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Abstract: This study evaluated the influence of different land-cover types on the overall water 

quality of streams in urban areas. To ensure national applicability of the results, this study 

encompassed ten major metropolitan areas in South Korea. Using cluster analysis, watersheds were 

classified into three land-cover types: Urban-dominated (URB), agriculture-dominated (AGR), and 

forest-dominated (FOR). For each land-cover type, factor analysis (FA) was used to ensure simple 

and feasible parameter selection for developing the minimum water quality index (WQImin). The 

chemical oxygen demand, fecal coliform (total coliform for FOR), and total nitrogen (nitrate-

nitrogen for URB) were selected as key parameters for all land-cover types. Our results suggest that 

WQImin can minimize bias in water quality assessment by reducing redundancy among correlated 

parameters, resulting in better differentiation of pollution levels. Furthermore, the dominant land-

cover type of watersheds, not only affects the level and causes of pollution, but also influences 

temporal patterns, including the long-term trends and seasonality, of stream water quality in urban 

areas in South Korea. 

Keywords: urban stream; factor analysis; land-cover type; metropolitan area; minimum water 

quality index; pollution 

 

1. Introduction 

Global urbanization is an ongoing trend, with 55% to 68% of the world’s population projected to 

reside in urban areas by 2050 [1]. Urbanization induces multiple stressors, especially land-use/land-cover 

changes such as deforestation and the growth of industrial and residential areas, resulting in increased 

impervious surfaces [2–5]. Consequently, urbanization leads to a deterioration of water quality in streams 

through an increase in pollution sources and various hydromorphological changes [6–8]. Despite their at-

risk status, streams in urban areas are crucial water resources with a number of designated uses, such as 

drinking water supply, recreation, and wildlife conservation [9–12]. 

Therefore, it is vital to establish management strategies for preventing or alleviating water 

quality problems; this requires efforts to monitor and assess stream water quality in urban areas. The 

water quality index (WQI), an approach that quantitatively integrates a number of chemical, physical, 

and biological water quality parameters, has been widely used to assess the water quality status of 

both surface and groundwater systems [13–17]. In recent years the advent of big data and the 

accumulation of monitored multivariate data has prompted a substantial increase in the application 

of WQI to environmental and ecological studies [18–20]. In many of these studies, the developed WQI 

has been used to capture long-term trends [21,22], seasonal fluctuations [23,24], or spatial variations 

[25,26] in the overall stream water quality in urban areas. As well as determining the spatiotemporal 
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patterns of stream water quality in urban areas, previous WQI-based research has also determined 

pollution sources and anthropogenic effects [27–29] and selected the key parameters that represent 

variations in water quality [30–33]. 

Recent assessments of urban stream water quality have increasingly employed parameter 

selection using a number of statistical methods, highlighting the advantages of this process for cost 

and time saving during assessment. For example, Wu et al. [33] used stepwise multiple regression, 

which assumes linearity between the WQI and each parameter, to select five parameters representing 

the water quality of streams in the highly developed area of Lake Taihu Basin, China. Tripathi and 

Singal [31] used both principal component analysis (PCA) and correlation analysis to select nine 

parameters to develop a WQI for the Ganga River, which flows through some highly polluted cities 

of India. Moreover, linear discriminant analysis was applied by Han et al. [34] to select parameters 

that most effectively differentiate temporal groups (wet versus dry period) and spatial groups (east 

vs. west parts of the lake) in the Fu River and Baiyangdian Lake, both of which are located in a highly 

populated region of northern China. 

However, the spatial scales of previous parameter selection studies have been limited to single 

water bodies or single basins; thus, the parameters selected in these studies have limited applicability 

to other urban stream ecosystems. Furthermore, the effects of different types of anthropogenic 

activities (e.g., industry, cultivation, or forestation), on stream water quality in urban areas has rarely 

been considered [26,35]. To overcome these limitations, this study presents the first attempt, to our 

knowledge, to explicitly account for the effects of different land-cover types on the water quality 

response and key water quality parameters of urban streams. This study was conducted on a national 

scale, encompassing a wide range of hydromorphological and geographical characteristics and 

socioeconomic backgrounds, which are also key factors influencing water quality [36–40]. Therefore, 

this study aimed to provide parameter selection results that are both informative and applicable to 

other unexplored streams in urban areas of South Korea. 

Streams across ten major metropolitan areas of South Korea were investigated. Cluster analysis 

was performed to classify stream watersheds based on their land-cover characteristics. Then, the 

objective WQI (WQIobj) was calculated for each land-cover type using all available water quality 

parameters. The long-term trends of WQIobj were evaluated using the seasonal Mann-Kendall (SMK) 

test, and only periods exhibiting temporal stability were used in further analyses. For each land-cover 

type, key parameters were selected using factor analysis (FA) to develop the minimum WQI (WQImin). 

The objectives of this study were: (1) To assess the long-term trends and seasonality of the overall 

stream water quality in metropolitan areas in South Korea; (2) to analyze how different land-cover 

types affect stream water quality in urban areas and key water quality parameters; and (3) to evaluate 

the correlation between WQIobj and WQImin and relationships between WQImin and land-covers. 

2. Materials and Methods 

2.1. Study Area and Data Description 

Ten major metropolitan areas across South Korea, with populations of greater than one million, 

were included in this study (Seoul, Busan, Incheon, Daegu, Daejeon, Gwangju, Suwon, Ulsan, 

Changwon, and Goyang (Figure 1)) [41]. Within the study area, 81 water quality monitoring sites 

were selected at tributaries that directly or indirectly flow into either the Han, Geum, Nakdong, or 

Yeongsan Rivers, the four major rivers of South Korea. The selected monitoring sites covered 35 

standard watersheds with the range of watershed area from 39 to 294.9 km2, and a mean area of 103.29 

km2, the smallest unit of the drainage area division system in South Korea (http://wamis.go.kr). Water 

quality data were provided by the National Institute of Environmental Research of the Ministry of 

Environment (http://water.nier.go.kr). The data spanned the time period from 2007 to 2018, and the 

monitoring frequency varied by site from weekly to monthly. Among the 54 water quality parameters 

initially included in the data, heavy metals and other toxic chemicals, such as mercury, cadmium, 

arsenic, and cyanide, were not included because at least 99.5% of the values for these parameters 

were either missing or below the detection limit. Furthermore, parameters without available 
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reference values were not included in the analyses. The reference values (i.e., normalization factors 

and weights) required to develop the Bascarón WQI were provided by previous studies [27,42–44]. 

 

Figure 1. Location of monitoring sites in ten major metropolitan areas of South Korea. 

Fourteen water quality parameters were included in the analyses: Water surface temperature 

(Temp), electrical conductivity (EC), pH, dissolved oxygen (DO), five-day biochemical oxygen 

demand (BOD5), chemical oxygen demand (COD), suspended solids (SS), total nitrogen (TN), 

ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3−-N), total phosphorus (TP), orthophosphate 

phosphorus (PO43−-P), total coliform (TC), and fecal coliform (FC) (Table 1). Among the 81 monitoring 

sites initially selected for our study, 58 were included for the water quality assessment as they had 

measurements for all 14 water quality parameters. Land-cover data were provided by the 

Environmental Geographic Information System; the year of data collection varied from 2010 to 2018 

depending on the region (https://egis.me.go.kr). The land-cover data involved seven categories: 

urban (or built-up) land, agricultural land, forested land, grassland, wetland, barren land, and water. 

For each of the 35 watersheds, the relative proportions of the seven land-cover categories were 

calculated using QGIS 2.18.16 [45] and ArcGIS 10.3 software [46]. 
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Table 1. Reference values (i.e., normalization factors, Ci and weights, Pi) required to develop the Bascarón WQI and provided by previous studies [27,42–44]. 

Parameter Unit 
Relative 

Weight (Pi)  

Normalization Factor (Ci) 

100 90 80 70 60 50 40 30 20 10 0 

Temp °C 1 21/16 22/15 24/14 26/12 28/10 30/5 32/0 36/−2 40/−4 45/−6 >45/<−6 

pH - 1 7 7–8 7–8.5 7–9 6.5–7 6–9.5 5–10 4–11 3–12 2–13 1–14 

EC μS/cm 1 <750 <1000 <1250 <1500 <2000 <2500 <3000 <5000 <8000 ≤12,000 >12,000 

DO mg/L 4 ≥7.5 >7 >6.5 >6 >5 >4 >3.5 >3 >2 ≤1 <1 

BOD5 mg/L 3 <0.5 <2 <3 <4 <5 <6 <8 <10 <12 ≤15 >15 

COD mg/L 3 <5 <10 <20 <30 <40 <50 <60 <80 <100 ≤150 >150 

SS mg/L 4 <20 <40 <60 <80 <100 <120 <160 <240 <320 ≤400 >400 

TN mg/L 2 <0.8 <3.8 <7.5 <13 <18 <27 <48 <85 <149 ≤265 >265 

NH4+-N mg/L 3 <0.01 <0.05 <0.1 <0.2 <0.3 <0.4 <0.5 <0.75 <1 ≤1.25 >1.25 

NO3−-N mg/L 2 <0.5 <2 <4 <6 <8 <10 <15 <20 <50 ≤100 >100 

TP mg/L 1 <0.2 <1.6 <3.2 <6.4 <9.6 <16 <32 <64 <96 ≤160 >160 

PO43−-P mg/L 1 <0.025 <0.05 <0.1 <0.2 <0.3 <0.5 <0.75 <1 <1.5 ≤2 >2 

TC CFU/100 mL 3 <50 <500 <1000 <2000 <3000 <4000 <5000 <7000 <10,000 ≤14,000 >14,000 

FC CFU/100 mL 3 <5 <50 <100 <200 <300 <400 <500 <700 <1000 ≤1400 >1400 
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2.2. Statistical Analyses 

2.2.1. Cluster Analysis (CA) 

CA is an unsupervised pattern recognition technique, whereby individual objects are grouped 

into a number of clusters whose objects are more similar than those in other clusters. Among the 

available CA methods, hierarchical agglomerative CA (HACA) was used in this study. HACA is a 

successive process, in which two objects in the closest proximity form a cluster at the lowest 

hierarchy. In the next step, the newly generated two clusters in the closest proximity form a combined 

cluster. Merging continues until all objects are linked to form a single cluster at the highest hierarchy. 

The squared Euclidean distance was used as a measure for calculating the proximity between 

objects/clusters. 

Furthermore, we employed the Ward’s minimum variance linkage function, which uses distance 

information to merge objects into a hierarchical cluster tree and is visually represented by a 

dendrogram [47]. As HACA results in a single cluster, the dendrogram needs to be divided at a 

specific height to generate multiple clusters. The height in the dendrogram can be defined as 

(Dlink/Dmax)∙100, where Dlink is the linkage distance for a pair of objects/clusters and Dmax is the 

maximum linkage distance. According to previous studies, the height for dendrogram partitioning 

was set to 60; that is, (Dlink/Dmax)∙100 > 60 [48,49]. The CA was performed using ‘dendrogram’ function 

from the ‘SciPy’ library [50] in Python 3.6 [51]. To generate clusters based on land-cover type, HACA 

was performed using the relative proportions of the six land-cover types for each standard watershed 

(excluding water) as variables. 

The differences in water quality parameters and WQI among different clusters were assessed 

using summary statistics and non-parametric tests, i.e., Kruskal Wallis H and Mann-Whitney U tests. 

Non-parametric tests were selected due to the non-normality of water quality parameters. The 

Kruskal Wallis H test examined the differences in distributions for the three clusters. When the 

significant differences occurred, as a post-hoc analysis, the Mann-Whitney U test was used to identify 

which cluster(s) revealed the significant difference in distribution from the other cluster(s). The 

Kruskal Wallis H and Mann-Whitney U tests were performed using ‘kruskal’ and ‘mannwhitneyu’ 

from the ‘SciPy’ library [50] Python 3.6 [51]. Statistical significance was indicated by p-value < 0.05. 

2.2.2. Water Quality Index (WQI) Development 

The method for WQI development used in this study builds on the WQIobj [43], a modification 

of the Bascarón WQI, also known as subjective WQI [13], which excludes the constant term multiplied 

to WQIobj, which reflects the subjective judgment of overall water quality. The WQIobj is calculated as 

follows, 

WQI��� =  
∑ C�P�

�
���

∑ P�
�
���

 (1) 

where n is the number of available water quality parameters, Ci is a normalization factor that converts 

the value of a parameter into a common scale ranging from 0 to 100 with an interval of 10 (Table 1), 

Pi is the weight indicating the relative importance of parameters, which ranges from 1 to 4 (Table 1), 

and WQImin is a simplification of WQIobj indicating the minimum WQI [42,43] and is calculated as, 

WQI��� =  
∑ C�

����
���

n���
 (2) 

Note that Equation (2) for WQImin does not include the weight term, indicating that the 

parameters included in WQImin assessment are considered equally important. Here, nmin is the number 

of key parameters, which is a subset of all n available parameters. The WQIobj and WQImin scores were 

graded into five classes to indicate the overall water quality status: excellent (91–100), good (71–90), 

medium (51–70), bad (26–50), and very bad (0–25) [42,43,52]. Also, when comparing WQImin with 
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WQIobj for evaluating whether they are well-correlated, linear regression (WQIobj = a∙WQImin + b) was 

performed using ‘linregress’ function from the ‘SciPy’ library [50] in Python 3.6 [51]. 

2.2.3. Seasonal Mann-Kendall (SMK) Test 

The Mann-Kendall (MK) test is a non-parametric test that assesses if the temporal trend of a 

variable exhibits a monotonic increase or decrease [53,54]. The SMK test is an extension of the MK 

test that accounts for the effect of seasonality by performing the test separately for each pre-defined 

season [55]. In this study, the SMK was employed to identify the point in time at which WQI no 

longer shows a significant increasing or decreasing trend; this stabilized time period was divided 

into training and test sets, and further analyses were performed. CA results were used to assess the 

trend of monthly averaged WQIobj for each land-cover cluster, initially using the data for the entire 

time period (2007–2018). When the trend showed a significant increase or decrease (p-values < 0.05), 

the SMK was performed excluding a 1-year period of data from the starting year. The test was 

iteratively performed until the trend appeared to be insignificant. The SMK test was performed using 

‘seasonal_test’ function from the ‘pyMannKendall’ library [56] in Python 3.6 [51]. 

2.2.4. Factor Analysis (FA) 

FA attempts to account for the structure (i.e., correlation and variation) of data, consisting of 

measured variables with a reduced number of factors, which are also termed latent variables. 

Exploratory FA (EFA), which does not assume a priori relationships among the factors and measured 

variables, was used to reveal the underlying factors behind the correlations among measured water 

quality parameters. Contrary to confirmatory FA, EFA does not posit any relationship between 

specific factors and measured variables. Therefore, it suits the purpose of this analysis. 

Prior to analysis, the values of all water quality parameters except Temp and pH were log-

transformed, and the values of all parameters were standardized to have a distribution with a mean of 

zero and standard deviation of one. To examine whether water quality data were suitable for FA, the 

Kaiser-Mayer-Olkin (KMO) test [57] and Bartlett’s test [58] were performed. The FA was assumed to be 

valid when the KMO value exceeded 0.5 and the Bartlett’s test result was significant (p-value < 0.05). 

To determine the number of factors retained in the FA, Horn’s parallel analysis (PA) was used 

[59]. PA compares the eigenvalues (which indicate the relative importance of a factor in explaining 

the variance of measured variables) from measured data with the eigenvalues from random data, 

which have the same sample size and number of variables as the measured data and are obtained 

using a Monte-Carlo simulation. The differences between the eigenvalues from measured data and 

the mean eigenvalues from random data were calculated. Factors with differences greater than zero 

were retained in the FA. 

As a method for factor extraction, principal component analysis (PCA) was used [60,61].The 

maximum likelihood method, another common method for factor extraction, was not selected 

because of its multivariate normality requirement, which is often not met for water quality 

parameters even after the transformation (e.g., log-transformation) of values. Squared factor loading, 

which reflects the proportion of variance in a measured variable explained by each factor, was 

calculated as a result of PCA implementation. The communality was calculated by summing the 

squared factor loadings of a given variable across all factors to indicate the proportion of variance in 

a measured variable explained by all factors. Moreover, the uniqueness was calculated by subtracting 

the communality from the total variance of a variable. 

Factor rotation (i.e., the change in the axes of factors) was implemented to yield interpretable 

factors by attaining a simple structure for factor loadings. Without rotation, most variables load 

heavily onto the first and early factors, whereas rotation yields a simple structure in which each 

variable loads heavily onto only one factor, while loading lightly onto the other factors. Varimax 

rotation was used as a rotation method, which is a common type of orthogonal rotation. Orthogonal 

rotation assumes that factors remain uncorrelated with one another. FA was performed using 

‘principal’ function from ‘psych’ [62] packages in R 3.5.3 [63]. 



Water 2020, 12, 3294 7 of 19 

 

For each land-cover type, the water quality parameter that showed the highest loading factor 

associated with each retained factor was interpreted as a key water quality parameter. Accordingly, 

the number of retained factors corresponded to the number of key parameters representing the 

overall stream water quality in urban areas. The FA procedure was performed for each land-cover 

type determined by CA, and the key parameters for different land-cover types were used for the 

WQImin calculation. 

3. Results 

3.1. Land-Cover Characteristics of Metropolitan Areas in South Korea 

Using the HACA, three clusters were generated based on the land-cover characteristics of 35 

watersheds in ten major metropolitan areas (Figure 2a). Notably, each of the watersheds included in 

each of the three clusters had a single dominant land-cover: Urban, agriculture, and forest, 

respectively (Figure 2b, Table S1). The mean proportion of urban land for the 15 watersheds with 

urban-dominated land-cover (URB) was 0.50 (± one standard deviation of 0.12), which was higher 

than that of agricultural (0.06 ± 0.05) and forested (0.30 ± 0.10) land. In contrast, the five watersheds 

with agriculture-dominated land-cover (AGR) had a mean relative area of 0.44 (± 0.08) for agricultural 

land-cover, which was more dominant than urban (0.16 ± 0.07) and forested (0.24 ± 0.07) land-cover. 

The 15 watersheds with forest-dominated land-cover (FOR) were mainly composed of forested land, 

with a mean proportion of 0.60 (± 0.08), whereas the proportion of urban (0.12 ± 0.06) and agricultural 

(0.16 ± 0.04) land was relatively minor. 

 

Figure 2. Clustering results of 35 watersheds, named metropolitan area with numbering, based on six 

land-cover categories. (a) Dendrogram exhibiting three clusters generated from hierarchical 

agglomerative cluster analysis. The horizontal dashed gray line represents the height for dendrogram 

partitioning, (Dlink/Dmax)∙100 > 60. (b) Percentage (%) of the dominant land-cover type for each of the 

three clusters. The red circle, yellow triangle, and green square denote watersheds that are urban-

dominated, agriculture-dominated, and forest-dominated, respectively. 

The three land-cover types (URB, AGR, and FOR) were unevenly distributed across the 

metropolitan areas. Among the URB, 73.3% were concentrated in Seoul (nine watersheds) and its 

adjacent cities, Suwon (one watershed) and Incheon (one watershed). Three of the five AGR were 

located in Gwangju, whereas the other two were located in Busan and Changwon. The spatial 

distribution of FOR was also concentrated, with 33.3% in Daejeon and 26.7% in Daegu. 

3.2. Land-Cover Effects on Stream Water Quality in Urban Areas 

The long-term trends of overall water quality calculated using all available parameters (WQIobj), 

based on the results of SMK tests, differed by land-cover type (Figure 3). For URB, WQIobj values 

gradually improved until becoming stable in 2015 (Figure 3a). In comparison, WQIobj values for AGR 

showed a greater improvement in early years before becoming stable in 2012 (Figure 3b). For FOR, 

WQIobj values did not show any significant trend during the entire period from 2007 to 2018 (Figure 



Water 2020, 12, 3294 8 of 19 

 

3c). In more recent years (2015–2018), during which all land-cover types exhibited a stable trend, the 

overall water quality was worst for URB (p-values < 0.05 as a result of Kruskal Wallis H and Mann-

Whitney U tests), as indicated by lower WQIobj values (75.04 ± 9.90) than those for AGR (78.91 ± 8.31) 

and FOR (82.82 ± 7.97). Regardless of the land-cover type and time period, WQIobj values tended to 

be lower during the wet season (July to September) than during the dry season (Figure 3). 

 

Figure 3. Long-term (2007–2018) trends of objective water quality index (WQIobj) for watersheds with 

(a) urban-dominated, (b) agriculture-dominated, and (c) forest-dominated land-cover. Blue and red 

circles denote the mean monthly WQIobj for dry and wet seasons, respectively, and vertical lines 

denote one standard deviation of monthly WQIobj. The gray area represents a period exhibiting no 

significant increase or decrease in WQIobj based on the results of seasonal Mann-Kendall tests. 

The land-cover types of the watersheds influenced most water quality parameters in urban 

streams except for pH, EC, DO, and PO43−-P, which were similar regardless of the dominant land-

cover (Table 2). Compared with URB and AGR, FOR exhibited the lowest level of contamination for 

the majority of water quality parameters. The level of contamination between URB and AGR differed 

depending on the water quality parameter. In terms of nitrogen (TN and NO3−-N) and microbiological 

indicators (TC and FC), the streams in URB exhibited significantly worse conditions than those in 

AGR (Table 2). On the other hand, indicators for organic matter (BOD5 and COD) and turbidity (SS) 

indicated significantly higher levels of water contamination in AGR than URB (Table 2). 
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Table 2. Summary statistics (mean ± one standard deviation) of 14 water quality parameters from 

2015 to 2018 for watersheds with urban-dominated (URB), agricultural-dominated (AGR), and forest-

dominated (FOR) land-cover. Asterisks (*) denote parameters whose mean value for either URB or 

AGR is significantly higher (or lower in the case of DO) than the other (p-value < 0.05 based on Kruskal 

Wallis H and Mann-Whitney U tests). 

Parameter Unit 
Watershed Type 

URB AGR FOR 

Temp °C 16.33 ± 1.56 16.99 ± 0.69 15.56 ± 1.52 

pH - 7.81 ± 0.32 7.76 ± 0.29 7.79 ± 0.34 

EC μS/cm 455.51 ± 175.19 497.27 ± 257.41 384.76 ± 209.78 

DO mg/L 10.52 ± 1.46 10.49 ± 0.88 11.03 ± 1.04 

* BOD5 mg/L 3.05 ± 2.37 4.00 ± 0.49 1.69 ± 1.01 

* COD mg/L 5.79 ± 3.04 8.17 ± 0.9 4.38 ± 2.16 

* SS mg/L 7.37 ± 5.82 17.29 ± 3.06 6.51 ± 5.27 

* TN mg/L 5.92 ± 3.18 3.49 ± 1.42 3.24 ± 1.43 

NH4+-N mg/L 0.87 ± 1.35 0.52 ± 0.44 0.22 ± 0.32 

* NO3−-N mg/L 3.86 ± 1.83 2.12 ± 0.78 2.26 ± 0.75 

TP mg/L 0.11 ± 0.10 0.10 ± 0.02 0.06 ± 0.03 

PO43−-P mg/L 0.05 ± 0.07 0.03 ± 0.01 0.03 ± 0.02 

* TC CFU/100 mL 49.20 × 103 ± 69.12 × 103 18.09 × 103 ± 24.97 × 103 11.73 × 103 ± 10.49 × 103 

* FC CFU/100 mL 14.01 × 103 ± 36.73 × 103 22.14 × 102 ± 27.98 × 102 16.44 × 102 ± 22.51 × 102 

3.3. Key Water Quality Parameters for Different Land-Cover Types 

The water quality data were suitable for the application of FA, as indicated by the results of the 

KMO test (0.82 for URB, 0.67 for AGR, and 0.73 for FOR) and Barlett’s test (p-value < 0.05 for all land-

cover types). To perform the FA, the data measured during the more recent years (2015–2018), when 

the WQIobj values stabilized for all land-cover types, were divided into training (2015–2016) and 

testing (2017–2018) data sets. The results of FA using the training data indicated that three factors 

apiece should be retained for URB, AGR, and FOR (Table S2). For each land-cover type, the water 

quality parameters with the highest factor loading, associated with each of the retained factors, were 

selected as the key parameters for the WQImin calculation (Table 3). Frequently, for a given factor, 

more than one water quality parameter had a factor loading greater than 0.75 [64], which is indicative 

of a strong correlation between the factor and the parameter (Table 3). In such cases, the parameters 

were generally highly correlated to each other, with a Pearson’s correlation coefficient ranging from 

0.49 to 0.88 (Figure S1). Consequently, the three key parameters selected for URB were COD, FC, and 

NO3−-N, in order of corresponding factors (Table 3). Three parameters were selected for AGR were 

FC, COD, and TN (Table 3). The three parameters selected for FOR were COD, TN, and TC (Table 3). 

Table 3. Factor loadings for 14 water quality parameters for watersheds with urban-dominated 

(URB), agricultural-dominated (AGR), and forest-dominated (FOR) land-cover. Asterisks (*) indicate 

a factor loading greater than 0.75 or the highest factor loading in the factor. Var (%) represents the 

explained variance of total variance for each factor. 

Parameter 

Watershed Type 

URB AGR FOR 

Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 

Temp 0.261 0.241 −0.639 0.243 0.643 −0.578 0.220 0.473 −0.580 

pH 0.205 −0.661 −0.213 −0.666 0.264 −0.434 −0.567 0.021 0.040 

EC 0.553 0.108 0.568 −0.340 0.295 0.612 0.342 0.021 0.605 

DO −0.164 −0.677 0.379 −0.634 −0.383 −0.071 −0.441 −0.578 0.340 

BOD5 * 0.867 0.148 0.062 −0.192 * 0.797 0.031 * 0.751 0.004 0.079 

COD * 0.905 0.155 0.015 −0.185 * 0.879 0.018 * 0.897 0.081 −0.027 

SS * 0.860 0.050 −0.129 0.028 * 0.791 0.073 * 0.825 0.144 −0.033 

TN 0.416 0.330 0.742 0.074 0.015 * 0.930 0.108 0.127 * 0.930 

NH4
+-N 0.449 0.503 0.353 0.280 0.279 0.685 0.657 0.144 0.236 

NO3
−-N −0.006 0.145 * 0.806 0.040 −0.359 * 0.819 −0.123 0.065 * 0.910 

TP 0.696 0.560 0.102 0.609 0.557 −0.098 0.651 0.411 −0.030 

PO4
3−-P 0.340 * 0.751 0.125 0.704 −0.150 −0.095 0.141 0.667 0.028 

TC 0.158 * 0.810 0.048 * 0.862 −0.157 −0.033 0.062 * 0.825 0.077 

FC 0.226 * 0.831 0.025 * 0.865 −0.024 0.084 0.099 * 0.825 0.091 

Var (%) 27.2 25.9 16.4 25.3 23.7 21.0 26.0 18.7 18.5 
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3.4. Comparison between WQIobj and WQImin 

Using the test data, the relationships between monthly WQImin and WQIobj values were assessed; 

WQImin and WQIobj generally exhibited moderate to strong, linear relationships with R2 values of 0.66 

for URB, 0.78 for AGR, and 0.73 for FOR (Figure 4). For both WQIobj and WQImin, URB was generally 

associated with the poorest overall water quality, with mean WQI values of 75.79 and 67.20, 

respectively. Further, based on both WQIobj and WQImin, the overall water quality for AGR (mean 

WQI values of 78.86 and 73.39) was generally poorer than that for FOR (mean WQI values of 82.41 

and 77.41). The location of intersection, where the regression line and one-to-one line cross, differed 

by land-cover type: 87.48 for URB, 81.98 for AGR, and 88.14 for FOR (Figure 4). Below the intersection, 

WQIobj values tended to be higher than WQImin scores, whereas the opposite was true above the 

intersection (Figure 4). As the proportion of values below the intersection was greatest for URB, the 

positive difference between the mean WQIobj and WQImin values for URB (8.59) was greater than that 

for AGR (5.47) and FOR (5.00). Within each land-cover type, the variation of WQImin values, with one 

standard deviation of 13.61 for URB, 13.05 for AGR, and 12.09 for FOR, was greater than the variation 

of WQIobj values, with one standard deviation of 9.27 for URB, 8.62 for AGR, and 7.97 for FOR. Note 

that the degree of variation in WQI values, in descending order, was URB, AGR, and FOR for both 

WQIobj and WQImin. 

 

Figure 4. Relationships between objective water quality index (WQIobj) and minimum WQI (WQImin) 

for watersheds with, (a) urban-dominated, (b) agriculture-dominated, and (c) forest-dominated land 

use. Black circles denote WQI values calculated using the testing data set (2017–2018). Black dotted 

and blue dashed lines represent one-to-one, and regression lines, respectively. Red square represents 

the point of intersection between the one-to-one line and regression line. 

3.5. Spatial Distribution of Overall Stream Water Quality in Urban Areas 

WQI values by site, calculated for 2015–2018, indicated that WQIobj and WQImin values were 

highly linearly correlated, with an R2 value of 0.84 (Figure 5b). However, there was a clear tendency 

for WQIobj values to be higher than WQImin values (Figure 5a,b). The difference in values between 

WQIobj and WQImin led to differences in WQI classification in 25.9% of the 58 monitoring sites (Figure 

5a). In Seoul, the change in calculation method from WQIobj to WQImin yielded a change of 

classification from good to medium in 33.3% of 18 monitoring sites. In the other five metropolitan 

areas (i.e., Daejeon, Gwangju, Daegu, Busan, and Ulsan), a change in classification occurred in one or 

two sites, accounting for 7.7–40.0% of the sites in each area (Figure 5a). In the remaining five 

metropolitan areas (i.e., Goyang, Suwon, Incheon, and Changwon), no change in WQI classification 

occurred in response to application of the WQImin (Figure 5a). 
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Figure 5. Spatial distribution of the water quality index (WQI) in ten major metropolitan areas of 

South Korea. (a) Mean objective WQI (WQIobj) and minimum WQI (WQImin) values and grades from 

2015 to 2018 for each of the 58 monitoring sites. (b) Relationship between mean WQIobj and WQImin 

values. 

3.6. Seasonality of Overall Stream Water Quality in Urban Areas 

From 2015 to 2018, the monthly patterns of overall water quality calculated using WQImin 

differed by land-cover type (Figure 6). For URB, which exhibited the worst overall water quality, the 

proportion of WQImin values corresponding to equal to or worse than medium status increased during 

the wet season (July to September), whereas the proportion of good to excellent status sites increased 

during the dry season (all other months) (Figure 6a). For FOR, the WQImin status was consistently 

better than or equal to medium, and the proportion of medium status sites increased during the wet 

season (Figure 6c). For AGR, the WQImin status tended to worsen during the wet season, with an 

increase in the proportion of medium status sites; however, this seasonality was less consistent 

compared with other land-cover types (Figure 6b). 
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Figure 6. Monthly distribution (%) of minimum water quality index (WQImin) grades from 2015 to 

2018 for watersheds with, (a) urban-dominated, (b) agriculture-dominated, and (c) forest-dominated 

land-cover. Month names for dry and wet seasons are colored blue and red, respectively. 

4. Discussion 

4.1. Suitability of FA as a Parameter Selection Method 

In this study, FA, which involves factor extraction and rotation processes, was used to reduce 

multiple intercorrelated physical, chemical, and biological water quality parameters into a smaller 

number of latent factors, and to select key water quality parameters that had the strongest correlation 

with a given latent factor. In previous studies, along with subjective judgments [27,33,65–69], 

multivariate statistical techniques were employed to select parameters on an objective basis. For 

example, stepwise multiple regression has been used [33,69,70] to determine the set of parameters 

that could best explain the variance of WQIobj. Compared with unsupervised learning (e.g., FA), 

regression is a supervised method that requires reference values; in this case, WQIobj values for 

training data. However, because of the multi-collinearity and the resulting bias, WQIobj is not often a 

suitable reference. 

Furthermore, previous studies have used PCA at the first step followed by Pearson’s correlation 

analysis to extract water quality parameters that showed high contributions to selected components 

and low correlations with other parameters [31,66]. Post-hoc correlation analysis was required, since 

few first factors derived from PCA are strongly associated with most of the correlated parameters. 

Therefore, the application of PCA alone is not sufficient to attain key parameters that represent 

extracted factors. To address this limitation, in this study PCA was conducted in conjunction with 

factor rotation, which yields a simple structure for the factor loading matrix, in which only a small 
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number of variables have high loadings onto a given factor and do not overlap among the factors. As 

a result, parameters with high loadings on a given factor appear to be more distinct and 

homogeneous. Therefore, a set of parameters with high loadings across all factors are expected to 

represent multifaceted aspects of water quality. Furthermore, the use of varimax rotation as a factor 

rotation method ensures the extracted factors are uncorrelated with one another, facilitating the 

selection of key parameters, the relationships among which can be assumed to be independent. 

Therefore, factor rotation used in conjunction with PCA does not require subsequent correlation 

analysis, which simplifies parameter selection to a single-step process. 

4.2. Key water Quality Parameters 

Selected key water quality parameters were similar among different land-cover types (COD, FC, 

and NO3−-N for URB; COD, FC, and TN for AGR; COD, TC, and TN for FOR), indicating that the 

relationships among parameters were consistent regardless of land-cover type. For example, across 

all land-cover types, COD, BOD5, and SS were closely correlated (Figure S1) and had high loadings 

with the same factor (Table 3). The high correlations were shown, since the three parameters 

commonly account for biodegradable organic matter. In addition, for one being the subset of the 

other, FC and TC, and NO3−-N and TN, were closely related to each other (Figure S1) and had the 

highest loadings onto the same factor for all land-cover types (Table 3). Note that phosphorus 

parameters showed moderate to strong associations with TC and FC within the same factor for all 

land-cover types (Table 3). Therefore, rather than phosphorus parameters, either TC or FC, which 

showed higher loadings with the factor than the phosphorus parameters, was selected as the key 

parameter. A possible speculation over this co-occurrence tendency is that phosphorus and fecal 

indicator bacteria may originate from the same pollution source (e.g., domestic sewage and 

agricultural runoff) or the same mechanism (e.g., sediment release), but future research will be 

necessary for interpreting the causal relationships. 

The presence of multiple parameters with almost equally high loadings onto a given factor 

necessitated comparisons between WQImin and modified WQImin, in which a key parameter (e.g., 

COD) is replaced by its surrogate parameter (e.g., BOD5) that was strongly related to the key 

parameter within the same factor. The results illustrated that modified WQImin was generally in close 

agreement with WQImin (Figure S2), suggesting that a set of parameters that shows high loadings 

within the same factor can be used interchangeably. Note that, compared with other sets of 

parameters, linear relationships between WQImin and modified WQImin for fecal indicator bacteria 

were weaker because of the large variability inherent in FC and TC concentrations. Nonetheless, 

given the marginal differences in factor loading between TC and FC regardless of land-cover type 

(Table 3), between the two parameters, the key parameter should be selected depending on 

management focus or data availability. 

The results of FA need to be interpreted and applied with care. The factor extraction process of 

FA determines the factors worth retaining, and the subsequent factor rotation, whereby the factors 

become least correlated with each other, yields the proportion of variance explained by a given factor 

to be distributed more evenly among the factors. Therefore, it is not particularly valid to prioritize 

the factors and the consequent key parameters. Instead, the selected key parameters should be 

considered independently of each other and as equally important. In this regard, assigning different 

weights to key water quality parameters with equal importance should not be included as a step for 

WQImin development. Previous studies reported that using weights improved the linearity between 

WQImin and WQIobj [33,70]. In contrast to these findings, we found that the use of weights, which were 

estimated based on two methods, the relative weight [33,70] and the percentage of variance explained 

by the given factor (Table 3), yielded only slight differences in the WQImin-WQIobj relationships 

(Figure S3). 

It should be acknowledged that the water quality data, used in this study, did not include several 

widely measured parameters, such as parameters for minerals, salts, metals and flow rate. If such 

parameters were added to the data, FA may include additional factors and key parameters. 

Moreover, the results of parameter selection did not contain the basic water quality parameters of 
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Temp and pH in the key parameter list for any land-cover type. In addition, despite being frequently 

included as a key parameter [42,43,68–70] in previous studies, DO was not selected for any land-

cover type in this study (Table 3). Variations in Temp, pH, and DO may be influenced by 

anthropogenic activities but are also attributable to natural variability. That is, they exhibit diurnal 

fluctuations and are strongly influenced by meteorological conditions [33,65]. Our results suggest 

that Temp, pH, and DO, whose patterns are substantially influenced by natural variations, may not 

successfully capture the total variance of stream water quality in urban areas, and may not be suitable 

for being included as key parameters. 

4.3. Comparison between WQImin and WQIobj 

Our results of test data showed that WQImin and WQIobj have close linear relationships across all 

land-cover types (Figure 4), suggesting that WQImin can be used to predict WQIobj using the 

established regression model. However, WQImin values tended to be higher than WQIobj above a 

certain threshold and lower than WQIobj below this threshold. This tendency indicates that the use of 

WQImin eliminates the “eclipse effect” [71], which arises from the redundancy inherent in WQIobj; 

accordingly, WQIobj is subject to overestimating bad water quality status and underestimating good 

water quality status. The removal of redundancy was also evidenced by the larger variance of WQImin 

compared with that of WQIobj for all land-cover types (Figure 4). Therefore, the development and use 

of WQImin is expected to improve the identification of the overall water quality status and the level of 

water pollution in streams across urban areas. Our results demonstrate that the method selection for 

WQI assessment has important resource and management implications. Changing the method from 

WQIobj to WQImin altered the spatial distribution of the overall water quality status; this status change 

occurred in a minor to substantial portion of monitoring sites, depending on the metropolitan area 

(Figure 5). This change suggests that the use of WQImin instead of WQIobj, which may involve a status 

change from “good” to “medium” or vice versa, may affect priority setting and resource allocation 

among individual watersheds or groups of watersheds. 

4.4. Land-Cover Effects on Stream Water Quality in Urban Areas 

Our results indicate that the dominant land-cover affected the overall stream water quality in 

urban areas, with mean values of both WQIobj and WQImin decreasing in the order: FOR > AGR > URB 

(Figure 4). The dominant land-cover type also contributed to the deterioration of differing water 

quality parameters (i.e., nitrogen and microbiological indicators for URB, but organic matter and 

turbidity for AGR) (Table 2). The long-term trends of overall water quality differed by land-cover 

type (Figure 3). Over the last decade, WQIobj trends for URB and AGR exhibited early improvement 

before becoming stable, whereas the trend for FOR did not change significantly (Figure 3). These 

patterns support that, across the country, management programs implemented to control point or 

non-point sources for URB and AGR were effective in improving overall stream water quality [72–

75]. Moreover, the implementation of conservation measures against continuing development 

pressures in metropolitan areas played a role maintaining the water quality in FOR. Furthermore, the 

land-cover type exerted an influence on the seasonality of overall water quality (Figure 6). In recent 

years (2015–2018), the seasonal patterns of WQImin have differed for URB and FOR, whereas AGR 

exhibited less obvious seasonality. The less consistent seasonality for AGR may be partly attributable 

to the small sample size (n = 287, compared with n for URB = 1881 and n for FOR = 1162) 

corresponding to AGR. During the wet season, both URB and FOR exhibited a negative change in 

overall water quality with an increase in the proportion of “medium” and “good” status sites relative 

to “excellent” status sites (Figure 6). For URB with typically high proportions of impervious surfaces, 

stormwater runoff may play a significant role in decreasing overall water quality during the wet 

season [76–78]. Moreover, an increase in sediment discharge as well as sediment perturbation with 

rainfall events may facilitate the release of pollutants into surface water [79–82], resulting in a 

decrease in overall water quality during the wet season in both URB and FOR. In contrast, subsequent 

to the wet season, when dilution effects can occur [83–85], URB alone exhibited an increase in the 

proportion of “bad” status sites relative to “medium” and “good” status sites (Figure 6). This 
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indicates that, not only non-point sources, but also point sources, such as wastewater treatment plant 

effluent, are significant forms of pollution for URB. 

5. Conclusions 

This study provided a statistical framework for implementing parameter selection in order to 

develop an objective WQImin in a single-step process. Comparisons between WQIobj and WQImin 

suggested that WQImin calculated with the key parameters yielded comparable results to WQIobj. 

Furthermore, WQImin reduced the eclipse effects arising from the use of correlated parameters for 

water quality assessment to result in a better differentiation between good and bad water quality 

statuses. These results have implications for management authorities, especially those motivated to 

launch their own monitoring network system but who have limited available resources. In this 

context, our results can be used to reduce monitoring demands by prioritizing the monitoring 

importance of a minimal number of water quality parameters. The results of WQImin confirmed that 

the dominant land-cover type of watersheds influence multidimensional aspects of urban stream 

water quality; namely, the overall degree and level of pollution as well as long-term and seasonal 

patterns. To confirm our results, future studies should expand the number of water quality 

parameters exhibiting various characteristics. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/12/11/3294/s1. 

Figure S1: Matrices of the Pearson’s correlation coefficient for the period 2015–2016 among 14 water quality 

parameters for (a) urban-dominated (URB), (b) agricultural-dominated (AGR), and (c) forest-dominated (FOR) 

land-cover. Water quality parameters with high factor loadings (>0.75) on the same factor are outlined in the 

same color, Figure S2: Relationships between the minimum water quality index (WQImin) and modified WQImin 

from 2015 to 2018. To develop the modified WQImin, key parameter values were predicted using the established 

linear relationship between a key parameter and a surrogate parameter. Then, predicted values were converted 

into normalization factors for WQImin calculation. In the x-axis label, WQImin (COD → BOD5) indicates that 

biochemical oxygen demand (BOD5) was used as the surrogate for the key parameter of chemical oxygen 

demand (COD). Black dotted lines indicate 1:1 lines. Figure S3: Relationships between objective and minimum 

water quality indices (WQIobj and WQImin) from 2017 to 2018. Weights were determined using two methods; for 

a-c, a relative weight was assigned to each key parameter and for d-f, the percent variance explained by a given 

extracted factor was assigned to each key parameter. Black dotted lines and blue dashed lines indicate 1:1 lines 

and regression lines, respectively. Table S1: Proportions of three land-cover categories (urban, agricultural, and 

forested land) for urban-dominated watersheds (URB), agricultural-dominated watersheds (AGR), and forest-

dominated watersheds (FOR). Table S2: Parallel analysis results comparing eigenvalues and simulated mean 

eigenvalues for urban-dominated (URB), agriculture-dominated (AGR), and forest-dominated (FOR) land-

cover. The simulated mean eigenvalue indicates the mean eigenvalue calculated from randomly generated 

simulation data. Asterisks (*) indicate that the eigenvalue is higher than the corresponding simulated mean 

eigenvalue. 
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