavelength L = 8.69 and 12 m. Three wave gauges are located at the downstream distance of
x = 18 m in front of the obstacle, x = 20 m over the top surface at the central line of the structure,
and x = 22 m over the backward slope to observe the behavior of the surface wave decomposition.
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3.3.1. Wave Transformations

Figure 11 shows the predictions of the surface elevations with the incident wave period T = 3 s.
Analogous to the wave profiles given in Figure 6, the wave-structure interaction causes the deformation
of the waveform with the skewness and asymmetry considerably titled backwards at x = 18 and
20 m as given in Figure 11a,b. In addition, the wave shoaling significantly increases the amplitude
with the wave over the top of the structure at x = 20 m. At the further downstream distance of
x = 22 m, the wave profiles become slightly tilted forwards. It appears that the three configurations of
the submerged obstacles produce insignificant discrepancies between the wave profiles. However,
the high frequency waves develop at the trail edge of the primary wave for the triangular shape as
demonstrated in Figure 11c. The numerical results of the wave deformation with the incident wave
period T = 4 s are displayed in Figure 12. With the longer wavelength, the deformed wave profiles are
consistent with the three types of the submerged structures. The waveforms with significant steepness
are noted for the three configurations in Figure 12c, indicating that the formation of highly nonlinear
waves with transferring the wave energy from the primary component to high frequency waves.

3.3.2. Velocity Patterns Around the Objects

The surface elevations and patterns of the instantaneous velocities in the procedure of the waves
traveling over the semicircle bar are demonstrated for three different times in Figure 13 with the incident
wave period T = 3 s. In the stage shown in Figure 13a with the wave trough over slightly upstream of
the top surface, the presence of the obstacle causes the drag force to retard the nearby water flow and
hence produces the significant gradient in the boundary layer, beginning approximately at x = 19 m in
front of the semicircle. The increase of the velocity gradient along with the solid surface downstream
finally makes the flow separation at the immersed surface beneath the wave trough. For the wave
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crest propagating over the solid body slightly downstream of the top surface shown in Figure 13b,
the velocity profiles with the significant curvatures move forwards and are located at x = 19.6 m on
the surface of the semicircle. It is observed that a vortex is generated and rotates counterclockwise
upstream of the object. In contrast, a secondary vortex is formed close to the left-toe of the obstacle
and rotates clockwise. A moderate velocity gradient occurs at the leeward side and under the crest of
the wave. Following the subsequent state with wave moving approximately a diameter away from the
semicircle, the upstream vortices disappear. However, a small vortex is formed at the backward side of
the top surface as depicted in Figure 13c. This circumstance with the wave passing away from the
submerged body is analogous to the velocity patterns given by Jiang et al. [40].

The flow patterns around the obstacle are compared between three types of submerged structures
as shown in Figure 14 with the generation of the incident wave period T = 3 s at t = 40 s. The temporal
condition indicates the wave crest just over the top surface of the embedded objectives. For the three
shapes, the velocity profiles with significant gradient are observed at approximately the equivalent
locations occurring over the windward slopes. Figure 14a shows that the velocity distribution around
the semicircle is in analogous to the condition presented in Figure 13b, however, with the increase
of the secondary vortex in front of the left-toe of the obstacle. Different from the semicircle, a vortex
appears upstream of the trapezoidal body as well as another vortex behind the trapezoidal structure.
This circumstance is not observed for the other two solid objectives, which suggests that the trapezoidal
shape gives rise to a larger form drag with the wave generated water flow over the immerged body.
There is only a small vortex formed backward slope of the triangular bar, implying the relatively small
drag force. The substantially different distribution of the velocities due to the shape of structures
produced a significant effect on the hydrodynamic force when the wave is acting on the structure.
This phenomenon is further discussed in Section 3.3.3.
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3.3.3. Simulations of Drag and Lift Forces

Determination of the drag and lift forces of surface waves acting on marine structures is important
for the practical design of breakwaters. In the present numerical solutions, the forces are computed
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using Equation (18). The drag force here refers to the combination of the form drag and friction drag
induced by pressure and shear stresses. A test was conducted to make a comparison between the
simulations of the present model and Flow-3D. With the incident wave height of Hi = 0.2 m wave
period of T = 3 s passing over the three types of submerged structures, the surface oscillation giving
rise to the periodic water flow and hence the periodic variations of the drag forces with respect to
time as shown in Figure 15. The maximum drag force occurs with the wave crest over the central
line of the objects. Good agreement between the two simulations is exhibited although the present
model produces larger force at the wave crests before t = 20 s and smaller force at the wave troughs
after t = 20 s. The RMS errors of the amplitudes between the two model results give 6.45%, 7.56%,
and 5.84% for the semicircular, trapezoidal, triangular types with the corresponding phase errors of
2.8%, 3.5%, and 2.4%, respectively.
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The comparisons of the drag and lift forces for the three types of the structures are represented in
Figure 16 with the incident wave period T = 3 s. Huang and Dong [14] modeled the form and friction
drag for the solitary wave traveling over the rectangular dyke. They observed that the friction drag
was only approximately 3% of the form drag, which was negligible. Hence, the drag formed in the
present circumstance is mainly due to the shapes of the submerged bars. Figure 16a demonstrates that
the trapezoidal object causes the largest drag while the triangular structure contributes the smallest
drag force. In contrast to the velocity patterns given in Figure 14, it is likely that the drag force is
highly correlated to the formation of the vortex around the obstacles. For example, as presented in
Figure 14b there is a significant vortex located on the downstream of the triangular structure and hence
generates the larger drag force. Figure 16b exhibits the variations of lift forces with time. Analogous
to the formation of the drag force, the triangular shape also gives the smallest lift force. In contrast,
the semicircular structure shows the considerable increase of lift force. This is reasonable because the
semicircle is more likely to be an aerodynamic shape.
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The drag and lift forces with the incident wave period T = 4 s are demonstrated in Figure 17.
The drag force significantly increases approximately 50% for the longer wavelength with L = 12 m
when compared with the shorter wavelength with L = 8.96 m as depicted in Figures 16a and 17a.
This is because a long wave generates substantially larger velocities and hence the significant growth
of the vortices induces the increase of the drag force. With the longer wavelength, the trapezoidal bar
still experiences the largest drag force. However, the drag forces are comparable for the semicircular
and triangular shapes. Figure 17b displays the numerical predictions of the lift forces. Analogous
to the shorter wave, the considerably large lift force is observed for the case of the semicircular type
because the velocities increase under the longer progressive waves. Additionally, the discrepancies
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of the lift forces between the trapezoidal and triangular types increase. It is noted that the periodic
oscillations of the lift force break to two small waveforms on the primary crests. This is related to the
deformation of the waveform and hence generation of the higher harmonic waves.
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4. Conclusions

The air-water two-phase flow model was developed to study the linear surface waves interacting
with the submerged structures. The combination of the LS method to track the surface motions
and GCIB method with the developed weighted interpolation method to calculate the virtual forces
inside the immersed boundary successfully solves the problem of the deformed surface and the
corresponding flow fields around the immersed body induced by the wave transformation. The model
demonstrates the accuracy via the validation with the experiment of the waves passing over the
trapezoidal submerged breakwater [7].

The simulations of the waves over the trapezoidal bar show that the wave transformation is
dependent on the wavelengths. Slight deformation of the wave profiles is observed for the short waves
with the ratio of L/qhi = 14.6 (T = 1.01 s) and hence the waves maintain the regularity. In contrast, for the
longer waves with L/qhi = 57.7 (T = 3.03 s), the shoaling effect significantly varies the waveprofiles
to irregular and causes the large surface deformation associated with the wave energy distributed
from the primary waves to the higher harmonics. Regarding the wave traveling over the submerged
structures with the various configurations, the numerical results show that the considerable different
patterns of the vortices are observed around the obstacles due to the structural types. The temporal
and spatial features of the vortices are according to the location of the wave crests, resulting in the
variations of the drag and lift forces, which significantly increase with the increase of the wavelength.
For the simulated types of the semicircle, trapezoid, and triangle, the triangular submerged structure
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experiences the smallest drag and lift forces. This is an interesting phenomenon which suggests a
probable solution of the optimal design of submerged breakwaters. The present novel approach with
the relatively simple algorithm and rigid grid system shows efficiency and high resolutions, which is in
advantage of simulating the fluid-structure interaction for breakwaters acted on by the breaking waves
as well as the support structure of wind turbines. Additionally, the promising results indicate the
extension of the present 2D two-phase model to the 3D problems, for example, the dynamic responses
of a moving body for the future studies.
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