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Abstract: We used empirical orthogonal functions (EOF) to analyze the spatial and temporal patterns
of corn (Zea mays L.) yields at three hydrologically-bounded fields with shallow subsurface preferential
lateral flow pathways. One field received uniform application of manure, the second field received
the uniform applications of the chemical nitrogen fertilizer, and the third field received variable rate
applications of the chemical fertilizer. The preferential subsurface flow and storage pathway locations
were inferred from the ground penetration radar survey. Six-year monitoring data were analyzed.
Statistical distributions of EOFs across fields were approximately symmetrical. Semivariograms of the
first EOF differed between fields receiving manure and chemical fertilizer. This EOF accounted for 52
to 56% of the interannual variability of yields, and its values reflected the distance to the subsurface
flow and storage pathways. The second and third EOF explained 17 to 20% and 10 to 13% of the
interannual variability of yields, respectively. The precision applications of the nitrogen fertilizer
minimized corn yield variability associated with subsurface preferential flow patterns. Investigating
spatial patterns of yield variability under shallow groundwater flow control can be beneficial for the
within-field crop management resource allocation.

Keywords: multiyear yield monitoring; OPE3 experimental site; nutrient management;
subsurface flow pathways

1. Introduction

Crop yields vary spatially and temporally. Understanding variability is important for efficient use
of farm resources [1]. Multiyear observations often show that some sections of fields are less productive
than other sections. This has been attributed to the spatial variation of soil fertility [2], the ability of
soil to retain and transmit water [3], and interactions of the above and other environmental factors [4].

The proximity of groundwater and the capillary fringe to the soil surface and root systems can
be an important control of the crop yield. It has been demonstrated that the groundwater depth in
the range from one to three meters created favorable conditions for corn crop, whereas groundwater
depth less than one meter affected corn yields negatively [5,6]. The groundwater proximity and flow
affect water availability that can be very important in dry years or areas, transport and availability
of nutrients when water availability is not restrictive factor of crop yields, and loss of nitrogen to
denitrification that can be important in wet years or areas. Continuous low-permeability layers in
or below soil profiles may cause the existence of subsurface networks of predominantly lateral flow
pathways [7,8]. Tromp-Van Meerveld and McDonnell (2006) noted that networks of such lateral flow

Water 2020, 12, 3339; doi:10.3390/w12123339 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
http://dx.doi.org/10.3390/w12123339
http://www.mdpi.com/journal/water
https://www.mdpi.com/2073-4441/12/12/3339?type=check_update&version=2


Water 2020, 12, 3339 2 of 11

pathways on the bedrock surface are dynamic, and some of their segments may exist for some time as
subsurface mini ponds—i.e., groundwater lenses located in depressions and isolated from the rest of
the network until the rainfall water infiltrates and overfills these depressions causing water to “spill”
downslope [9].

Successful quantification of spatio-temporal variability of environmental variables in
soil-plant-atmosphere systems has revealed spatial patterns that are temporally stable—i.e., change little
over the observation period [10]. The principal component analysis is among the efficient techniques
in determining patterns in spatio-temporal data. Patterns found by using this type of analysis are
called empirical orthogonal functions (EOFs): they have been used in a broad range of environmental
studies [11,12]. Usually, a small number of EOFs can explain the bulk of the observed variability.
Interpreting EOFs as the manifestation of environmental factors provided the guidance for realistic
forecasting of crop yields at large scales [13–15]. A better understanding of crop yield patterns is also
required at field scales. Knowing yield spatial patterns that are stable over several years can improve
long term management strategies [16]. However, EOF analysis has not been applied for that purpose
to date. Our objective was to evaluate EOFs of multiyear crop yield data for detecting differences in
access to shallow groundwater and nutrient management across cornfields of an intensively monitored
experimental site.

2. Materials and Methods

2.1. Site Description

The Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) study
site is located at the USDA-ARS Beltsville Agricultural Research Center, Beltsville, Maryland (near
39◦01′44′′ N,76◦50′46′′ W). The OPE3 site includes 21-ha of arable land which is subdivided into small
hydrologically bounded fields surrounded by earthen berms. Fields A, B, C, and D ranged from 3.4 to
4.1 ha (Figure 1). The runoff from the fields feeds a wooded riparian wetland and first-order stream.
The soils in the study site vary, but the dominant soils are coarse-loamy, mesic typic Hapludults.
The surface soils in each field range from sandy loams to loamy sands [17]. Soil texture in the upper
0.3 m of these fields is nearly identical with the average sand content of 61 to 63% [18]. A continuous
clay lens exists over the study field, with additional fractured lenses present intermittently [8,19].
These lenses form a restrictive layer for infiltration and facilitate the formation of perched shallow
groundwater (Figure 1). The average depth of the restricting layers in each field is similar—about
1.5 m [18]. Surface slopes are slightly greater at field D than at fields A and B (Figure 1). Field C was
excluded from the analysis in this work because its surface slopes and hydrologic response are very
different from those at fields A, B, and D [20].
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Figure 1. Locations, depth of the restricting layer, m, and statistics of surface slopes at the OPE3 fields 
A, B, C, and D. Adapted from [20]. 

Planting dates and total N fertilizer applied are shown in Table 1. As recommended by the best 
management practices of the University of Maryland, 34 kg N/ha was applied in a band at planting 
as a starter fertilizer, and the balance was applied as side-dress at 4–5 weeks after planting. Field A 
received an application of bovine manure before planting, the starter fertilizer at planting, and a 
uniform side-dress applications of N fertilizer at 4–5 weeks after planting as determined by a pre-
side-dress nitrate test (PSNT) because of N loss due to ammonia volatilization [21]. Field B received 
starter fertilizer at planting plus a uniform side-dress application of N fertilizer with the rate 
determined by the mean PSNT value. Field D received starter fertilizer at planting plus variable rate 
application of N fertilizer determined by subsurface hydrology and PSNT values in 2002 and 2004 
[18]. After 2005, the N side-dress rate was determined by subsurface hydrology alone [18]. 

Daily precipitation was measured with a tipping bucket rain gauge near the edge of field B. 
Cumulative precipitation for 120 days was recorded starting 10 days before planting and ending at 
physiological maturity (Table 1). Corn grain yields were recorded with a harvester that had a yield 
monitor (Ag Leader 2000, Ames, IA, USA) interfaced with a differential GPS receiver. Mean corn 
grain yields for each field are shown in Table 1. Hurricane Isabelle in 2003 severely damaged the crop 
before harvest and yields are omitted. Data used in this work are available from the corresponding 
author upon request. 

Table 1. Precipitation, applied nitrogen, and corn yields. 

Year Planting Date 
Total N Applied, 

kg N ha−1 Cumulative 
Precipitation, mm 

Corn Grain Yield, 
kg ha−1 

Field A Field B Field D Field A Field B Field D 
2002 April 17 73 103 80 275 4796 5259 6153 
2004 May 18 154 172 109 402 7775 7508 6346 
2006 April 29 161 164 121 388 8783 7710 7474 

Figure 1. Locations, depth of the restricting layer, m, and statistics of surface slopes at the OPE3 fields
A, B, C, and D. Adapted from [20].

Planting dates and total N fertilizer applied are shown in Table 1. As recommended by the best
management practices of the University of Maryland, 34 kg N/ha was applied in a band at planting as a
starter fertilizer, and the balance was applied as side-dress at 4–5 weeks after planting. Field A received
an application of bovine manure before planting, the starter fertilizer at planting, and a uniform
side-dress applications of N fertilizer at 4–5 weeks after planting as determined by a pre-side-dress
nitrate test (PSNT) because of N loss due to ammonia volatilization [21]. Field B received starter
fertilizer at planting plus a uniform side-dress application of N fertilizer with the rate determined by
the mean PSNT value. Field D received starter fertilizer at planting plus variable rate application of
N fertilizer determined by subsurface hydrology and PSNT values in 2002 and 2004 [18]. After 2005,
the N side-dress rate was determined by subsurface hydrology alone [18].

Table 1. Precipitation, applied nitrogen, and corn yields.

Year Planting Date
Total N Applied,

kg N ha−1
Cumulative

Precipitation,
mm

Corn Grain Yield,
kg ha−1

Field A Field B Field D Field A Field B Field D

2002 17 April 73 103 80 275 4796 5259 6153
2004 18 May 154 172 109 402 7775 7508 6346
2006 29 April 161 164 121 388 8783 7710 7474
2007 5 May 161 164 121 188 4578 3428 3571
2008 28 June 161 164 121 287 8571 7763 7359
2009 4 July 117 164 121 382 6166 6013 6105

Daily precipitation was measured with a tipping bucket rain gauge near the edge of field B.
Cumulative precipitation for 120 days was recorded starting 10 days before planting and ending at
physiological maturity (Table 1). Corn grain yields were recorded with a harvester that had a yield
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monitor (Ag Leader 2000, Ames, IA, USA) interfaced with a differential GPS receiver. Mean corn grain
yields for each field are shown in Table 1. Hurricane Isabelle in 2003 severely damaged the crop before
harvest and yields are omitted. Data used in this work are available from the corresponding author
upon request.

2.2. EOF Analysis

The Empirical Orthogonal Functions (EOF) analysis is a widely applied statistical method
for analyzing large spatio-temporal datasets [22]. The idea of the method is to decompose the
spatio-temporal changes of the studied variable into spatial patterns (EOFs) which are constant in time
and time series (expansion coefficients, ECs) [23]. The decomposition equation is:

Y(s, t) − Y(t) = EOF1(s) × EC1(t) + EOF2(s) × EC2(t) + · · · . (1)

Here, Y is the measured value at the location s, at time t; Y(t) is the average across all locations
at time t. The original dataset can be reconstructed by the sum of products EOF and corresponding
ECs. The first EOF (EOF1) explains the largest part of the variance of the differences Y(s,t) − Y(t), and
subsequent EOFs explain progressively less variance. Only significant EOFs are selected. Expansion
coefficients scale the contributions of EOFS to the deviations from the average for different years. EOFs
have the same units as Y; ECs are unitless. In this study, EOF analysis was applied to characterize
both the spatial and temporal variation of corn yields in fields A, B, and D separately to describe how
nutrient management affected corn yields temporally and spatially. The eof.mca routine in R [24] was
used to perform the EOF analysis. The semivariograms were used to analyze the spatial dependencies
in EOFs among fields by establishing the degree of dissimilarity between observations as a function of
the distance between observation points. The gstat package in R version 3.53 was used to compute
semivariograms [25]. The cumulative distribution functions (CDFs) were constructed to compare EOFs
from different fields. The Shapiro–Wilk statistics was used to compute probabilities of EOF2 being
normally distributed.

2.3. The Restrictive Layer Topography and Subsurface Flow Pathways

The stream delineation tool from the ArcMap hydrology toolset was applied to acquire the
subsurface flow pathway network as described in Morgan et al., 2019 [26]. The kinematic GPS surveys
and ground penetration radar survey provided the surface elevation and restrictive layer depths
data, respectively [19]. The digital elevation model (DEM) of the subsurface restrictive layer was
obtained by subtracting krigged depth of the restrictive layer. Then, the “flow direction” and “flow
accumulation” tools in ArcGIS were used to determine potential subsurface flow pathways. The “flow
direction” tool in ArcGIS was applied to the DEM of the restrictive layer to create a grid presenting the
flow direction from each cell. The “flow accumulation” tool was applied to calculate accumulated
water flow from its neighboring cells. Different flow accumulation thresholds (FATs) were applied to
develop the subsurface flow pathway network which had a greater number of inflowing cells than
thresholds. Each subsurface pathway network was changed to the feature layer by applying the
“stream to feature” tool. Subsurface pathways for three FATs (2, 8, and 21) were calculated at fields A,
B, and D [26]. Three buffer zones (0 to 5 m, 5 to 10 m, and 10 to 15 m) for each field were determined by
the “buffer” function in ArcGIS, and the averages and the standard errors of EOFs across these zones
were computed.

3. Results

3.1. EOF Analysis

Figure 2 shows the three EOFs that explained the most spatial variation in corn yields in fields A,
B, and D. The EOF1 explained 52.9, 52.0, and 56.5% of spatial variation; EOF2 explained 20.8, 17.9,
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and 17.9%; and EOF3 explained 11.1, 13.0, and 10.7% for fields A, B, and D, respectively. The EOF4
explained about 7% of variation at all fields. Ranges of EOF1 variation were much higher than ranges
of variation of EOF2 and EOF3 at all three fields.Water 2020, 12, x FOR PEER REVIEW 5 of 11 
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Contributions of EOFs to the deviations of the local yields from the average across the field
(∆Y = Y

(
s, t−Y(t)

)
are products of EOF and EC (Equation (1)). Therefore, the magnitude of the

contributions is controlled by values of both EOF and EC. The higher the absolute value of an EC,
the higher the contribution of the corresponding EOF. The shapes of the dependence of EC1 on time
were similar for all three fields (Figure 2). For the years with spring planting days (2002–2007), the EOF1
contributions in wet high-yield years 2004 and 2006 were higher than in dry low-yield 2002 and 2007
years. In summer planting years 2008 and 2009, the contribution of the EOF1 was also higher in the
wet high yield 2008. There was less variation in EC1 values among the observation years at field D as
compared with fields A and B in the years with spring planting days. Signs of the EC2 values were
opposite in field A compared with fields B and D (Figure 2) both in spring and in summer planting
years. The absolute value of the EC2 was relatively high at field A in 2006 which was the year of the
highest yield recorded in this field. Interannual contributions of EOF3 to ∆Y values as defined by the
absolute values of EC3 were relatively similar at fields B and D and very different from field A.

The cumulative distribution functions of EOF1, EOF2, and EOF3 are shown in Figure 3.
Interestingly, CDF data sets of EOF1, EOF2, and EOF3 were similar across the fields. The distributions of
EOF1, EOF2, and EOF3 in fields B and D were almost identical, whereas EOFs from field A had slightly
larger variance. The Shapiro–Wilk test produced probabilities of EOF2 being normally distributed
equal to 0.123, 0.453, and 0.544 for fields A, B, and D, respectively. The same test showed that the
probability of the EOF1 being normally distributed was high only for field B (p = 0.475). EOF1 values
across B and D were not normal (p < 0.0001), mostly because of heavy tails (Figure 3). The probabilities
of distributions of EOF3 being normal were 0.165, 0.931, and 0.173 for fields A, B, and D, respectively.
The ranges of EOF values, in general, decreased as the number of EOF increased.
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field D.

Semivariograms for each EOF from fields A, B, and D are shown in Figure 4. The EOF1
semivariogram for field A is distinctly different from that for fields B and D. The EOF1 semivariograms
for both fields B and D demonstrate a clear spatial structure with the variance of the different
observations increasing rapidly with the distance up to 40 to 50 m threshold value, and then slowly
increasing. The EOF1 semivariogram for field A does not demonstrate a clear deceleration of the
growth as the distance between observations increases. The EOF2 and EOF3 semivariograms for all
fields do not show the clear spatial structure because their values of the semivariogram do not have
the trend of growth with the distance.

The variance of EOF2 and EOF3 in fields B and D is 2 to 3 times lower than the variance of EOF1
across these fields. The semivariance of EOF1 is larger in field A as compared with fields B and D at
every separation distance. The semivariogarms show that field A yield surface has higher roughness
than fields B and D.
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3.2. Subsurface Flow Pathways and EOFs

Buffer zones of three distance ranges (DR) from subsurface flow pathways are shown in Figure 5
for the three different flow accumulation thresholds (FAT).
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The average EOF values across the buffer zones are shown in Figure 6. The standard errors of
EOFs across the zones varied between 0.7 and 4.4. They tended to be larger for EOF1 than for EOF2
and EOF3, and to increase with DR and FAT. For all FAT values, the increase in the DR led to the
increase in the EOF1 value for all fields. One exception is field D where the average EOF1 for FAT = 2
and FAT = 8 at DR of 10–15 m was less than that at DR of 5 to 10 m. The sensitivity of the EOF1 to DR
at field D was substantially lower than at fields A and B. The average EOF2 and EOF3 values were
less sensitive to the DR value as compared to the average EOF1 values. The sensitivity of the EOF3
to DR at field D was slightly less than at fields A and B. Values of average EOF3 at FAT 21 at field D
present the exception. Figure 6 shows that the average EOF3 values at field D varied slightly as the DR
changed at FAT = 2 and FAT = 8, but showed a strong dependence on DR at FAT = 21.
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4. Discussion

Local deviations of yields across fields from the average across the fields can be approximated as
a sum of spatial patterns. The relative contribution of each pattern depends on the weather conditions
of the specific year, and on the amount and type of fertilizer applied, and on spatial variation in the
fertilizer doze. Areas of extreme values of EOF1 do not coincide with extreme values of EOF2 and
EOF3, probably because the three EOFs reflect different factors that affected crop yields.

The EOF1 pattern explains most of the variability (52.0 to 56.5%) and appears to be related to the
topography of the restrictive layer, which is relatively close to the soil surface and can control water
dynamics in soil and corn root zone [19]. The argument in favor of that assumption is that this pattern
is sensitive to the distance to the subsurface flow pathways (Figure 6). Another argument is that in
years of spring planting 2002–2007, the expansion coefficients EC1 were higher in high yielding 2004
and 2006 compared with low-yield 2002 and 2007 that had a relatively low cumulative precipitation
during the vegetative period (CPDVP). Subsurface flow probably was more active during years with
high CPDVP, and the distance to the flow pathways could be more influential compared with the low
CPDVP conditions. The differences in signs of EC2 among the fields and similarity of interannual
differences between B and D indicate the possibility of EC2 being at least partially controlled by the
type of fertilizer. The maximum difference in values of EC2 between A and B and A and D could
arise from the differences in the release, mobility, and availability in fertilizer nutrients under high
CPDVP conditions. Larger leaching of nitrogen from the soil root zone has been noted for chemical
fertilizer compared with manure application (e.g, [27]). The difference in the fertilizer type could be
the reason for the cardinal differences between EC3 in fields A and B and similarity of EC3 in fields B
and D. The similarity in EC values between fields B and D indicates that the subtle difference between
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the distribution of slope classes shown in Figure 1 does not strongly affect the relative role of spatial
patterns EOF1, EOF2, and EOF3 in local deviations of yields from the average yield across the fields.
We realize that the CPDVP is a very imprecise metric of the effect of water availability on yields during
the vegetative period. Observations made in this work do not consider the influence of intra-annual
precipitation dynamics on yields at the study fields. Dependencies of EC2 and EC3 on time may
reflect differences in nutrient management, surface slope, and field geometry. Coarse-textured soils of
the study site could develop some degree of hydrophobicity and water repellency after a multiyear
manure application [28–30]. No data were available to distinguish the effects of the aforementioned
water availability factors.

The spatial correlation structure of the EOF1 pattern was different between the fields receiving
chemical fertilizer (fields B and D) and manure (field A). While the fields with chemical fertilizer had
semivariograms of classic shapes with the sill and the range, the manured field had the additional
heterogeneity added with scale increase and the semivariogram looked like a power-law one (Figure 4).
A possible explanation is that while the chemical fertilizer is homogeneous in terms of nutrient content,
manure is not. The accumulation of the manure before the application continued for three to four
months, and different parts of the field received manure that spent different times in storage and could
have different fertilizer content. This might also be reflected in different variability of EOF1 across the
field visible in Figure 2.

The ArcGIS routine localizes the potential subsurface flow pathways but cannot provide the actual
amount of water flowing through these pathways. Using different FAT also does not provide water
volumes but provides information about the complexity of the network. Larger FAT values lead to
creating more complex networks of potential flow paths. Adding the complexity allows one to obtain
more evidence on the effect of the proximity to the subsurface flow pathway on the deviation of local
yield from the field averaged value.

Precision N applications in field D were adjusted for subsurface hydrology (flow patterns) that
provided water and nutrients to the crop root zone [18]. The results of this adjustment are reflected
in Figure 6 where the distance from the pathways affects the pattern EOF1 at the field D slightly for
all considered FAT values. This leads to a substantial decrease in yield spatial variability. If EOF1
quantifies soil water-related variability, then the precision application of nutrients appears to implicitly
account for this variability and mitigate it.

5. Conclusions

This study investigated the spatial and temporal patterns of corn yields as affected by subsurface
preferential lateral flow pathways and different nutrient management practices. Data from six years of
yield monitoring were analyzed. The deviations of yields from average values were expressed as sums
of weighted spatial patterns (EOFs). The spatial patterns did not change with time, but their weights
did. The first pattern was most probably associated with the topography of the subsurface pathways
and explained about 52 to 56% of the interannual yield variability. The second and third patterns
explained much less variability and could not be explicitly associated with subsurface topography.
Spatial variability in EOFs as characterized by semivariograms and was more pronounced at the
manured field as compared with the fields with the chemical fertilizer application. The dependence of
the yields on the topography of the subsurface restrictive layer was to the large extent mitigated by the
precision applications of nitrogen fertilizer. Establishing spatial patterns of yield variability for this
type of agronomic control continues to present a promising research avenue to explore.
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