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Abstract: The efficiency of seepage meters, long considered a fixed property associated with the
meter design, is not constant in highly permeable sediments. Instead, efficiency varies substantially
with seepage bag fullness, duration of bag attachment, depth of meter insertion into the sediments,
and seepage velocity. Tests conducted in a seepage test tank filled with isotropic sand with a hydraulic
conductivity of about 60 m/d indicate that seepage meter efficiency varies widely and decreases
unpredictably when the volume of the seepage bag is greater than about 65 to 70 percent full or
less than about 15 to 20 percent full. Seepage generally decreases with duration of bag attachment
even when operated in the mid-range of bag fullness. Stopping flow through the seepage meter
during bag attachment or removal also results in a decrease in meter efficiency. Numerical modeling
indicates efficiency is inversely related to hydraulic conductivity in highly permeable sediments.
An efficiency close to 1 for a meter installed in sediment with a hydraulic conductivity of 1 m/d
decreases to about 60 and then 10 percent when hydraulic conductivity is increased to 10 and 100 m/d,
respectively. These large efficiency reductions apply only to high-permeability settings, such as wave-
or tidally washed coarse sand or gravel, or fluvial settings with an actively mobile sand or gravel
bed, where low resistance to flow through the porous media allows bypass flow around the seepage
cylinder to readily occur. In more typical settings, much greater resistance to bypass flow suppresses
small changes in meter resistance during inflation or deflation of seepage bags.

Keywords: seepage meter; groundwater–surface–water interaction; sediment–water interface

1. Introduction

Seepage meters are the only device that can directly quantify exchange between groundwater
and surface water. All other methods require measurement of an indirect but related parameter, such
as hydraulic gradient, hydraulic conductivity, chemical constituents, or temperature [1]. Although
they directly quantify flow of water across a portion of the sediment–water interface isolated by the
seepage cylinder, they do so with some resistance to flow that is often not quantified or acknowledged.
Therefore, all seepage meter measurements that are not adjusted with an efficiency compensating
multiplier under-measure to some extent the actual rates of exchange between groundwater and
surface water.

Seepage meters measure the volume of water that flows across a portion of the sediment–water
interface bounded by an open-ended seepage cylinder installed in the bed of a surface-water body.
The bottom edge of the cylinder extends into the sediment some distance beneath the sediment–water
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interface and the closed top extends above the interface at least a few cm but needs to be fully
submerged in the water body in which the meter is installed. Commonly, a seepage bag is used to
quantify the flow of water across the interface covered by the seepage cylinder. The bag, containing a
known volume of water, is attached to the cylinder and the change in volume during the time the bag
is attached provides a volume per time (Q), which can be normalized to a seepage flux (q) by dividing
by the area of the sediment–water interface covered by the seepage cylinder:

q = ES·(∆V/∆t)/A (1)

where
ES is the multiplier to compensate for seepage meter undermeasurement (unitless) and is the inverse
of seepage meter efficiency;
∆V is the change in volume of water contained in the seepage bag (m3);
∆t is the duration of seepage bag connection to the seepage cylinder (commonly minute or day);
A is the inside area of the seepage cylinder, equal to the area of the sediment bed being measured (m2).

If water flows upward across the sediment bed, the bag gains in volume; the bag loses water if
downward flow occurs. Several design modifications have reduced or eliminated various sources of
error, improving both the accuracy and repeatability of measurements and extending the use of the
device to a broader range of settings [1].

All seepage meters create some resistance to flow in making a seepage measurement, resulting in
a measured rate of flow that is less than what would flow through an undisturbed setting. Reduced
seepage during the measurement is caused by numerous factors, including redirecting flow through
the various meter components, friction loss at the meter surfaces and from routing flow through
small-diameter valves and connection hardware, and inflation or deflation of a seepage bag. Reduced
flow through the meter implies that some water is flowing around the meter to discharge beyond the
confines of the seepage cylinder. Here, we call this bypass flow. The ratio of the measured to actual
seepage is termed the meter efficiency, which can only be determined by installing a seepage meter
inside a controlled environment, commonly called a seepage tank or calibration tank. These devices
usually consist of a large container partially filled with sediment and with a column of water above the
sand sufficiently deep such that a seepage meter can be submerged when it is installed on the sediment
surface (e.g., [2–7]). A known rate of flow is created through the sediment to which flow through the
seepage meter is compared.

1.1. Sources of Inefficiency

Efficiency varies substantially based on the meter design. Early seepage meters routed flow through
glass or plastic tubing that extended through a rubber stopper inserted into the seepage cylinder [8–12],
the small diameter of which generated substantial friction loss that was directly proportional to
the volumetric seepage rate and inversely proportional to the tubing diameter according to the
Hagen-Poiseuille relation

∆P = (8µLQ)/(πR4) (2)

where
∆P is pressure drop over the length of the tubing (kg/m/s2);
µ is dynamic viscosity determined at the water temperature (kg/m/s);
L is the tubing length (m);
Q is the volumetric seepage rate (m3/s);
R is the radius of the tubing (m).

This can be equated to hydraulic head by dividing by water density (ρ) and gravity (g), such that

∆h = (8µLQ)/(πR4ρg) = (8.16 × 10−4µLQ)/(πR4) (3)
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where ∆h is change in hydraulic head of a column of water (m).
Early studies indicated flow resistance (hydraulic head) of about 1 to nearly 60 mm attributed

to flow through the connector tube with inside diameters ranging from 5 to 1 mm, respectively [11].
Subsequent work with larger-diameter tubing indicated flow resistance ranging from 4 to 19 mm
when a very fast seepage rate of 259 cm/d was routed through tubing ranging in diameter from 7.9 to
4.8 mm, respectively [13]. Later designs routed water from the seepage cylinder to a bag placed inside
a seepage bag shelter that was located some distance from the cylinder, primarily to eliminate velocity
head effects caused by waves and currents [14–18], but also to move the seepage bag away from the
seepage cylinder [1].

Flow resistance, expressed here in terms of hydraulic head and referred to as head, was found
to be related primarily to the thickness of the seepage bag material. One study indicated about 2 to
25 mm of head was required to fill a bag with a material thickness of 150 µm, but generally smaller
head of about 2 to 5 mm was required to fill a bag with material thickness of 25 µm [15]. Head varied
substantially for the thicker plastic bag due to kinks in the bag and bag fullness. Others also indicated
that head loss was proportional to bag fullness, with head ranging between 0.1 and 1 mm when the
bags were operated between about 1/10 and 3/4 full [19]. Several studies [11,20–22] reported use of
much thicker bags that created even greater resistance. Several of the thicker bags were used because
they had a built-in neck that made bag attachment to tubes and hardware easier. A laboratory study
prior to seepage work on a river in California [6] found bag resistance to be much greater for solar
shower and urine collection bags than for the 25 µm thick bag used by Murdoch and Kelly [15]. Other
studies used wine bladders and backpack hydration bags [23] or oven-basting bags [16] because of the
bag connection convenience, but none provided an associated bag efficiency.

1.2. Reported Seepage Meter Efficiency

Seepage meter designs and use have improved substantially since the half-barrel seepage meter
was introduced [9], including a general improvement in reported measurement efficiency (Figure 1).
Use of larger-diameter hardware for routing water between the seepage cylinder and seepage collection
bag and use of less resistant seepage bags [2] has resulted in reported efficiencies as large as 0.95.
Reported efficiency values commonly are assumed to be constant and are generally assumed to be
controlled by the design of the seepage device.
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Figure 1. Increase in the literature-based seepage meter efficiency determined by relating measured
versus known seepage rates in a calibration tank [3,5–7,12,15,19,24–28]. Orange triangle symbol is from
Solder et al. [29].
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However, as indicated earlier, seepage meter efficiency can vary depending on several factors
other than the meter design. An example of the effect of hydraulic conductivity on efficiency can
be seen from the data in Figure 1. Identical seepage meters yielded the largest efficiency value of
0.95 and also a much smaller value of 0.63 (orange triangle) when tested in the same seepage meter
calibration tank. In the first determination of efficiency [26], the tank was filled with playground sand
with a horizontal hydraulic conductivity (Kh) of 15 m/d and a vertical hydraulic conductivity (Kv) of
about 7 m/d [30]. Substantial heterogeneity of flow through the playground sand was subsequently
observed [2] and others also have noted that it is very difficult to create a seepage tank that does
not have substantial heterogeneity of flow distributed across the sediment–water interface in the
tank [3,9,31]. To reduce heterogeneity, the playground sand was replaced with sand from the St. Peter
formation [32], silica sand of such uniform sphericity and grain size it commonly is used as a proppant
for hydraulic fracturing [33]. Sand grains were well-rounded with a grain diameter varying over
a narrow range of 0.45 to 0.55 mm, leading to the assumption that heterogeneity would be greatly
reduced with such a uniform porous medium. Kh of the St. Peter sand was measured at 5 different
locations in the sand tank and ranged from 48 to 71 m/d and averaged 58 m/d [34,35]. Constant head
permeameter measurements (e.g., [36,37]) were made at the same locations, with a shallow insertion
depth of 5 cm to provide values of Kv at the sand surface. Those values ranged from 45 to 76 m/d and
averaged 58 m/d, indicating that the St. Peter sandstone was virtually isotropic.

Following sand replacement, a separate determination of efficiency was made for an identical
half-barrel seepage meter installed in the high-K St. Peter sand as part of a study to test a new tube
seepage meter [29]. When deployed in the much more permeable St. Peter sand, seepage meter
efficiency decreased from 0.95 to 0.63. Much smaller resistance to flow through the coarser and more
uniform St. Peter sand allowed a substantially greater bypass flow around the seepage meter.

These two efficiency determinations of the same design of seepage meter in two different sediment
types indicate that efficiency of a seepage meter is not a fixed value but varies substantially depending on
the hydraulic conductivity of the sediments in which the device is installed. Given that large-diameter
tubing and fittings were used, the seepage bag was likely the largest factor in reduced efficiency with
increased sediment permeability.

1.3. Purpose and Scope

Use of an automated seepage meter installed in a controlled-seepage tank allows detailed testing
of seepage bag and, therefore, manual seepage meter efficiency. Previous studies have related seepage
meter bag resistance to either a conductance term or head loss. Here, we have the capability to
measure seepage to or from a seepage bag 12 times a minute by attaching the bag directly to an
electromagnetic seepage meter (ESM, described in 2.1) installed in the seepage tank. We can then
compare measured seepage rates averaged during each minute of bag attachment to flow through
the ESM when no bag is attached. Rather than providing one time-integrated value of efficiency for
each seepage bag attachment, we can determine efficiency values during every minute of each bag
attachment. Measurements are made in highly permeable sediments that provide greater sensitivity
and variability in efficiency response during both filling and emptying of seepage bags.

To investigate the effect of hydraulic conductivity on meter efficiency, we used a laboratory-
determined seepage meter efficiency at a known hydraulic conductivity to determine a meter-dependent
flow resistance. We then numerically simulated bypass flow in three dimensions caused by a simulated
meter installation over a range of simulated hydraulic conductivities, keeping the meter resistance
constant. For each simulated value of K, we simulated bypass associated with three different depths of
cylinder insertion into the sediment. We focused our efforts on higher-permeability sediments to be
relevant to more recent investigations that have measured faster seepage rates, particularly in high-K
hyporheic settings [38–42].
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2. Materials and Methods

2.1. Seepage Bag Efficiency Tests

The effects of variable resistance associated with filling and emptying seepage bags are amplified
when conducted in the highly permeable St. Peter sand inside the previously mentioned seepage
calibration tank [2]. As mentioned above, earlier studies related bag resistance to changes in bag
conductance, defined as the ratio of Q/h [15], or changes in the measured head [19] required to create
flow as bags were filled. Here, we quantify changing bag resistance during both filling and emptying
of seepage bags by attaching a seepage bag directly to the exhaust port (or intake port if flow is
downward) of the ESM while measuring Q through the ESM before, during, and following each bag
attachment. We calculate bag efficiency during each minute of bag attachment by averaging flow
measured by the ESM 12 times a minute and dividing that value by the average of ESM-measured flow
both before and after the bag was attached.

The ESM consists of an electromagnetic flowmeter connected to a large, 1.06 m diameter seepage
cylinder that was installed in a 1.5 m diameter seepage calibration tank filled with St. Peter sand
(Figure 2). The seepage cylinder covered 50 percent of the total area of the sediment bed in the tank.
This larger-diameter cylinder improved the low-flow measurement capability of the ESM, allowing
repeatable minimum-flow measurements as slow as about 0.5 cm/d.
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A seepage bag is attached at the exhaust end of an electromagnetic flowmeter (gray cylinder with data
cable attached). The entire system is submerged. Note that the Y-valve connector with the valve in line
with the bag open and the other valve closed.

An electromagnetic flowmeter is based on Faraday’s law of induction, which states that a voltage
will be induced in a conductive fluid (water) that is directly proportional to the fluid velocity as it
passes through an electromagnetic field. The electromagnetic flowmeter has no moving parts and has
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no components that extend into the cylindrical flow field, making it an ideal sensor for quantifying
slow flows [13]. An electromagnetic flowmeter designed to measure flow in boreholes was modified
by Quantum Engineering Corporation, Loudon, TN, USA, for use as a seepage meter [43]. (Any use
of trade, firm, or product names is for descriptive purposes only and does not imply endorsement
by the U.S. Government.) The flowmeter outputs voltage when a fluid passes through the 1.3 cm
diameter open cylinder at the center of the electromagnetic field created by the sensor. Voltage is
generated at a rate of approximately 1 mV per 1 mL/min of flow. Sensor output is scanned every 5 s by
a digital datalogger programmed to average 12 values each minute. During prolonged constant flow,
the standard deviation of the 5 s data averaged each minute was 0.7 mL/min. For fast seepage rates,
bags would fill or empty in just a few minutes, resulting in only a few measurements of efficiency for
each test. In those situations, data were averaged once each 15 s instead of once a minute to provide
four times the data density. Standard deviation for sensor output averaged over 15-s periods was
3.4 mL/min. Flow in ml/min (Q) was converted to flux (q) in terms of cm/d (the most commonly used
units in the seepage meter literature) by dividing by the 8938-cm2 area covered by the seepage cylinder
and multiplying by 1440 min in each day. The resulting values for standard deviation of ESM data in
units of cm/d averaged over 1 min or 15 s are 0.1 or 0.5, respectively.

A pulse-count flowmeter was used to indicate total flow through the seepage tank. Data from
the pulse-count flowmeter indicated a standard deviation of 0.5 mL/min, similar to the 0.7 mL/min
standard deviation for data from the ESM.

For each bag efficiency determination, averages of stabilized ESM values immediately before and
after the duration of bag attachment to the ESM were used as a reference to which flow during bag
attachment was compared. Examples of data collected during 6 separate seepage bag attachments are
shown in Figure 3 by the shaded rectangles indicating the duration of each bag attachment to the ESM
exit/entry port. Values are negative because downward flow was occurring in the seepage tank. Larger
negative values during the last two bag connections indicate greater resistance to flow because the bag
was less than 25 percent full. (This same series of measurements is presented in more detail in the
section on upward versus downward flow.).
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Figure 3. ESM output in ml/min with average values provided every 15 s. Blue rectangles are periods
during seepage bag attachment efficiency measurements. Horizontal blue line indicates the average
ESM value when no bag is attached. ESM average, standard deviation, and n are for periods with no
bag attachment when output was stabilized.

2.2. Simulation of K Versus Seepage Meter Efficiency

The U.S. Geological Survey (USGS) software MODFLOW 2005 version 1.12.00 [44] was used
to simulate bypass flow around a seepage meter extending into a porous medium directly beneath
the sediment–water interface. The model domain was 5 m by 5 m along the x and y axes. Cell size
within 2 m of the vertical model boundaries was 0.1 m by 0.1 m. Within the central 1 m by 1 m area of
the model, cell size was reduced to 0.025 m for greater resolution of flow around a centrally located,
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simulated 0.57 m diameter seepage cylinder. Along the z (vertical) axis, the 1.01 m extent of the model
domain was divided into 13 layers. Eight model layers were each 0.1 m thick from 0 to 0.8 m. Above
those, four model layers were each 0.05 m thick from 0.8 to 1.0 m, both to provide better resolution of
flow around the simulated seepage cylinder and also to allow simulation of variable cylinder insertion
depths into the flow domain. The top 0.01 m thick layer was created to allow K of the 432 cells in
the top layer inside the simulated seepage cylinder to be reduced to represent total resistance of flow
through a seepage meter. The circular sidewall of a seepage cylinder inserted into a porous medium
was simulated using the horizontal flow barrier (HFB) feature that is part of MODFLOW. The HFB
feature was set to have a thickness of 1 mm and a horizontal K of 1 × 10−5 m/d along 1 or 2 of the sides
of the square cell walls that collectively formed the approximate circle representing the sidewall of the
seepage cylinder. The HFB extended 0.06, 0.11, or 0.16 m from the top of the flow field to simulate
cylinder-installation depths of 0.05, 0.1, or 0.15 m into the sediment bed.

The vertical sides of the model domain were assigned as no-flow boundaries and the top and
bottom of the model were assigned as constant head boundaries. Head of the bottom boundary was
set at 0.1 m larger than the top boundary. Sediment was simulated as isotropic with an initial K of
1 m/d, typical of sandy settings and similar to K when the seepage calibration tank was filled with
playground sand. With these initial conditions, vertical flow was simulated at a rate of 0.1 m/d, typical
of moderately fast seepage in many natural settings [45] and similar to many of the seepage rates
during seepage meter calibration tests conducted in the seepage calibration tank [2].

Hydraulic conductivity along the vertical axis (Kz) of the top layer within the simulated seepage
cylinder (Kseep) was iteratively reduced until the average of vertical flow through the area of the
simulated seepage cylinder (qseep) was close to either 90 or 95 percent of the average of vertical flow
through the rest of the domain (qbulk), simulating seepage meters with a noted efficiency of 90 or
95 percent. K for all other cells within the flow domain (Kbulk) was set at 1 m/d during the initial
determination of fixed values for Kseep. Once those values of 0.160 m/d for 90 percent efficiency and
0.252 m/d for 95 percent efficiency were determined, Kseep was kept the same while Kbulk was varied by
orders of magnitude from 0.01 to 100 m/d to determine both the variations in meter efficiency relative
to K and also the volumetric extent of bypass flow around the seepage cylinder. Although Kseep was
fixed, Kx and Ky of the top layer inside of the simulated seepage cylinder varied and were always set
equal to Kbulk. Three separate runs at each value of Kbulk were made to simulate insertion depths of
0.05, 0.10, and 0.15 m.

3. Results

Reductions of seepage meter efficiency related to the seepage bag and to depth of seepage-cylinder
insertion are presented from experiments conducted in the seepage meter calibration tank. Sensitivity
of measured seepage related to sediment hydraulic conductivity is then demonstrated through results
of the MODFLOW simulations. All data collected in the seepage tank are available at [46] and data
generated by MODFLOW simulations are available at [47].

3.1. Efficiency Results from Seepage Calibration Tank Measurements

3.1.1. Bag Efficiency Related to Bag Fullness

Bag efficiency related to bag fullness was tested over a range of seepage rates from 2.1 cm/d
(Figure 4A) to 38.7 cm/d (Figure 4F). Efficiency decreased continuously during most bag attachments
independent of initial bag fullness, but the best efficiencies occurred for bags that were operated
in approximately the mid-range of the 3-L bag capacity (Figure 4, solid lines). Variance of bag
efficiency was much larger during slow seepage (Figure 4A,B), even accounting for the longer
bag-attachment times. Bag efficiency decreased rapidly and non-linearly during the early portions of
most bag connections, particularly when the bag was beyond about 75 percent full upon attachment
(Figure 4A,C). An offsetting effect sometimes occurred when bags that were nearly empty were attached
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during slow upward seepage. Within the first 5 to 10 min, flow to the bag was increased substantially
compared to the pre-connection rate (Figure 4A–C). This initial large seepage flux also was reported by
early adopters of seepage meters (e.g., [48]) and is caused by the seepage bag not being in a relaxed
position. During all but one of the highly anomalous initial seepage rates, the bag was nearly empty
(or nearly full, as shown later) at the beginning of the measurement. During some tests, efficiency
reductions followed by increased bag efficiency likely was due to folds or creases in the bag being
overwhelmed as water was added to the bag. This feature is shown in Figure 4D, 65–72 percent fullness,
where decreasing bag efficiency during the first 9 min was followed by increasing bag efficiency until
the end of the test. Collectively, results show a “best-fullness” operating range of about 15 to 60 percent.
This fullness range is slightly lower than the 25 to 75 percent fullness recommended by Murdoch and
Kelly [15].
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Figure 4. Effect of bag fullness on bag efficiency during upward seepage. Bag efficiency is plotted for
each minute the bag was attached to the ESM. Bag-attachment plots are labeled based on the percent
fullness of the bag at the beginning and ending of each attachment (i.e., 0–48 indicates the bag was
0 percent full at the beginning of the attachment and 48 percent full at the end of the attachment). Panels
(A–F) represent: tests conducted with seepage rates ranging from 2.1 to 38.7 cm/d, respectively. Values
in bold in each chart are average seepage rates through the ESM (cm/d) when no bag was attached.
Dotted or dashed lines indicate tests when bag fullness was largely outside of the recommended 25 to
75 percent.
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3.1.2. Efficiency Related to Seepage Velocity

Seepage meter efficiency generally increased with increasing seepage velocity. Considering only
the data collected when bag fullness was within the recommended mid-range, average seepage meter
efficiency based on data presented in Figure 4 ranged from 18 percent for slow seepage to 87 percent
for fast seepage (Table 1). Only the data with bag-attachment fullness ranging from 48 to 66 percent
were included from the 2.1 cm/d plot (Figure 4A), and values >100 were not included from the 4.7 cm/d
efficiency plot (Figure 4B). Variation in efficiency from one bag attachment to another was also much
smaller for faster seepage rates.

Table 1. Seepage rate, in cm/d, relative to bag efficiency, in percent; averaged over each bag connection
(second column) or averaged over all bag attachments that were considered in the acceptable mid-range
of bag fullness (third column). For averages of first 3 min of bag attachment (fourth column), attachments
with initial values >100 percent were not included.

Seepage Rate, cm/d Bag-Averaged Efficiency, % Average Efficiency, % Average Efficiency for First 3 Min, %

2.1 18 18 81
4.7 51 51 59
6.8 68, 73, 62, 51 64 79
7.9 67, 49, 46 53 74

13.5 78, 79, 75 77 80
38.7 88, 86, 87 87 87

3.1.3. Efficiency Related to Bag Connection Duration

Efficiency was much improved if only the first 3 min of bag attachments shown in Figure 4 are
considered (Table 1, right-most column). Efficiency values range from 59 to 87 percent and a slight
relation between seepage velocity and efficiency is indicated, with a best-fit linear model explaining
only 1/3 of the variance.

Longer rather than shorter bag connection times have generally been recommended [1,2] because
they allow a better time averaging of any short-duration perturbations, such as inadvertent touching
of the bag during measurement or occasional increases or decreases in bag resistance due to creation or
reduction of folds or curves in the bag material. Longer bag connection times also average the effects of
initial large seepage rates related to attachment of a nearly empty bag, as previously mentioned [48,49].
However, longer-duration bag connections in the seepage test tank resulted in larger decreases in bag
efficiency until a very small or virtually zero bag efficiency is reached (Figure 5). Bag attachments all
started either very close to empty (Figure 5A,C) for upward seepage or close to full (Figure 5B,D) for
downward seepage, and bags were attached until at least 75 percent of the bag capacity was filled
or emptied (except for Figure 5B, when about 70 percent of the bag volume was lost). Resulting
bag efficiency measurements were highly variable. Variance was particularly large for slow seepage
(Figure 5A) and decreased substantially when seepage was faster (Figure 5C). The only data that
indicated reasonably stable efficiency was for fast seepage (Figure 5C,D). The chart for fast downward
seepage indicates a sharp decrease in efficiency after about 13 to 15 min of bag attachment, a decrease
that continued until efficiency essentially reached zero after about 22 min (Figure 5D). This feature
may also have been displayed for upward seepage if those bag attachments had extended for longer
durations. Use of a larger-volume seepage bag also resulted in poor efficiency.
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Figure 5. Seepage bag efficiency for long-duration bag connection times. Panels (A,C) show upward
seepage (empty-to-full bag connections) and (B,D) downward seepage (full-to-empty bag connections).
Panel (E) is a large-volume seepage bag. Legend entries indicate beginning and ending percent
bag fullness. Values in bold in each chart are seepage rates through the ESM (cm/d) in between
bag attachments.

A larger-capacity 8 L bag 65 percent full was connected for 13 h during slow downward seepage
(Figure 5E). Efficiency decreased rapidly to about 40 percent during the first 45 min and then decreased
more slowly until reaching virtually zero flow after about 5.5 to 6 h. Very little additional water flowed
from the bag during the remaining 6 to 7 h, even though 2970 mL of water remained in the bag upon
removal. Others also have indicated reduced data quality with large seepage bags because the inner
surfaces of the bag were stuck together due to adhesion, essentially blocking portions of the bag from
providing water to the bag outlet [27].

3.1.4. Efficiency Related to Upward vs. Downward Seepage

In theory, bag resistance should not depend on direction of flow to or from the bag. However,
early results indicated substantially larger efficiency values for increased than for decreased volume
in a seepage bag [12], leading to the notion that seepage meters work better for upward than for
downward seepage. Flow through the highly permeable sand in the seepage calibration tank does not
indicate a consistent bias (Figure 6). For slowest flows, bag efficiency was slightly larger for upward
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seepage. The average of two bag attachments during upward flow, with bag fullness ranging from 13
to 51 percent, indicated 51 percent efficiency, whereas the average of three bag attachments during
downward flow, with bag fullness ranging from 80 to 22 percent, indicated an average efficiency of
45 percent. For moderate seepage, where ESM seepage values were +7.9 and −14.3 cm/d, the average
bag efficiency for upward flow was slightly smaller than for downward flow, at 58 and 63 percent,
respectively. The results were also similar for comparisons at the fastest seepage rates. When ESM
values during upward and downward seepage were +38.3 and −36.4 cm/d, bag efficiencies for upward
and downward seepage were 76 and 84 percent, respectively. The only consistent characteristic for bag
efficiency is the aforementioned increase in bag efficiency with increased seepage rate, no matter the
flow direction (Figure 6).Water 2020, 12, x FOR PEER REVIEW 11 of 22 
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Figure 6. Seepage bag efficiency for upward versus downward seepage. Panels (A,C,E) show upward
seepage at slow, moderate, and fast seepage rates, respectively. Panels (B,D,F) show downward seepage
at slow, moderate, and fast seepage rates, respectively. Legend entries indicate beginning and ending
percent bag fullness. Values in bold in each chart are seepage rates through the ESM (cm/d) in between
bag attachments. Percentages indicated in red are average bag efficiencies for bag tests when bag
fullness was within the recommended operating range.
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3.1.5. Inertial Effects of Shutting Down Seepage Prior to a Measurement

All efficiency measurements were made while connecting and removing bags from a Y connector
containing two ball valves, one on each leg of the Y (Figure 2). This allowed one valve to remain open
to maintain flow through the meter while a seepage bag was connected or removed from the other
leg on the Y connector, providing uninterrupted flow through the ESM and quicker stabilization of
ESM output through the elimination of sudden, large, artificial changes in flow. This maintenance of
continuous flow rarely if ever has been done for most manual seepage meter measurements. Typically,
flow through the area covered by the seepage meter is stopped for a minute or more while the bag is
connected and properly positioned within the bag shelter, the shelter lid moved into place, and then
the valve on the seepage bag is opened at a convenient or prescribed time. In the seepage tank, one leg
of the Y valve was always open, either when a bag measurement was being made or when a bag was
in the process of being attached or removed.

Two sets of bag efficiency measurements were made, one with and one without the use of the
Y connectors to compare the influence of maintaining constant flow versus the normal procedure of
interrupting flow during bag attachment and removal. Data indicate that substantial reductions in
seepage can occur if flow is stopped to attach or remove a seepage bag. Seepage measured in the
traditional way averaged only 59 percent of the measured rate when the Y valves allowed continuous
flow through the meter (Table 2). If only data with bag fullness in the recommended mid-range are
used, the ratio of stopped/continuous flow is 0.53. Furthermore, the average of output from the ESM in
between periods of bag attachment was −2.7 cm/d when the Y valves were not used and −4.2 cm/d
when they were used, a ratio of 64 percent, indicating that flow did not quickly or fully return to
normal during the 5 to 7 min in between each bag-attachment period. This observation is considered
more fully in the Discussion section.

Table 2. Seepage bag results, in ml/min, during uninterrupted (Continuous flow) and during standard
(Stopped flow) bag attachments. Tank flow was set to −5 cm/d (31 mL/min through the ESM) for
all measurements.

Percent Bag Fullness Continuous Flow, mL/min Stopped Flow, mL/min Stopped ÷ Continuous

75–100 −15.02 −11.93 79%
25–75 −12.00 −7.31 61%
25–75 −12.67 −7.54 60%
25–75 −12.00 −4.09 34%
0–25 −5.09 −3.11 61%

Average −11.36 −6.80 59%

3.1.6. Seepage Cylinder Installation Depth

Modeling of bypass flow, presented in the next section, indicates that seepage meter efficiency
increases with increased cylinder insertion depth. This condition also was tested in the seepage tank
by comparing bag measurements made before and then after pressing the seepage cylinder deeper
into the sand, increasing the insertion depth from 4 to 8 cm. The bag measurement made at the 4-cm
insertion depth began with a large initial efficiency of 123 percent, declined rapidly and nonlinearly,
and averaged 37 percent (Figure 7). After pressing the meter to 8 cm depth, measurement efficiency
still decreased with time. However, the decrease was more linear and efficiency averaged 54 percent,
indicating an increase in efficiency with increased installation depth.
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Figure 7. Two bag efficiency measurements with a seepage rate of 4.7 cm/day, the first made with
the seepage cylinder inserted 4 cm into the sand bed and the second made with the seepage cylinder
inserted 8 cm into the sand.

3.2. Influence of Hydraulic Conductivity on Meter Efficiency

Modeling results indicate that seepage meter efficiency decreases substantially once K gets above
about 1 m/d (Figure 8). Even when simulating a highly efficient seepage meter determined in the
laboratory to have an efficiency of 95 percent when K is 1 m/d, that efficiency decreases to about
60 percent when K is 10 m/d, and decreases to about 10 percent when K is 100 m/d. Efficiency also
increases slightly with increasing seepage-cylinder insertion depth with the biggest range in efficiency,
varying from 52 to 62 percent, occurring at K = 10 m/d. (Figure 8).
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Figure 8. Simulated seepage meter efficiency for meter insertions at 5, 10, and 15 cm depths over a
range of K from 0.01 to 100 m/d.

Bypass flow that increases with decreased efficiency can be visualized using MODPATH,
a particle-tracking package within the MODFLOW software domain. Traces of 80 “particles”, released
at the bottom of the flow domain along the central 3 m length of a row of cells that passed through the
center of the simulated seepage cylinder, collectively show the deflection of flowlines that represent
bypass flow around a seepage cylinder installed at a depth of 0.1 m (Figure 9). No deflection of
flowlines was indicated for Kbulk of 0.1 m/d (or for Kbulk = 0.01 m/d—results not shown in the figure).
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Bypass flow is limited to within about 0.01 m of the cylinder walls when Kbulk = 1 m/d. Bypass flow
extends to about 0.04 m from the cylinder walls when Kbulk is increased to 10 m/d and extends to
nearly 0.08 m from the cylinder walls when Kbulk is increased to 100 m/d (Figure 9).Water 2020, 12, x FOR PEER REVIEW 14 of 22 
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Figure 9. Deflection of flow around a simulated seepage meter inserted 0.1 m into the flow domain with
a 95 percent meter efficiency at Kbulk = 1 m/d. Simulations shown for Kbulk of 0.1, 1, 10, and 100 m/d.
Red lines indicate flow paths of 80 “particles” released at the bottom of the domain. Blue shading
indicates bypass flow of water that would otherwise have discharged within the simulated confines of
the seepage cylinder. Green shading indicates area where otherwise vertical flow is visibly diverted
laterally by the bypass flow.
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The velocity of bypass seepage leaving the flow domain is increased as it is diverted around the
confines of the seepage cylinder. MODFLOW results indicated that the fastest seepage rates were
adjacent to the exterior of the simulated cylinder walls and exceeded the median seepage rate at the
top of the model domain by 2, 14, and 29 percent for Kbulk of 1, 10, and 100 m/d, respectively.

The flow domain beyond the area of bypass flow is also altered somewhat, with compressed
flowlines and slightly increased local seepage velocity. MODPATH flowlines were visibly deflected
from vertical (Figure 9, green-shaded area) to distances of 0.1, 0.7, and 0.8 m for Kbulk of 1, 10, and
100 m/d, respectively.

4. Discussion

Seepage meter efficiency clearly depends on the hydraulic conductivity of the sediment in high-K
settings. The large reduction in efficiency based on 3-d flow modeling is consistent with similar
modeling that related efficiency to pressure head. The reduction in efficiency determined here, from 95
to 60 to 10 percent for K values of 1, 10, and 100 m/d, is similar to pressure head-determined efficiency of
90, 40, and 5 percent for approximately the same range in K [31]. Furthermore, the model-determined
reduction in efficiency, from 95 to 40 percent when K is increased from 1 to 10 m/d, is similar to the
measured efficiency reduction (95 to 63 percent, (Figure 1)) when Kv of the sediment in the seepage
tank increased from 7 to about 70 m/d. Although the message is disturbing and indicates widely
varying efficiency values, both based on the sediment type and based on duration of bag attachment,
the bag efficiency data from the seepage tank presented here represent the worst case. Only a few types
of natural settings have such highly permeable sediments, such as high-energy beaches or mobile
coarse-sand or gravel beds in rivers. Other settings typically have sediments with orders-of-magnitude
lower K. For all those settings, the literature-based seepage meter efficiency values are likely to be
adequate. Once the seepage meter resistance is less than that of the sediment in which it is installed,
the seepage meters function with their stated efficiency. Nevertheless, lessons learned from this work
can lead to better practices that will generate higher-quality data in all settings.

4.1. Recommended Practices to Maximize Efficiency and Consistency

Prior to this study, all determinations of seepage meter efficiency were based on the full
duration of each bag attachment. Data presented here provide efficiency values for each minute
of each bag attachment period, with 15 s resolution for short bag attachment durations. Based on
these high-temporal-resolution data when seepage bags were connected to the ESM, the following
recommendations can be made for high-K settings:

• Operate seepage bags in the mid-range of their capacity;
• Use shorter rather than longer bag connection times;
• Maintain continuous flow through the meter prior, during, and after bag attachment;
• Use thin-wall, pliable seepage bags and avoid using high-capacity seepage bags;
• Press the seepage cylinder more deeply into the sediment where possible;
• Avoid routing water through sharp bends in the seepage-measurement device;
• Use a meter that does not require inflation or deflation of a seepage bag.

Each of these recommendations is discussed further in the sections below.

4.1.1. Operate Seepage Bags from about 1/5 to 2/3 Full

Earlier studies had indicated that bags operated between about 1
4 and 3

4 full would result in better
and more consistent data collection [15,48]. Here, reasonably high efficiency values were obtained
with bag fullness as small as about 15 to 20 percent, but large efficiency reductions occurred during
several runs with bag fullness as small as 65 to 70 percent.

Avoiding attaching bags that are nearly full or empty eliminates most of the spikes in seepage
upon first opening of the bag valve (e.g., Figure 4A,C; Figure 5A). During those spikes, the bag evidently
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was not at equilibrium pressure, which created much faster seepage than would be warranted by the
rate of flow in the seepage tank. The initial spike in flow through the bag occasionally was well more
than double the actual seepage rate, but the effect was usually gone within the first 5 to 10 min of
bag attachment. However, for some efficiency measurements, those initial large flows during the first
few minutes provided a substantial offset to a subsequent decrease in bag efficiency as the period of
bag attachment continued. A good example is shown in Figure 4B, where the bag attachment with
the initial efficiency values larger than 100 percent had subsequent efficiency values that continued
to be large during the rest of the bag attachment, resulting in a bag-averaged efficiency of 65 percent
(51 percent if values > 100 are discounted) versus 37 percent for the previous bag attachment (red
dotted line). Those offsetting processes could result in a better time-averaged bag efficiency if not for
the initial large flows being so inconsistent.

4.1.2. Use Shorter rather than Longer Bag Connection Times in Highly Permeable Sediments

What was quite consistent, though, was the steady decrease in bag efficiency during nearly all
bag attachments, no matter whether bags were decreasing or increasing in volume. Only the tests
conducted with the fastest seepage rates indicated a relatively consistent efficiency. Therefore, if the
seepage bag is attached for a shorter rather than longer time, the time-averaged seepage rate will
have a higher associated measurement efficiency. This is counter to earlier recommendations for
longer bag-attachment times that would better average initial aberrant seepage rates [1]. Shorter bag
connection times should not be so short that the change in volume in the bag is within or close to the
measurement error.

As mentioned earlier, this disturbingly large sensitivity to bag-attachment duration only applies
to high-K settings. Furthermore, the initial, artificially fast seepage rates occur primarily when the
seepage bag is operated out of its mid-range of bag fullness, which can easily be avoided. In more
typical sediments where K is less than about 1 m/d, longer bag connection times are still preferred and
will better time-average and minimize any brief inadvertent perturbations to a seepage bag [1].

There may be multiple causes for the steady decrease in bag efficiency reported here and that
others also have documented [15,19]. First, as a seepage bag fills or empties, the relaxed state of the
bag, no matter the initial fullness, easily accommodates a change in volume until the bag membrane
needs to move substantially and more uniformly to accommodate additional filling. As the smallest
wrinkles and folds are removed during early filling of a bag, any continued filling eventually requires
wholesale expansion of the bag surface in all directions, creating a greater resistance to continued filling
and a greater reduction in bag efficiency. Evidently the same process also occurs as the bag deflates
and additional resistance is presented in the creation of folds and wrinkles during the shrinkage of the
bag volume.

A second, largely inertial, process that is somewhat independent of the seepage bag also may be
important in particularly coarse-grained settings. For several of the series of seepage bag tests, there
was a small, but detectable and relatively consistent reduction in flow through the ESM during the times
in between sequential periods of bag connection. Following each bag attachment, when flow would
presumably return to the pre-bag-attachment rate, the new equilibrium flow rate was slightly smaller.
These reductions in “between-attachment” flows were small, and largely linear. For 6 different series
of bag connection tests, the between-attachment flow decreased at rates ranging from 2 to 7 percent
per hour and averaged 4 percent per hour. Therefore, flow just prior to the beginning of the next bag
attachment would be slightly smaller than during the previous bag attachment. The implication is that
some of the additional bypass flow created by the added resistance of the attachment of a seepage bag
is maintained for at least the several minutes in between bag attachments.

This process may also occur simply due to the presence of the seepage meter on the sediment bed,
even if a seepage bag is never attached. The seepage tank and ESM with no bag attached were run
overnight in between two days of bag efficiency tests. Shortly after initiation of an overnight seepage
rate of 9 cm/d in the seepage tank, output from the ESM was indicating flow at a rate of 4.5 cm/d
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(Figure 10). While flow in the seepage tank was maintained at a steady rate, flow through the ESM
decreased during the night until around 04:30, when the ESM seepage rate stabilized at slightly less
than 3.4 cm/d. That stabilized rate continued until 5:45, at which point tank flow was turned off for a
zero-flow calibration period. It appears that the small resistance presented by a seepage meter with no
bag attached was sufficient to slowly divert an increasing amount of bypass flow around the seepage
cylinder. Reduction in seepage occurred at a rate of 3 percent/hour until the new equilibrium flow
was reached, more than 8 h later. These results indicate increasing bypass flow on a temporal scale
well beyond that of the seepage bag tests conducted in the test tank and indicate a disturbance to flow
simply from placing a seepage cylinder on the bed, a feature that has not previously been reported.
It also is highly likely that this influence would be so small as to be unmeasurable for installations in
sediments with K more typical of most natural settings.Water 2020, 12, x FOR PEER REVIEW 17 of 22 

 

 
Figure 10. Overnight flow through the seepage tank and the ESM in between two sets of seepage bag 
tests. A zero-flow period was initiated at 5:45. Large reduction in ESM output at 3:39 was likely due 
to external electromagnetic noise in the building. 

4.1.3. Maintain Continuous Flow through the Seepage Cylinder during Bag Attachment and 
Removal 

The use of Y valves to prevent interruption of flow through the seepage cylinder was done 
primarily to eliminate any time-averaging errors associated with the ESM. Although output was 
recorded every 5 s, noisy data were occasionally observed whenever a sudden change in flow was 
imposed in the seepage tank, or when a valve connected to the ESM was opened or closed. Use of the 
Y valves was expected to eliminate potentially noisy data that would be unrelated to the seepage bag. 
However, because the highly permeable sand greatly increased system sensitivity to any source of 
resistance, stopping flow prior to and after each bag measurement resulted in a collective and 
substantial increase in bypass flow and reduction in overall meter efficiency. Although this inertial 
effect likely is very small in more typical sediments, the process still could occur if bypass flow creates 
preferential flow paths that do not entirely shut down between bag measurements. The addition of a 
Y valve is inexpensive, adds little system complexity, and is a small price to pay for improved data 
integrity. 

4.1.4. Use Thin-Wall Seepage Bags and Avoid Using a High-Capacity Seepage Bag 

The use of thin, flexible seepage bags has previously been suggested [1,6,15] and only the best 
available seepage bags were used for this study. The large reductions in bag efficiency during nearly 
all of the bag efficiency tests, as well as the substantial variance in efficiency values for slower seepage 
rates, indicates that folds or twists in the bag, or simple wholesale expansion of the bag as it nears 
fullness, can create a large reduction in measured seepage during any given measurement even if the 
meter design generally is efficient. These deleterious effects are greatly minimized in more typical, 
lower-K settings. 

Only one measurement was made using a large, 8 L thin wall, flexible seepage bag and those 
results were not promising. At a relatively slow ESM-measured seepage rate of −4.3 cm/d, bag 
efficiency decreased rapidly to less than 40 percent in the first 40 min and then continued to decrease 
more slowly over the next 300 min until efficiency was close to zero about 350 min after bag 
attachment (Figure 5E). Even though flow from the bag was very close to zero from about 350 to 792 
min after bag attachment, the bag upon removal still contained nearly 3 L of water and was 36 percent 
full. Something had blocked flow from the bag during the last 7.4 h of bag attachment. This sample 
size of only one is supported by others who also have indicated that large bags are more likely to 
provide poor-quality data. Perhaps, as the bag shrinks, bag surfaces can come into contact due to 
adhesive forces, or the bag could drift or fold over itself [27]. A larger bag allows less frequent 
attention to a seepage meter measurement and can be a convenient feature that allows measurements 
overnight without the bag becoming too full or empty before bag removal. However, there is an 

2.0

2.5

3.0

3.5

4.0

4.5

5.0

7.0

7.5

8.0

8.5

9.0

9.5

10.0

20:00 22:00 0:00 2:00 4:00 6:00

ES
M

, c
m

/d

Ta
nk

 f
lo

w
, c

m
/d

Tank flow
ESM

Figure 10. Overnight flow through the seepage tank and the ESM in between two sets of seepage bag
tests. A zero-flow period was initiated at 5:45. Large reduction in ESM output at 3:39 was likely due to
external electromagnetic noise in the building.

4.1.3. Maintain Continuous Flow through the Seepage Cylinder during Bag Attachment and Removal

The use of Y valves to prevent interruption of flow through the seepage cylinder was done
primarily to eliminate any time-averaging errors associated with the ESM. Although output was
recorded every 5 s, noisy data were occasionally observed whenever a sudden change in flow was
imposed in the seepage tank, or when a valve connected to the ESM was opened or closed. Use of
the Y valves was expected to eliminate potentially noisy data that would be unrelated to the seepage
bag. However, because the highly permeable sand greatly increased system sensitivity to any source
of resistance, stopping flow prior to and after each bag measurement resulted in a collective and
substantial increase in bypass flow and reduction in overall meter efficiency. Although this inertial
effect likely is very small in more typical sediments, the process still could occur if bypass flow creates
preferential flow paths that do not entirely shut down between bag measurements. The addition
of a Y valve is inexpensive, adds little system complexity, and is a small price to pay for improved
data integrity.

4.1.4. Use Thin-Wall Seepage Bags and Avoid Using a High-Capacity Seepage Bag

The use of thin, flexible seepage bags has previously been suggested [1,6,15] and only the best
available seepage bags were used for this study. The large reductions in bag efficiency during nearly
all of the bag efficiency tests, as well as the substantial variance in efficiency values for slower seepage
rates, indicates that folds or twists in the bag, or simple wholesale expansion of the bag as it nears
fullness, can create a large reduction in measured seepage during any given measurement even if the
meter design generally is efficient. These deleterious effects are greatly minimized in more typical,
lower-K settings.
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Only one measurement was made using a large, 8 L thin wall, flexible seepage bag and those
results were not promising. At a relatively slow ESM-measured seepage rate of−4.3 cm/d, bag efficiency
decreased rapidly to less than 40 percent in the first 40 min and then continued to decrease more slowly
over the next 300 min until efficiency was close to zero about 350 min after bag attachment (Figure 5E).
Even though flow from the bag was very close to zero from about 350 to 792 min after bag attachment,
the bag upon removal still contained nearly 3 L of water and was 36 percent full. Something had
blocked flow from the bag during the last 7.4 h of bag attachment. This sample size of only one is
supported by others who also have indicated that large bags are more likely to provide poor-quality
data. Perhaps, as the bag shrinks, bag surfaces can come into contact due to adhesive forces, or the
bag could drift or fold over itself [27]. A larger bag allows less frequent attention to a seepage meter
measurement and can be a convenient feature that allows measurements overnight without the bag
becoming too full or empty before bag removal. However, there is an increased likelihood that flow
will be artificially slowed due to unpredictable movements or resistance to movements of the bag.
Furthermore, if the bag is placed inside a bag shelter, which is highly recommended for all seepage
meter measurements [1], the shelter will need to be substantially larger, making it more susceptible to
movement in response to currents or waves, which adds an additional source of measurement error.

4.1.5. Install the Seepage Cylinder Deeper into the Bed Sediment

The proper depth of seepage meter installation has been discussed several times by previous
investigators [10,11,14,50] and depends to some extent on the physical setting. Insertion depth typically
varies between 5 and 20 cm. For lakes or wetlands or other settings where flow is expected to be
primarily vertical, the installation depth only needs to be large enough to ensure a good seal, meaning
that there are no gaps beneath the bottom edge of the seepage cylinder where water could flow freely
past the wall of the cylinder without flowing through sediment. Most studies suggest an installation
depth of 10 to 15 cm. Results presented here indicate that a deeper installation provides better data.
However, if meters are installed in hyporheic settings, where the axis of flow is often closer to horizontal
than to vertical, a deeper meter installation can block the horizontal component of flow and create a
bias in the measured seepage. In those settings, a shallower installation depth is often preferred to
more adequately measure hyporheic exchange.

The sand bed in the seepage tank was nearly flat, allowing an initial installation depth of only 4 cm.
That shallow installation depth allowed substantial bypass flow even with very small increase in flow
resistance within the meter. Once the cylinder was pressed to an insertion depth of 8 cm, the amount of
bypass flow decreased and flow through the ESM to or from the seepage bag became more consistent
(Figure 7), although efficiency still decreased with time at about the same rate. MODFLOW simulations
confirmed the efficacy of a deeper cylinder insertion. Because a deeper insertion depth created a longer
flow path for bypass flow, the total increased resistance associated with bypass flow resulted in less
water being deflected around the seepage cylinder and greater meter efficiency.

4.1.6. Avoid Sharp Bends that Can Create Inertial Effects

The ESM, because of the large-diameter flowmeter and associated hardware and the lack of a
seepage bag, was considered to have an efficiency of essentially 1 prior to this work in the high-K
sand in the seepage tank. However, comparing flow through the ESM with overall flow through the
tank indicated that the ESM efficiency without any attached bag was only 43 percent in the highly
permeable St. Peter sand. Resistance due to routing flow through the open cylinder at the center
of the flowmeter was very small. Applying the ESM flowmeter open-cylinder diameter and length
of 1.3 and 15.2 cm, respectively, to the Hagen-Poiseuille equation modified to solve for head loss
(Equation (3)), head loss associated with the fastest flow recorded during seepage tests of 275 mL/min
is a very small 0.1 mm. However, additional efficiency loss could be due to angular momentum as
vertical flow is turned 90 degrees to flow horizontally through the flowmeter and then through the
Y valve before entering or originating from an attached seepage bag (Figure 2). Earlier studies of
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routing flow through long reaches of tubing between the seepage bag and seepage cylinder indicated
very small reductions in measured seepage with tubing lengths of at least 10 m. However, if the tubing
was curved, then seepage reductions were larger [26].

Small reductions in measurement efficiency likely also occur when water flows around bends
and folds from a seepage bag that is out of alignment. Placing a bag inside a bag shelter helps to
keep the bag in a proper orientation and minimizes that possibility. Water also must flow through
the bag shelter, requiring several holes drilled in the shelter to minimize any additional resistance
associated with flow through the bag-shelter walls. Seepage bag shelters were not used in the seepage
tank because there was no current and the bags maintained proper shape and positioning during all
tests, a good example being evident in Figure 2.

4.1.7. Replace the Bag with another Flow-Measurement Device

Perhaps the easiest way to improve seepage meter efficiency is to eliminate the seepage bag.
In highly permeable settings, even small changes in bag resistance can have a substantial effect in
unexpected ways. For example, numerical modeling indicates a small reduction in efficiency with
increasing seepage velocity, but data from the seepage calibration tank indicate the opposite (Table 1).
One possible explanation is that faster seepage creates greater momentum of water inside the seepage
bag. Larger momentum within the bag may allow bag inflation or deflation to continue unabated,
overwhelming small changes in bag resistance associated with creation or removal of folds and bends
in the bag surface as the bag expands or shrinks during each measurement. This would minimize the
observed trend of reduction in efficiency with duration of bag attachment. This added complexity is
yet another reason to replace the bag with a flowmeter, particularly in high-permeability settings.

Several types of flowmeters have been used to quantify seepage without the use of a
bag [13,19,31,51–57]. It generally is assumed that these devices have very high measurement efficiency
in most settings. Most of those devices are either more complex or much more expensive or both.
A simple and inexpensive dye displacement design quantifies seepage by measuring movement of a dye
through a 9.5 mm diameter transparent submerged tube [19]. Seepage through the dye-displacement
tube was double the rate measured by a seepage bag. A new device that simply measures change in
head until it reaches equilibrium shows great promise and should have an efficiency of 1 [57].

5. Conclusions

Both physical measurements and numerical modeling indicate seepage meter efficiency becomes
highly variable and decreases substantially with increased hydraulic conductivity for measurements
made in highly permeable settings. Therefore, seepage in settings with hydraulic conductivity greater
than about 1 to 5 m/d likely is faster than measured unless efficiency values are adjusted for those
types of settings.

Seepage meter efficiency determined during each minute of bag attachment varied substantially
and nearly always decreased with increasing measurement duration. Efficiencies near 1 at the beginning
of a measurement often were reduced to 0.2 to 0.6 when the seepage bag was removed. The best
consistency is achieved when measurements are conducted with the seepage bag ranging from 1/5
to 2/3 full. Better and more consistent meter efficiency also occurs with (1) deeper insertion of the
seepage cylinder into the bed sediments, (2) not stopping flow as is commonly done, but instead
maintaining constant flow through the seepage cylinder during attachment and removal of seepage
bags, and (3) making measurements with shorter rather than longer bag connection durations.
This latter recommendation is in contrast with previously suggested longer-duration bag connections
but applies only for highly permeable settings. Longer bag connection times are still recommended for
lower-permeability sediment more typical of most natural physical settings.

These conclusions, based on both physical measurements and numerical modeling, apply only to
highly permeable settings, such as high-energy, wave-washed steep shorelines or fluvial settings with
highly mobile sand or gravel beds. For all other physical settings in which seepage meters are more
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commonly installed, where effects identified here are greatly minimized, meter efficiency is likely close
to what has been reported in the literature. Nevertheless, following the practices recommended here
should minimize those likely small influences and generate more consistent and representative data.
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