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Abstract: Hydrological models are increasingly used for studying watershed behavior and its response
to past and future events. The main objective of this study was to conduct a sensitivity analysis
of the MOHID-Land model and identify the most relevant parameters/processes influencing river
flow generation. MOHID-Land is a complex, physically based, three-dimensional model used for
catchment-scale applications. A reference simulation was implemented in the Ulla River watershed,
northwestern Spain. The sensitivity analysis focused on sixteen parameters/processes influencing
water dynamics at that scale. River flow generation was influenced by the resolution of the simulation
grid, soil water infiltration, and crop evapotranspiration. Baseflow was affected by soil hydraulic
properties, the depth of the soil profile, and the dimensions of the river cross-sections. Peak flows
were mostly constrained by Manning’s coefficient in the river network, as well as the dimensions
of the river cross-sections. The MOHID-Land model was then used to simulate daily streamflow
during a 10-year period (2008−2017). Model simulations were compared against measured data
at four hydrometric stations characterizing the natural flow regime of the Ulla River, resulting in
coefficients of determination (R2) from 0.56 to 0.85; ratios of the standard deviation of the root mean
square error to observation (RSR) between 0.4 and 0.67, and Nash and Sutcliffe model efficiency
(NSE) values ranging from 0.55 to 0.84. The MOHID-Land model thus has the capacity to reproduce
watershed behavior at a daily scale with reliable accuracy, constituting a powerful tool to improve
water governance at the watershed scale.
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1. Introduction

Hydrological models are, similar to any other model, a simplified representation of the “real-world”
system [1]. They are usually used for two main purposes: to predict future events and to better
understand different hydrological processes [2]. Hydrological models can be classified considering their
complexity [3]. Empirical models are the simplest, characterized by linear and non-linear equations
relating inputs and outputs without fully representing the physical processes occurring in the catchment.
Conceptual models are of intermediate complexity, based on simplified equations that describe the
watershed’s water balance. Finally, the most complex are physical models, which are governed by
laws and equations based on real hydrological responses. These models use finite difference equations
as well as state variables that can be measured and are time and space dependent [2,4]. They require
a large number of parameters to describe the physical characteristics of the watershed, such as the
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initial water depth, topography, soil properties, and crop characteristics [2,5–7], which add increasing
complexity to their correct implementation at the watershed scale.

Pianosi et al. [8] states that sensitivity analyses are increasingly being used in environmental
modeling for multiple purposes, including uncertainty analysis, model calibration, and diagnostic
evaluation. A sensitivity analysis of a hydrological model allows evaluating the influence that certain
hydrological parameters have on model outputs [9–13]. Since results of hydrological models are space
and time dependent when applied at the watershed scale, this methodology allows us to identify the
dominant characteristics and processes occurring at that particular scale, presenting itself as an essential
tool for modelers and decision makers [7]. Sensitivity analysis is usually carried out at the beginning of
model applications to identify the parameters that most strongly influence the hydrological behavior
of the watershed [14,15]. The information obtained is very useful to understand the strengths and
weaknesses of an application of a given model to a specific case study [15].

This study presents a sensitivity analysis performed with the MOHID-Land model [16], and its
application to a case study considering calibration and validation processes based on the knowledge
acquired during the former analysis. MOHID-Land is a physically based model that simulates the
interactions between different mediums of the soil–water–atmosphere continuum. The fundamental
processes that affect the hydrological behavior of a watershed are formulated at detailed time and spatial
scales, with the study area being discretized by a grid of which the resolution is selected by the modeler.
Processes are then calculated for each cell of that grid. Because of its versatility, the MOHID-Land
model has been applied in different case studies, characterized by a diversity of spatial scales. At the
plot and field scale, MOHID-Land was used to study soil water dynamics and to improve irrigation
practices [17–21]. At the watershed scale, this model was used to understand the contribution of flood
events to the eutrophication of water reservoirs [22,23], to develop a forecast system of fresh water
quantity and quality in coastal rivers [24], to evaluate nitrogen transport and turnover [25], to model
and analyze the exchanges between groundwater and surface water in floodplains [26], and to study
the influence of reservoir management on the streamflow regime of a semi-arid watershed [27]. Despite
its increasing use, MOHID-Land was never subjected to a sensitivity analysis to better depict the main
processes and parameters involved in the simulation of water dynamics at the watershed scale.

Thus, the main objective of this study is to conduct a sensitivity analysis of the MOHID-Land
model following the guidelines proposed by Pianosi et al. [8] and to identify the parameters/processes
that most strongly influence river flow generation, baseflow, and peak flows in the Ulla River watershed,
northwestern Spain, selected here as a case study. This watershed is frequently affected by flood events,
particularly in the downstream areas. Water quality issues related to a deactivated metal mine located
in an affluent area of the Ulla River have often been raised. It is thus imperative to have a reliable tool
to predict the river flow regime and mitigate those events. Additionally, this study aims to identify
which parameters/processes can improve the model’s computational speed. Results of this study
can further be very useful for future applications of the model, directing users to the most impactful
parameters for river flow generation and saving time. Thus, this study constitutes an added value for
those users as well as for the hydrological modeling community in general.

2. Materials and Methods

2.1. Description of the Study Area

The study area was the watershed of the Ulla River, Galicia, northwestern Spain (Figure 1).
The Ulla River watershed has an area of 2803 km2 [28]. Its origin is in Fonte de Ulloa, Monterosso
municipality, at a level of about 600 m, and the main watercourse has a bed length of 142 km, crossing
19 counties. The maximum and minimum elevations are 1160 m and −0.75 m, respectively. According
to the Köppen-Geiger classification, the climate in the region is a Mediterranean warm summer climate
(Csb). The average annual temperature is 12 ◦C, ranging from 7 ◦C in February to 18 ◦C in August.
The annual precipitation is 1100 mm, occurring mainly from October to May. The dominant soil units
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are Umbric Leptosols and Umbric Regosols, occupying 69% and 31% of the area, respectively [29].
The main land uses are forest and semi natural areas and agricultural areas, covering 57.2% and 40.3%
of the watershed, respectively [30].
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The watershed has a population of about 150,000 inhabitants, mainly located in the cities of
Santiago de Compostela, Estrada, Lalín, and Padrón. The Ulla River further includes three reservoirs,
namely, Portodemouros, Touro, and Bandariz (Figure 1). Portodemouros has a total capacity of 297 hm3,
while Bandariz and Touro are smaller, storing 2.74 hm3 and 3.78 hm3, respectively. The reservoirs
are mainly used for energy production and flood control. The three reservoirs function together,
with Bandariz and Touro being used to uniformize turbinated flows in Portodemouros during peak
times, reducing its impact in downstream areas.

2.2. Model Description

The MOHID-Land model [16,27] is an open source hydrological model; the code can be accessed
from an online repository (github.com/Mohid-Water-Modelling-System/Mohid). MOHID-Land
simulates the water cycle considering four compartments or mediums: atmosphere, porous media,

github.com/Mohid-Water-Modelling-System/Mohid
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soil surface, and river network. The atmosphere is not explicitly simulated but provides data necessary
for imposing surface boundary conditions that may be space and time variant. The water moves
between the remaining mediums based on mass and momentum conservation equations that are
computed using a finite volume approach. MOHID-Land is thus a physically based, fully distributed
model using an explicit algorithm with a variable time step. The time step is maximum during dry
seasons and minimum when fluxes increase.

The simulated domain can be discretized by a regular grid, quadrangular or rectangular, in the
surface plane, and by a cartesian coordinate system in the vertical direction. Thus, the surface land
is described using a 2D horizontal grid while the porous media is a 3D domain, which includes the
same horizontal grid on the surface complemented with a vertical grid with variable thickness layers.
The river network is a 1D domain defined from a digital terrain model (DTM). The water lines of the
drainage network are then delineated by linking surface cell centers (nodes) together.

2.2.1. Infiltration

The MOHID-Land model includes three options to compute soil water infiltration. The infiltration
rate (i, LT−1) can be first estimated according to Darcy’s law, as follows:

i = −Ksat

(
∂h
∂t

+ 1
)

(1)

where Ksat is the saturated soil hydraulic conductivity (LT−1), h is the soil pressure head (L), and z is
the vertical space coordinate (L).

The infiltration rate can also be calculated according to the Green and Ampt method [31]:

i = ∆θ

(D0

2t

)1/2
(2)

where t is the time (T), D0 is the soil water diffusivity (L2T−1), and ∆θ is the difference between the
volumetric water content in the wetted region (θ0) and soil initial conditions (θi) (∆θ = θ0 − θi, L3L−3).
Soil water diffusivity can then be calculated as:

D0 =
K0∆h

∆θ
(3)

where K0 is the hydraulic conductivity of the wetted region (LT−1), and ∆h is the difference between
the matric head in the wetted region (h0) and at the moving front (hF) (∆h = h0 − hF).

Finally, the SCS runoff curve number (CN) method [32] can be further used to estimate the
infiltration rate. In this method, infiltration water is the amount of water not removed by surface
runoff, entering the soil at a rate computed from the ratio between the amount of water available for
infiltration and the time step. The surface runoff is first calculated as follows:

Q =
(P− Ia)

2

(P− Ia) + S
(4)

where Q is the runoff (L), p is the rainfall (L), S is the potential maximum retention (L) after runoff

begins, and Ia is the initial abstraction (L). Initial abstraction considers all losses before runoff begins,
as water retained in surface depressions, water intercepted by vegetation, evaporation, and infiltration,
and is calculated as:

Ia = 0.2S (5)
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The S parameter is related to soil properties and land use through the curve number (CN):

S =
1000
CN

− 10 (6)

The CN values may range between 0 and 100 (-). Higher values of CN are related with more
impermeable soils and, consequently, with higher runoff values. In MOHID-Land, the user can define
average curve number values (CNII). However, because runoff is affected by soil moisture before
a precipitation event, these average values are adjusted for dry (CNI) and wet (CNIII) conditions.
The adjustment of the CNII values considers the comparison of the accumulated precipitation during
the last five days with predefined thresholds. Under dry conditions, CN values will then decrease while
under wet conditions CN values will increase. Nonetheless, it is important to note that, in MOHID-Land,
the amount of water in Ia may not fully infiltrate if the soil is saturated, being transformed back to
surface runoff and summed to Q in Equation (4).

2.2.2. Surface Flow

Surface flow is computed by solving the Saint-Venant equation in its conservative form, accounting
for advection, pressure, and friction forces:

∂Qu

∂t
+ vv

∂Qu

∂xv
= −gA

∂H∂xi
+
|Q|Qin2

A2
vR4/3

h

 (7)

where Q is the water flow in the river (L3T−1), A is the cross-sectional flow area (L2), g is the gravitational
acceleration (LT−2), v is the flow velocity (LT−1), H is the hydraulic head (L), n is the Manning coefficient
(TL−1/3), Rh is the hydraulic radius (L), and subscripts u and v denote flow directions. In the drainage
network, surface flow is solved for one direction (1D domain) considering the water lines obtained
from the DTM. The cross-sections in the nodes of the river network are defined by the user. Outside
the drainage network, surface flow results from the amount of water that does not infiltrate or
ascends by capillarity and is solved on a 2D domain considering the directions of the horizontal grid.
Water exchanges between the soil surface and the drainage network are computed according to a
kinematic approach, neglecting bottom friction, and using an implicit algorithm to avoid instabilities.

2.2.3. Porous Media

The movement of infiltrated water in the porous media is computed by the Richards equation:

∂θ
∂t

=
∂
∂xi

(
K(θ)

(
∂h
∂xi

+
∂
∂xi

))
− S(h) (8)

where θ is the volumetric water content (L3L−3), xi represents the xyz directions (-), K is the hydraulic
conductivity (LT−1), and S is the sink term representing root water uptake (L3L−3T−1). The soil
hydraulic properties are described using the van Genuchten Mualem functional relationships [33,34]:

Se(h) =
θ(h) − θr

θs − θr
=

1
(1 + |αh|η)m (9)

K(h) = KsatSl
e

(
1− (1− Sl/m

e )
m)2

(10)

where Se is the effective saturation (L3L−3), θr and θs are the residual and saturated water contents,
respectively (L3L−3), Ksat is the saturated hydraulic conductivity (LT−1), α(L−1) and η (-) are empirical
shape parameters, m = 1 − 1/η, and l is a pore connectivity/tortuosity parameter (-). In MOHID-Land,
the relation between the horizontal and vertical hydraulic conductivities is defined by a factor
(fh = Khor/Kver) that can be adjusted by the user. The model uses the Richards equation in the whole
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subsurface domain and simulates saturated and unsaturated flow using the same grid. A cell is
considered saturated when moisture is above a threshold value (e.g., 98%) defined by the user. When a
cell reaches saturation, the model uses the saturated conductivity to compute flow and the pressure
becomes hydrostatic, corrected by friction. This procedure eases the implementation of the model and
simplifies its use at an annual scale. The penalty is the time step that during the wetting period must
be shorter to guarantee stability. The constraint is minimized using parallel computing. The water
fluxes between the porous media and the drainage network are also driven by the pressure gradient in
the interface of these two mediums.

2.2.4. Root Water Uptake

Root water uptake considers the weather conditions and soil water contents. The reference
evapotranspiration rates (ETo, LT−1) are first computed according to the FAO Penman–Monteith
method [35]. Crop evapotranspiration rates (ETc, LT−1) are then obtained from the product of ETo and
a single crop coefficient (Kc). The Kc is imposed, with the model either assuming a constant value
representing the average characteristics of each vegetation type over the entire growing season as well
as average effects of evaporation from the soil [27] or a crop stage-dependent value as used in Allen et
al. [35]. Advantages and limitations of these approaches are discussed in Canuto et al. [27].

The ETc values are partitioned into potential soil evaporation (Ep, LT−1) and crop transpiration
(Tp, LT−1) as a function of the simulated leaf area index (LAI, L2 L−2) [36]:

Tp = ETc
(
1− e(−λLAI)

)
(11)

Ep = ETc − Tp (12)

where λ is the extinction coefficient of radiation attenuation within the canopy (-). The LAI values are simulated
using a modified version of the EPIC model [37,38], considering the heat units for the plant to reach maturity,
the crop development stages, and crop stress. Additional details can be found in Ramos et al. [17].

Root water uptake reductions, i.e., Tp reductions, are finally computed using the macroscopic
approach proposed by Feddes et al. [39], as follows:

Ta = α(h)Tp(z) (13)

where Ta is the actual transpiration rate (Ta, LT−1) and α is a prescribed dimensionless function of h
(0 ≤ α ≤ 1) limiting Tp over the root zone in the presence of depth-varying stressors, such as water
stress [40,41]. According to the linear model proposed by Feddes et al. [39], root water uptake is
maximum when the pressure head is between h2 and h3, has a linear reduction when h > h2 or h < h3,
and becomes zero when h < h4 and h > h1 (subscripts 1−4 denote different threshold pressure heads).
Finally, the actual soil evaporation (Ea, LT−1) is calculated from Ep values by imposing a pressure head
threshold value [42].

2.3. Model Set-Up (Reference Simulation)

The MOHID-Land model was applied to the study area using a constant horizontally spaced
grid in the eastern and northern directions (215 columns × 115 rows), with origin on 42.468498◦ N
and 8.801326◦ W, and a resolution of 0.005◦ (≈500 m). The DTM was provided by the European
Environment Agency (EU-DEM) [43], with a resolution of approximately 30 m (0.00028◦). This DTM
is a hybrid product based on the Shuttle Radar Topography Mission (SRTM) and the Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model
(GDEM) data fused by a weighted averaging approach.

The drainage network was derived from the DTM. The geometry of the river cross-sections was
defined according to Andreadis et al. [44]. This database relates the drained area in each node to the
top width and depth of the cross-section at that node (Table 1). All cross-sections were considered
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rectangular, with bottom width equal to the top width. For the nodes with intermediate drainage
areas, the dimensions of the cross-section were linearly interpolated from the upper and lower classes
defined in Table 1. The Manning coefficient was set to a constant value of 0.035 s m−1/3 for the entire
drainage network (the model does not allow setting up different values along the river network).

Table 1. Cross-section drained area, width, and depth.

Area
(km2)

Reference Set-Up Sensitivity Analysis Model Calibration

Top Width
(m)

Depth
(m)

Top Width + 25%
(m)

Depth + 100%
(m)

Top Width
(m)

Depth
(m)

37.85 12.71 0.42 15.89 0.84 12.71 2.0
62.65 16.45 0.51 20.56 1.02 16.45 2.0
84.49 19.16 0.58 23.95 1.16 19.16 2.0
123.35 23.24 0.67 29.05 1.34 23.24 3.0
161.9 26.71 0.75 33.39 1.50 26.71 3.0
195.1 29.38 0.81 36.72 1.62 29.38 3.0
312.45 37.36 0.98 46.70 1.96 37.36 3.0
503.12 46.95 1.17 58.69 2.34 46.95 4.0

1164.36 73.16 1.65 91.45 3.30 73.16 4.0
2246.34 102.33 2.14 127.91 4.28 102.33 4.0
2785.08 114.21 2.33 142.76 4.66 114.21 4.0

Corine Land Cover [29] data with a resolution of 100 m were used to identify land use. For each
land use, the vegetation type and respective Manning’s coefficient were defined. Vegetation type was
defined according to MOHID’s vegetation database, while the Manning’s coefficients were defined
according to Pestana et al. [45]. The Kc values were set based on vegetation type. As mentioned
earlier, these coefficients represent empirical average values for the growing season and are not stage
dependent as in Allen et al. [35]. The resulting interpolation to the MOHID’s simulation domain
(Figure 2) showed a variation for the Manning coefficient from 0.023 to 0.298 s m−1/3 while the Kc values
varied from 0.15 to 1.0 (Figure 2).

The soil domain was divided into six grid layers, with a thickness from the surface to the bottom
layers of 0.3, 0.3, 0.7, 0.7, 1.5, and 1.5 m (vertical grid). On the other hand, the soil profile was
characterized by three horizons: 0 to 0.6 m, 0.6 to 2.0 m, and 2.0 m to the soil bottom. Thus, the first
horizon included the first two grid layers, the second horizon included the two middle grid layers,
and the third horizon consisted of the two bottom layers of the vertical grid domain. The soil depth in
each cell was estimated considering the cell slope, with flat areas approximating a maximum predefined
value while sloped areas approached a minimum. These maximum and minimum soil depths were
defined as 5.0 and 0.1 m, respectively. Soil data were extracted from the multilayered European Soil
Hydraulic Database [46]. This database includes the Mualem–van Genuchten hydraulic parameters
for the whole of Europe at a resolution of 250 m. Information is provided at 0, 0.05, 0.15, 0.3, 0.6, 1.0,
and 2.0 m depths. For the present application, the 0.3 m layer was used to characterize the first horizon,
the 1.0 m layer was used for the second horizon, and the 2.0 m layer was used for the bottom horizon.
Figure 2 shows the spatial distribution of soil data in the Ulla watershed while Table 2 presents the
corresponding Mualem–van Genucthen parameters. The fh parameter, which relates the horizontal
and vertical hydraulic conductivities, was set to 10. For the initial conditions, the soil was assumed
as saturated for 95% of the profile (from the bottom to the surface), while the soil water content in
the vadose zone was set to field capacity. Soil water infiltration was computed following the Darcian
approach (Equation (1)).
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Table 2. Soil hydraulic parameters.

ID θs θr η Ksat,ver α l

1 and 2 0.4912 0 1.9131 1.64 × 10−6 3.47 −4.3
3 0.4646 0 1.116 2.26 × 10−5 12.84 −5.0
4 0.4086 0 1.1335 5.05 × 10−6 7.00 −5.0
5 0.4332 0 1.1701 9.93 × 10−7 3.36 −5.0
6 0.4133 0 1.1191 1.43 × 10−6 2.27 −5.0

7 and 8 0.3839 0 1.1206 4.29 × 10−6 7.17 −5.0
9 0.4322 0 1.1701 9.93 × 10−7 3.36 −5.0

10 0.4133 0 1.1191 1.43 × 10−6 2.27 −5.0
11 and 12 0.3839 0 1.1206 4.29 × 10−6 7.17 −5.0

θr, residual water content; θs, saturated water content; α and µ are empirical shape parameters;
l, pore connectivity/tortuosity parameter; Ksat, saturated hydraulic conductivity.
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Meteorological data were extracted from the ERA5-Reanalysis dataset [47]. This dataset provides
several gridded meteorological parameters with an hourly timestep and with a resolution of 0.28125◦

(31 km). The variables used were the u and v components of wind velocity at 10 m height, dewpoint
temperature and air temperature at 2 m height, surface solar radiation downwards, surface pressure,
total cloud cover, and total precipitation. The ERA5 precipitation data were first validated through
comparison with measured values obtained at Melide and Santiago meteorological stations (Figure 1).
For the Melide station, a comparison was conducted from 1 January 2008 to 31 December 2012, resulting
in a coefficient of determination (R2) of 0.74 (Figure 3). For the Santiago station, that period was
from 1 January 2016 to 31 December 2017, with the R2 value reaching 0.78. The ERA5 data were then
interpolated to the case study grid.
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2.4. Sensitivity Analysis

The computational cost of one single run with the MOHID-Land model made it impossible to carry
out thousands of runs to perform a global and detailed sensitivity analysis. Thus, a local sensitivity
analysis was performed by modifying selected MOHID-Land parameters and processes one at the
time and evaluating their impact on river flow. The respective flow-duration curves, which express the
exceedance probability of a certain flow [48], were then compared against the reference simulation.
A sensitivity index was finally computed following the methodology proposed by Ranatunga et al. [7].

The simulated river flows at a specific location were arranged in a descending order and ranked
from 1 to N with the exceedance probability (frequency of occurrence) being given as follows:

F = 100
R

N + 1
(14)

where F is the exceedance probability (expressed as a percentage of time a flow value is equaled or
exceeded), R is the rank, and N is the total number of flow values resulting from the simulation.
The flow duration curve is thus the graphical representation of flow values and the corresponding
F values. The flow duration curves were then divided into five zones based on the percentage
exceedance as shown in Figure 4. Flows with an F value from 0 to 10% were considered high flows;
10 to 40% corresponded to moist conditions; 40 to 60% corresponded to mid-range flows; 60 to 90%
corresponded to dry flows; and 90 to 100% corresponded to low flows [7].
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The sensitivity index (SI) aimed at measuring the relative influence of the analyzed
parameters/processes on river flow. This index results from the normalization of the root mean
square error (RMSE) by dividing the error of the estimate of each simulated scenario by the range of
flow values of the reference simulation:

RMSE =

√√√∑p
i=1

(
Qref

i −Qsim
i

)2

p
(15)

SI =
RMSE(

Qref
max −Qref

min

) (16)

where Qi
ref is the flow of the reference simulation on day i, Qi

sim is the flow of the analyzed simulation
on day i, Qmax

ref and Qmin
ref are the maximum and minimum flow values of the reference simulation

in the respective flow classes, and p is total number of flow daily values in the same flow class.
A larger influence of a parameter/process on watershed hydrology is represented by higher values
of SI, while lower values of SI mean a lower influence of the analyzed parameter/process.

Model simulations were performed from 1 January 2008 to 31 December 2012 (five years).
The first four months of simulations were considered as the warm-up period and were not included
in the analysis of the results. Flows were analyzed at a daily scale. Due to MOHID-Land’s high
computational requirements and having as the ultimate goal the calibration of Ulla River watershed,
the sensitivity analysis focused on a single variation of the selected parameters/processes, illustrating
the impact of those variables on model performance. The analyzed parameters/processes as well as the
variations imposed on model inputs were defined based on previous calibrations of the MOHID-Land
model for different watersheds [22,25–27]. Additionally, the calibration processes performed on similar
physically based models were also considered [49–54]. Thus, sixteen parameters/processes influencing
water dynamics at the catchment scale were analyzed:

• The resolution of the simulation grid was modified from 0.005◦ (≈500 m) used in the reference
simulation to 0.01◦ (≈1000 m; 140 columns × 100 rows) (simulation 1, S1).

• The DTM was changed from the EU-DEM (30 m) to the one provided by the National Geographic
Institute of Spain, with a resolution of 5 m [55]. The new DTM was interpolated to the simulation grid,
with the model also delineating a new catchment area and drainage network based on that input (S2).
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• The effect of cross-section geometry on river flow was assessed in two simulations. In one (S3),
the top and bottom widths were increased by 25% (i.e., larger river) while the depth and the shape
of the cross-section remained the same. In the other (S4), the river depth was increased by 100%,
while the top and bottom widths and the shape of the cross-section were maintained as in the
default simulation. Table 1 shows the variations introduced to those parameters per drainage area.

• The Ksat value of each cell was multiplied by a factor of 10 while fh was maintained (S5). As a
result, the horizontal hydraulic conductivity was also modified since fh = Khor/Kvert.

• The fh value was analyzed in a separate test by changing this parameter from 10, in the reference
simulation, to 20 (S6). The Ksat,vert values were the same as in the default scenario, meaning that a
change in fh led to an increase in the Khor.

• The number of layers in the vertical grid increased from 6 to 12 as defined in Table 3 (S7),
thus decreasing the thickness of the layers when compared with the reference simulation.

• The soil depth also increased from 5 to 10 m (S8), with the number of layers in the vertical grid
increasing from six to nine (Table 3).

• The surface Manning coefficients increased by 50% when compared with the reference simulation (S9).
• The channel Manning coefficient also increased from 0.035 s m−1/3 to 0.0525 s m−1/3, corresponding

to a 50% increase (S10).
• The SCS curve number method was used to compute runoff and soil water infiltration as an

alternative to Equation (1) (S11). The CN values were defined for each grid cell according to the
soil type and land cover. The hydrologic soil groups (HSGs) were extracted from the HYSOGs250
m dataset [56], which derived that information from the soil texture classes and depth to bedrock
available in the SoilGrids250 m product [57]. That information was then merged with Corine Land
Cover [29] data following the United States Department of Agriculture [58] guidelines to derive
the CN values. Figure 5 presents the CN values adopted in this study. Additionally, changes in
the CN values were also assessed by decreasing the values set in S11 by 25% (S12).

• The Green and Ampt infiltration method was now used as an alternative to Equation (1) (S13).
The MOHID-Land model needed the values of Ksat,ver, suction head, porosity, and wilting point in
each cell as inputs (Figure 6). These inputs were obtained by combining the information available
in the LUCAS database [59] with data from Rossman [60], who related the soil texture classes
with the soil hydraulic characteristics.

• The importance of the porous media and vegetation growth processes for river flow results were
investigated in three separate simulations. Firstly, vegetation growth processes were deactivated
(S14), meaning that no evapotranspiration occurred in the catchment area. Secondly, both the
porous media and vegetation growth processes were deactivated (S15). In the absence of porous
media, the SCS CN method was used to compute the partitioning of rainfall data between surface
runoff and infiltration. Infiltration water was then lost to the system since soil porous processes
were not considered. The CN values presented in Figure 5 were adopted for this analysis. Lastly,
both porous media and vegetation growth processes remained deactivated, but the CN values
were reduced by 25% (S16) as in S12.

Table 3. Soil discretization for the reference simulation and simulations S7 and S8.

Depth
(m)

Layers Thickness (m)

1st Horizon 2nd Horizon 3rd Horizon

Reference
Simulation 5 0.3 0.3 0.7 0.7 1.5 1.5

S7 5 0.15 0.15 0.15 0.15 0.35 0.35 0.35 0.35 0.75 0.75 0.75 0.75
S8 10 0.3 0.3 0.7 0.7 1.0 1.0 1.5 2.0 2.5
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The time required for MOHID-Land to compute each simulation was also quantified. The average,
maximum, and minimum time (in seconds) required to complete each day of simulation were compared
for all scenarios. This information was critical to understand which parameters/processes would
improve computational speed during model calibration/validation.

2.5. Model Calibration/Validation

Based on results from the sensitivity analysis, the following parameters/processes were modified
from those adopted in the reference simulation during model calibration/validation: the vertical
hydraulic saturated conductivity (Ksat,ver); the relation factor between the horizontal and vertical
hydraulic conductivities (fh); and the dimensions of the cross-sections in the river network.
Model calibration consisted of modifying these parameters one at a time, and adjusting them
by trial-and error, until deviations between model simulations and flow measurements at Sar, Ulla,
Arnego-Ulla, and Deza hydrometric stations (Figure 1) were minimized. Validation was then performed
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by simply comparing model simulations using the calibrated parameters with flow measurements at
the same hydrometric stations. The Sar, Ulla, Arnego-Ulla, and Deza hydrometric stations were selected
because their data describe the natural flow regime of the Ulla watershed, which was obtained from
Augas de Galicia [61]. The Ulla-Teo station (Figure 1) was under the influence of reservoir management
and therefore its data were not considered for evaluating model performance. Model simulations were
carried out from 1 January 2008, to 31 December 2017 (10 years). The first four months were considered
as the warm-up period, while the period between 1 May 2008 and 31 December 2012 was considered
for calibration. The validation period was defined between 1 January 2013 and 31 December 2017.

Different goodness-of-fit tests were considered for assessing model performance, including the
Nash and Sutcliffe model efficiency (NSE), the percent bias (PBIAS), the RMSE-observation standard
deviation ratio (RSR), and the coefficient of determination (R2). The NSE [62] was computed as:

NSE = 1−


∑p

i=1

(
Qobs

i −Qsim
i

)2

∑p
i=1

(
Qobs

i −Qobs
mean

)2

 (17)

where Qi
obs is the observed flow on day i, Qi

sim is the simulated flow for day i, Qmean
obs is the observed

mean flow for the period under consideration, and p is the total number of days in that same period.
The NSE is used to assess the relative magnitude of residual variance compared to the measured data
variance and it ranges between −∞ and 1.0, being 1.0 the optimal value. Values between 0.0 and 1.0
are classified as acceptable levels of performance, and values ≤ 0.0 indicate that the mean observed
value is a better predictor than the simulated value.

The PBIAS is a statistical parameter that measures the average tendency of the simulated data to
be larger or smaller than their observed counterparts, and was computed as follows:

PBIAS =

∑p
i=1

(
Qobs

i −Qsim
i

)
∑p

i=1 Qobs
i

× 100 (18)

The optimal value of PBIAS is 0.0 and low-magnitude values indicate accurate model
simulation. Positive values demonstrate model underestimation while negative values represent
model overestimation.

The RSR results from the ratio between the RMSE and the standard deviation of observed values
were obtained as follows:

RSR =
RMSE

STDEVobs
=

√∑p
i=1

(
Qobs

i −Qsim
i

)2√∑p
i=1

(
Qobs

i −Qobs
mean

)2
(19)

RSR incorporates the benefits of error index statistics and includes a scaling/normalization factor.
RSR is equal to 0.0 when RMSE is 0.0, indicating that the variation is residual, and the model is perfect.
Thus, low RSR values correspond to low RMSE values and a good model simulation performance.

Finally, R2 describes the degree of collinearity between simulated and measured data and ranges from
0 to 1, with higher values indicating less error variance. This statistical parameter was computed as follows:

R2 =


∑p

i=1

(
Qobs

i −Qobs
mean

)(
Qsim

i −Qsim
mean

)
√∑p

i=1

(
Qobs

i −Qobs
mean

)2
√∑p

i=1

(
Qsim

i −Qsim
mean

)2


2

(20)

According to Moriasi et al. [63], model performance for streamflow can be classified as satisfactory
when NSE > 0.50, RSR ≤ 0.70, PBIAS ± 25%, and R2 > 0.5.
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3. Results and Discussion

3.1. Impact of Model Parameters/Processes on River Flow

Although flow-duration curves were compared for all flow stations, only results for the Ulla-Teo
station (Figure 1) are presented graphically, to limit the number of figures and to maintain consistency.
This station was not considered for evaluating model performance because of the influence of reservoir
management on river flow. However, its larger drainage area produced the most contrasting differences
between the simulation scenarios and the reference simulation, which helped demonstrate model
behavior during the sensitivity analysis. Figure 7 shows the flow-duration curves for each simulation
included in the sensitivity analysis, while Tables 4 and 5 present the mean flow and respective SI values
for each exceedance probability class.

Decreasing the resolution of the base grid from 500 m (reference simulation) to 1000 m (S1)
had a substantial impact on river flow, with mean values decreasing between 71% and 97% in all
ranges of the flow-duration curve (Table 4). That was also visible in the SI values, which ranged
from 0.42 to 0.93 (Table 5). These results showed that setting up the base grid, which basically defined
how detailed the study area would be represented, was an important step for accurately simulating
river flow at the catchment scale. A more detailed grid led to a more dynamic watershed than when
using a coarser one. These results contrast with Sreedevi and Eldho [54], who, after testing three grid
sizes (4000, 2000, and 1000 m), found no scale dependency on streamflow generation values using the
SHETRAN model. Nevertheless, the use of a coarser resolution grid in the Ulla River watershed had a
contrasting result at the hydrometric stations located in the river heads above 600 m (Sar, Arnego-Ulla,
and Deza). In those locations with a drainage area smaller than at Ulla-Teo, the coarser steeper slopes
in the DTM ended up promoting surface runoff and higher flow peaks, which eventually disappeared
by the time the iflow reached the Ulla-Teo station.

On the other hand, for the same resolution grid (500 m), results with a more detailed DTM (S2)
did not differ much from the reference simulation (Tables 4 and 5). The use of high-resolution data in
coarse scale applications seems thus to be irrelevant when not accompanied by a base grid also with
greater resolution to be able to consider such detailed information. Yet, improvements n streamflow
simulations using more detailed grids and DTMs can only go so far, as shown by Pieri et al. [50].
These authors found no statistically significant differences in the accuracy of DTMs varying between
10 and 2 m resolution when simulating streamflow and sediment yield using the WEPP model in a
considerably smaller basin than the Ulla River catchment (the Centonara catchment in northern Italy,
1.92 km2). Also, Zhang et al. [51] and Nazari-Sharabian et al. [53] showed the influence of the DTM
resolution on the calibration of streamflow simulations using different physically based models.

Increasing the width (S3) and depth (S4) of the cross-sections (i.e., the river network) promoted
higher river flow in all the exceedance intervals except for the moist conditions (Q10−40), where it
slightly decreased (Figure 7). The largest increase was in the higher flow class (Q0−10), i.e., the flow
peaks, with S3 and S4 leading to an increase of the mean flow by 11% and 39%, respectively (Table 4).
This was explained by the fact that increasing the dimensions of the cross-sections meant that the
boundary between the riverbed and the porous media would also increase, promoting water exchanges
between these two mediums, mainly from the porous media to the riverbed. However, only S4 resulted
in higher SI values in the extremes of the flow duration curve, reaching 0.29 for the Q90−100 class and
0.26 for the Q0−10 class.
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Figure 7. Flow-duration curves for the simulations considered during sensitivity analysis. Impact of:
(a) grid resolution (S1) and elevation data (S2); (b) cross-section widths and heights (S3 and S4); (c) vertical
and horizontal saturated hydraulic conductivities (S5 and S6); (d) vertical soil discretization and soil depth
(S7 and S8); (e) surface and channel Manning coefficients (S9 and S10); (f) infiltration methods (S11, S12,
and S13); (g) porous media and vegetation processes (S14, S15, and S16) (see Section 2.4 for details).
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Table 4. Mean river flow values at the station Ulla-Teo for each exceedance probability class of the
reference simulation flow-duration curve and respective variation in each class for each simulation
scenario compared with the reference simulation.

Simulation (% Variation)
Class (%)

0−10 10−40 40−60 60−90 90−100

Reference Simulation (m3 s−1) 241.25 75.69 12.45 3.82 0.89
1 −71 −80 −88 −92 −97
2 +1 +4 +5 +7 +9
3 +11 −1 +1 +2 +4
4 +39 −11 +5 +9 +30
5 −27 +1 +153 +188 +116
6 −4 +1 +48 +91 +161
7 +1 +3 −3 −2 −22
8 −6 0 +53 +119 +289
9 +6 +3 +1 0 0
10 −23 −3 +7 +6 +10
11 −1 +8 +19 +14 −8
12 −1 +3 +9 +6 −6
13 0 0 0 0 0
14 +12 +54 +181 +434 +1531
15 −37 −57 −63 −71 −85
16 −69 −87 −87 −90 −97

Simulations: 1—grid resolution; 2—elevation data; 3 and 4—cross-section widths and heights; 5 and 6—vertical and
horizontal saturated hydraulic conductivities; 7 and 8—vertical soil discretization and soil depth; 9 and 10—surface
and channel Manning coefficients; 11, 12, and 13—infiltration methods; 14, 15, and 16—porous media and vegetation
processes (see Section 2.4 for details).

Table 5. Sensitivity index (-) at the station Ulla-Teo for each exceedance probability class of the
flow-duration curve.

Simulation
Class (%)

0−10 10−40 40−60 60−90 90−100

1 0.42 0.48 0.88 0.67 0.93
2 0.01 0.03 0.05 0.05 0.09
3 0.07 0.04 0.02 0.02 0.04
4 0.26 0.09 0.05 0.06 0.29
5 0.17 0.14 1.52 1.41 1.20
6 0.17 0.14 0.48 0.64 1.52
7 0.01 0.02 0.03 0.02 0.21
8 0.04 0.04 0.52 0.82 2.71
9 0.04 0.02 0.01 0.00 0.00

10 0.14 0.10 0.08 0.04 0.10
11 0.02 0.05 0.20 0.13 0.08
12 0.01 0.02 0.09 0.05 0.06
13 0.00 0.00 0.00 0.00 0.00
14 0.07 0.28 1.79 2.94 14.32
15 0.21 0.33 0.63 0.51 0.82
16 0.39 0.20 0.88 0.65 0.94

Simulations: 1—grid resolution; 2—elevation data; 3 and 4—cross-section widths and heights; 5 and 6—vertical and
horizontal saturated hydraulic conductivities; 7 and 8—vertical soil discretization and soil depth; 9 and 10—surface
and channel Manning coefficients; 11, 12, and 13—infiltration methods; 14, 15, and 16—porous media and vegetation
processes (see Section 2.4 for details).

The increase in Ksat,ver (S5) and fh (S6) led to a rise of river flow values in the mid-range (Q40−60),
low (Q60−90), and dry (Q90−100) classes of the flow duration curve, which varied from 48% to 188% when
compared with the reference simulation. On the other hand, flow values in the Q0−10 range (high flows)
showed a decreasing trend while the Q10−40 class (moist condition) remained basically unchanged.
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Thus, the increase in those parameters promoted the infiltration process (exchange between the surface
and the porous media), the faster movement of soil water (subsurface flow), and the exchange between
the porous media and river sections. Higher subsurface flows caused the water to allocate to the baseflow
instead of generating flow peaks, increasing the mean values in the lower classes of the flow-duration
curve. As a result, the SI values were notoriously higher in the lower classes of the flow duration
curve (Q40−60 to Q90−100), reaching values from 1.20 to 1.52 in S5 and from 0.48 to 1.52 in S6 (Table 5)
due to the increasing baseflow. Note that a scaling factor of 10 was considered for varying Ksat,ver,
in line with previous calibrations of this parameter performed by Canuto et al. [27] in the Guadiana
catchment, Iberian Peninsula. However, this parameter is known to be one of the most variable in
nature, being affected by soil physical, chemical, and biological properties. There is also the fact that
Tóth et al. [46] maps were developed from a database containing measurements of this parameter
carried out in the laboratory on samples of limited size, with issues related to their representativeness
being often raised when describing actual flow conditions, transport, and reaction processes occurring
at the field/catchment scales due to limitations in the porous medium continuum [64,65]. Similarly,
a scaling factor of 20 was considered in this application for fh. The literature is far less rich on variations
of this parameter since it is specific to the MOHID-Land model. Yet, fh has been found to vary between
3.0 [27] and 25.0 [25]. The latter was used to fit simulated streamflow to measurement values in
the Alegria River watershed, northern Spain. Thus, different scaling factors could have been here
considered for Ksat,ver and fh, but results would not differ much since the main point was to identify
which hydrological processes would be affected by these parameters.

The influence of vertical discretization (S7) on river flow was practically null. This explains the
relatively coarse discretization of the vertical grid in existing applications of the MOHID-Land model
at the watershed scale [22,25–27]. These studies reported vertical grids varying from 7 to 12 layers
when describing soil profiles reaching 8 to 30 m depth. More detailed grids would have increased the
computational burden with no practical benefit for model performance. Nonetheless, those numbers
contrast with the one-dimensional application presented in Ramos et al. [17], who used 100 grid cells
with 0.02 m thickness each to describe soil water dynamics in a soil profile with 2 m depth and respective
interactions between the vadose zone and a shallow groundwater table. On the other hand, a deeper
soil profile (S8) led to an increase in the lower exceedance probability classes of the flow-duration
curve (Q40−60, Q60−90 and Q90−100) from 53% to 289% (Table 4), resulting in higher SI values in those
classes (0.52 to 2.71). The increase in soil depth represented a larger volume of water stored below the
surface, at depths (bottom profile) that were not affected by evapotranspiration. This water stored at
deeper depths became thus an additional resource for exchanges between the porous media and the
river network, leading to higher baseflow.

The impact of modifying the surface’s Manning coefficients was small (S9). This agreed with
Canuto et al. [27], who considered this parameter in the calibration of streamflow simulations in the
Guadiana basin, but changes to the model’s default values ended up being only minor. Changing
the channel’s Manning coefficient (S10) resulted in a decrease of the mean flow in the Q0−10 class
by 23% and an increase in the Q90−100 class by 10% (Figure 7, Table 4). Increasing the roughness
and, consequently, the friction between the water and the surface led to a decrease in flow velocity.
The infiltration process was then promoted, causing an increase in baseflow and a reduction of the flow
peaks. Nonetheless, the SI values were always smaller than 0.14, which show the reduced influence of
this parameter in the generation of streamflow.

The use of the SCS CN method (S11) promoted the increase in mean flow values for the moist
(Q10−40), mid-range (Q40−60), and dry flow classes (Q60−90) by 8%, 19%, and 14%, respectively,
when compared with the reference simulation (Table 4). Flow in the Q40−60 class also corresponded to
the highest SI value (0.20; Table 5). Reducing the CN values of all grid cells by 25% (S12) naturally
led to less runoff, with the mean flow values for the same classes referred to above being 3%, 9%,
and 6% higher than in the reference simulation while in the Q90−100 class they were lower by 6%.
The use of the Green and Ampt method as an alternative to Equation (1) had no real impact on river
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flow. Obviously, future works need to analyze the sensitivity of the MOHID-Land model to inputs
used for computing soil water infiltration with this method. Notwithstanding, the MOHID-Land
model offers analytical, semi-analytical, but also empirical solutions for modeling a key process in the
hydrological cycle, which can be selected depending on the complexity of users’ applications.

Finally, the deactivation of vegetation (S14) and porous media (S15) modules produced a strong
modification of the flow-duration curve at the Ulla-Teo station (Figure 7), which was expected since
most processes included in the reference simulation were disregarded. Ignoring the evapotranspiration
process in the catchment (S14) led to an increase in the mean flow in all intervals of the flow duration
curve, particularly in the mid-range (Q40−60), dry (Q60−90), and low flow (Q90−100) classes (Table 4).
Flow in the Q90−100 class also returned the highest SI value of 14.32 (Table 5). Without the main
driver for soil water dynamics, soil water contents as well as exchanges between the porous media
and the river network simply increased, promoting mainly baseflow. The porous media module was
responsible for the occurrence of subsurface flow and baseflow. This constituted a major component in
the water budget of the Ulla River catchment. Disregarding this module naturally led to a decrease in
the mean river flow values in all classes of the flow-duration curve because the infiltrated water simply
disappeared from the system. With the reduction of the CN values by 25% (S16), that drop was even
higher (Table 4).

3.2. Impact of Model Parameters/Processes on Model Time Consumption

Figure 8 presents the boxplot of the time required for MOHID-Land to compute each day of the
simulations considered in the sensitivity analysis, while Table 6 summarizes those results by presenting
the minima, mean, and maxima values. The fastest computation time was naturally obtained by
running the simplest applications, i.e., S2 with the coarser grid resolution of 1000 m, and S15 and S16
without considering the porous media processes. The former can be explained by a simulation grid
four times smaller than the one in the reference simulation, substantially decreasing the calculations
needed to run the simulation, and the latter by disregarding subsurface flow, with MOHID-Land
distancing from its physically based nature and relying on a more empirical basis. On the other hand,
the longest simulation performance was achieved with a more detailed vertical grid domain (S7).
The higher number of vertical layers increased the calculations related to the porous media processes,
with the model spending more time to perform the simulation. However, as showed earlier, this had
no impact on river flow. All other simulations presented a similar computation time, with no real
influence on the number of days (seven days) the reference simulation took to run.
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Table 6. Minimum, mean, and maximum computation times for each simulation test.

Simulation
Computation Time (s day−1)

Minimum Mean Maximum

Reference Simulation 238 402 1764
S1 29 83 550
S2 190 319 2011
S3 228 389 1513
S4 255 399 1269
S5 213 422 1947
S6 237 407 1702
S7 354 528 2829
S8 303 447 2155
S9 235 404 1752

S10 234 399 1723
S11 216 360 1711
S12 221 359 1600
S13 231 334 1599
S14 209 309 1437
S15 6 65 475
S16 5 52 448

Simulations: 1—grid resolution; 2—elevation data; 3 and 4—cross-section widths and heights; 5 and 6—vertical and
horizontal saturated hydraulic conductivities; 7 and 8—vertical soil discretization and soil depth; 9 and 10—surface
and channel Manning coefficients; 11, 12, and 13—infiltration methods; 14, 15, and 16—porous media and vegetation
processes (see Section 2.4 for details)

3.3. Prediction of River Flow in the Ulla River Watershed

Figure 9 visually compares the measured and modeled river flow values at the Sar, Ulla,
Arnego-Ulla, and Deza hydrometric stations during the calibration (2008−2012) and validation
(2013−2017) periods. The respective goodness-of-fit indicators are presented in Table 7. These results
were obtained after modifying Ksat,ver, fh, and the dimensions of the cross-sections in the river network
defined for the reference simulation. The Ksat,ver values for each soil horizon in Table 2 were multiplied



Water 2020, 12, 3258 20 of 25

by a scaling factor of 10, similarly as performed in the sensitivity analysis. The fh value was then
automatically updated since this parameter represents the relation between horizontal and vertical
conductivities in each cell. The dimensions of the cross-sections were defined as shown in Table 1 and
consisted of increasing river depth and interactions between the porous media and the river network.
Thus, by modifying these parameters, the calibration process mainly focused on increasing baseflow in
the Ulla River watershed.
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Table 7. Statistical parameters obtained during model calibration/validation at the Sar, Ulla,
and Arnego-Ulla, and Deza hydrometric stations.

Station

Calibration Validation

R2

(-)
RSR

(-)
PBIAS

(%)
NSE

(-)
R2

(-)
RSR

(-)
PBIAS

(%)
NSE

(-)

Sar 0.75 0.53 0.18 0.72 0.83 0.44 16.09 0.81
Ulla 0.56 0.67 −11.24 0.55 0.76 0.53 −18.54 0.72

Arnego-Ulla 0.70 0.55 −12.29 0.69 0.78 0.49 −16.82 0.76
Deza 0.74 0.53 −8.96 0.72 0.85 0.40 −4.35 0.84

R2, coefficient of determination; RSR, root mean square error-observations standard deviation ratio; PBIAS,
percent bias; NSE, Nash Sutcliffe efficiency.

The R2 values varied from 0.56 to 0.75 during the calibration period and from 0.76 to 0.85 during
the validation period (Table 7), showing that the model could explain most of the variability of the
measured data in all hydrometric stations. The errors of the estimates were relatively small as shown
by the low RSR values obtained at the different stations during both simulation periods (RSR ≤ 0.67).
On the other hand, the PBIAS values showed some underestimation of measured values at the Sar
hydrometric station (PBIAS ≤ 16.09%), and some overestimation of measured data for the remaining
stations (−18.54% ≤ PBIAS ≤ −4.35%). Finally, the NSE values were relatively high in most locations,
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ranging from 0.55 to 0.84 during both periods, indicating that the residual variance was much smaller
than the measured data variance. These indicators are comparable with the best flow estimates under
natural regimes in Canuto et al. [27], with model predictions for the Ulla River watershed being
considered extremely satisfactory if Moriasi et al. [63] guidelines are considered.

Despite the good statistical results, Figure 9 further showed the difficulty of the MOHID-Land
model in predicting the highest flow peaks in the Ulla River watershed. This was attributed to the
precipitation inputs provided by the ERA5 dataset, which also failed to represent higher precipitation
values as shown in Figure 3 for the Santiago meteorological station. This tendency was also verified by
Hénin et al. [66], who concluded that reanalysis products such as ERA5 present an underestimation of
heavy precipitation events. Hence, the amount of water entering the basin during heavy rain events
in that dataset was clearly below measured rainfall and proved to be insufficient for the model to
reach higher flow peaks. However, the replacement of the ERA5 data by measured values from the
different weather stations was not considered as a viable solution to overcome this problem. Rainfall
measurements were only available at a daily time step while the ERA5 data have an hourly time step.
In the MOHID-Land model, daily measured data are distributed evenly during the day, reducing
rainfall intensity rates, which would further reduce or even miss flow peaks. Besides that, one should
consider that the model was calibrated for the entire period without special distinction between dry
and wet seasons, which could also explain the difficulty for the model to reach peak flows in the Ulla
River watershed. One way to overcome the problem from the model point of view would have been to
define distinct geometries of the cross-sections per subbasin, and not per drainage area. This would
increase model accuracy of river flow predictions at the watershed scale.

4. Conclusions

The MOHID-Land model is a complex, physically based, three-dimensional model used
for catchment scale applications. The sensitivity analysis helped to identify the most relevant
parameters/processes influencing river flow generation and for accurately modeling baseflow and peak
flows. For the application in the Ulla River catchment, the resolution of the simulation grid, the choice
of the infiltration method, and the evapotranspiration process were the main factors influencing river
flow generation. The soil hydraulic properties, the depth of the soil profile, and the dimensions of
the river cross-sections, which basically control the interactions between the porous media and the
river, influenced baseflow. On the other hand, peak flows were mostly constrained by the channel’s
Manning coefficient, as well as the dimensions of the river cross-sections.

The sensitivity analysis further showed that the use of a too coarse resolution grid as well
as the deactivation of the porous media and vegetation processes can compromise the quality of
results, which should then be subjected to careful revision. Also, model simulations of soil infiltration
considering the Darcian and the Green and Ampt approaches produced very similar outputs, both in
terms of river flow values and computational time, meaning that users can choose between the
two solutions depending on available data. Finally, the number of layers in the vertical simulation grid
can lead to a substantial increase in the time needed to compute model simulations with no effect on
river flow predictions. It is also important to note that the sensitivity analysis focused on just a few
input parameters/processes used in MOHID-Land for simulating river flow at the watershed scale.
Others should also be considered in future analysis, namely, the remaining soil hydraulic parameters,
the crop coefficients, as well as the parameters used for water quality modeling.

Nevertheless, the MOHID-Land model is a powerful tool for simulating river flow at a daily scale
in areas under natural flow regimes. This was demonstrated in simulations of the Ulla River flow at
four locations, with comparisons between model predictions and measured values returning R2

≥ 0.56,
RSR ≤ 0.67, and NSE ≥ 0.55. These same simulations showed a clear underestimation of river flow
peaks, which was attributed to the quality of the ERA5 dataset and the misrepresentation of higher
rainfall events.
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