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Abstract: Phaeocystis globosa is regarded as a notoriously harmful algal bloom species. Suppressing
harmful algae using algicidal substances extracted from plants is considered an effective method.
The physiological and biochemical processes of P. globosa were explored by exposure to different
concentrations of aqueous extracts of Cyperus rotundus. All treatments indicated various inhibitory
effects on the algal growth compared to the control samples without adding extracts. At 48 h,
the 4, 8, and 16 mg/mL treatment groups showed a significant inhibitory effect, consistent with a
decrease in the chlorophyll-a content and photosynthetic efficiency. The images of the transmission
electron microscope (TEM) further confirmed that a subset of the cells in the treatment groups
exhibited morphological anomalies. The algicidal active substances were mainly identified as
phenolic acids containing maximal content of quinic acid in aqueous extracts according to the
results of ultra-high-performance liquid chromatography-tandem time-of-flight mass spectrometer
(UPLC-HRMS). The 50% anti-algal effect concentration of quinic acid was 22 mg/L at 96 h (EC50–96h).
Thus, the phenolic acids might be considered as major inhibitors of the growth of P. globosa.
These results demonstrated that the aqueous extracts of C. rotundus could potentially control the
growth of P. globosa.
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1. Introduction

Algal blooms are natural phenomena in the aquatic ecosystem and are designated as harmful
algal blooms (HABs) with detrimental effects on ecosystems. The anthropogenic activities, including
agricultural and industrial sewage discharge, the development of ports, and the over-expansion of
aquaculture, have resulted in eutrophication and intensified the occurrence of HABs worldwide [1].
Some HABs species gain superiority in resource competition for mass proliferation, while leading
to hypoxia or the mortality of marine organisms due to high biomass and oxygen depletion due to
their self-decomposition [2]. Toxic HABs species may produce toxicants that are absorbed by aquatic
organisms, especially shellfish, ultimately threatening human life [3].

Phaeocystis globosa (Prymnesiophyceae) is a dense bloom-forming, broad temperature tolerance,
and broad salinity tolerance HABs species [4]. It leads to massive mortality of fishes, and numerous
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giant colonies block the supplement of cooling water of nuclear power plants, causing great harm to
marine ecology, aquaculture, and nuclear power safety [5,6]. In 2002, nearly 90% of the animal and plant
species in tidal reefs of Phan Ri Bay (Binh Thuan Province, southern central Viet Nam) were seriously
damaged during the P. globosa bloom, causing substantial economic losses [7]. Thus, frequent global
outbreaks of P. globosa in the ocean have gained extensive attention in the last decades [8–11]. Phaeocystis
globosa has a complex polymorphic life cycle involving diploid colonial cells and diploid and haploid
flagellates belonging to different life cycles that can adapt to different environments [8,12]. The colonial
cells have high growth rates and can resist small predators [13], while the flagellates reproduce asexually
and adapt to conditions of limited nutrients [14]. During the disintegration of P. globosa, the vesicles
of the cells burst and white foam floats on the surface of the water [15,16]. Seuront et al. [17] found
that the seawater viscosity increased continually during bloom and declined subsequently. Previous
studies reported several measures to inhibit the growth of P. globosa, such as Chinese traditional herbs
and herb-modified clays [18], mangroves [19] and coastal plants [20]. Therefore, P. globosa is considered
as an excellent species to study the environmental stress on its growth due to its wide adaptability,
life cycle, dominance in the microalgae community, and ecological hazards [21].

The long-term strategy for controlling HABs is to reduce nutrient inputs. However, the usage
of physical, chemical, and biological methods rapidly and effectively suppresses the growth of
HABs [22–24]. The natural secondary metabolites extracted from different plant tissues are under
intensive focus. Previous studies reported several algicidal substances extracted from seagrass [25],
riparian plants [26], and terrestrial plants [27]. Owing to the adaptive capacities of some HAB
species, the ecological safety of non-targeted microalgae or aquatic animals, and the resources of
plants, exploring more plants is crucial. Cyperus rotundus, commonly known as purple nutsedge or
nutgrass, belongs to the Cyperaceae family and is believed to be native to the Indian subcontinent.
Cyperus rotundus is widely distributed in tropical, subtropical and temperate regions, as well as coastal
areas. It is an invasive weed that competes strongly with the adjacent plants because of its allelopathic
ability [28]. For instance, the allelopathic chemicals released from C. rotundus could reduce the crop
yields and replanting problems in the orchards [29,30]. Despite the negative effect, most studies have
focused on the pharmaceutical functions of its rhizomes and tubers mainly based on the component of
essential or volatile oils obtained by hydrodistillation [31–33]. Instead of pharmacological activities,
the function of C. rotundus aqueous extracts gained less attention [34].

In previous decades, P. globosa blooms have frequently been presented in the South China
Sea [35,36]. Consequently, the application of aqueous extracts of C. rotundus to inhibit the proliferation
of HABs is a novel methodological attempt. The present study aimed to (1) evaluate the algal growth
of short-term exposure to C. rotundus extracts, (2) elucidate the microalgae potential physiological
response of extracts by measuring the chlorophyll-a content, photosynthetic efficiency and changes
in the intracellular microstructure of P. globosa involved in stress tolerance and (3) analyze the main
components in C. rotundus aqueous extracts, identify the potential algicidal substances and test the
algicidal effect of single phenolic acid by using standard substances of quinic acid.

2. Materials and Methods

2.1. Phaeocystis Globosa Cultures

The strain of P. globosa was isolated by the capillary pipette method [37] from Junk Bay, Hongkong in
1999. The identification of the partial sequence of 18S rDNA indicated that the strain was P. globosa [38].

Natural seawater (salinity of 10%�) was collected from Pearl River Estuary in south China.
Filtered seawater enriched with f/2 medium without silicate [39] was used as the culture medium for
algal culture. Before the experiments, the culture conditions were maintained at 23 ± 0.1 ◦C under
a 12:12 h (light:dark) photoperiod cycle and an irradiance of 120 µmol/m2/s. The tested microalgae,
consisting of haploid flagellates, were cultured to the exponential phase. Then, the culture was
inoculated in the subsequent experiments.
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2.2. Cyperus Rotundus Plant Sampling and Treatments

Fresh and healthy C. rotundus whole-plants except for rhizomes and tubers (including leaves,
stalks and inflorescence) were collected in October 2018 from the coastal tidal belt of the Qi’ao island,
Guangdong Province, China (22◦25′ N, 113◦37′ E). The collected samples were cleaned with filtered
seawater containing 1% of the surfactant to remove surface epiphytes, following which they were
dipped in filtered seawater containing chloramphenicol (50 ppm) for 3 min to obliterate residual
epiphytic cells and bacteria. After rinsing in filtered seawater, the samples were heated at 105 ◦C for
30 min and dried to a constant weight at 60 ◦C. The dry samples were cut into pieces and ground into
powder by a pulverizer.

An equivalent of 16 g samples was weighed for extraction with 1 L seawater filtered by a
0.22-µm nylon mesh, followed by extraction with ultrasonic waves overnight at room temperature.
The extracted solution was passed through the filter again to obtain a stock filtrate at a concentration of
16 mg/mL C. rotundus dried plant extracts.

2.3. Co-Cultures of C. rotundus Extracts and P. globosa

The stock filtrate was diluted to a series of concentrations and added to each group
(e.g., the 16 mg/mL treatment group contained 98 mL stock filtrate and 1 mL 32 mg/mL C. rotundus
aqueous extracts). A volume of 1 mL algae suspension was added to the above working solution
(final algal concentration was 2.5 × 105 cells/mL) with a final concentration gradient of 1, 2, 4, 8 and
16 mg/mL C. rotundus dried plant extracts. The culture medium was considered as the control. All the
experiments were carried out in three replicates. The cell density was estimated by flow cytometer at 0,
12, 24, 48, 72 and 96 h, respectively.

2.4. Measurement of Photosynthetic Efficiency and Chlorophyll-a Content

The performance of photosystem II (PSII) was determined by the Handy Plant Efficiency Analyzer
apparatus (Handy PEA, Hansatech Instruments, Pentney, UK). The samples were adapted to the
darkness for 20 min at room temperature before measurement. The fast phase gave rise to the “O-J-I-P”
(O: initial fluorescence value, J: fluorescence value in 2 ms, I: fluorescence value in 30 ms, P: maximum
fluorescence value) fluorescence transients within the recordation of 3 s (Table 1). The fluorescence
transients were used to measure the photochemical quantum yield of PSII and the electron transport
properties within PSII. The selected parameters of fluorescence transients (including Fv/Fm, ABS/RC,
TR0/RC, ET0/RC, DI0/RC, and PI) were calculated from the original date using the formula based
on previous studies [40–42]. The photosynthetic apparatus was altered under stress conditions,
as assessed by the JIP-test (the fluorescence analysis based on the O-J-I-P curve, for reviews, see [40–43]).
Chlorophyll-a content was measured spectrophotometrically after extraction in 90% acetone at 4 ◦C
overnight as described by Lin et al. [44].

Table 1. The selected parameters of fluorescence transients.

Parameter Definition

Fv/Fm Maximum photochemical efficiency of PSII
ABS/RC Number of QA reducing reaction centers per PSII antenna chlorophyll
TR0/RC Maximum trapped exaction flux per PSII
ET0/RC Electron transport from QA to QB per PSII reaction center
DI0/RC Heat dissipation per PSII reaction center

PI Performance index

2.5. TEM Analysis of the Cell Ultrastructure

The algae solution of the control and the experimental groups (1 and 4 mg/mL) was collected
after 48 h and fixed in 0.1 M PBS containing 2.5% glutaraldehyde (v/v) at 4 ◦C for 2–4 h. The cells
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were harvested and 0.1 M PBS was added containing 1% osmium tetroxide for post-fixation at room
temperature for 2 h. Then, the cells were dehydrated with a graded alcohol series (50%, 70%, 80%, 90%,
95% and 100%) for 15 min each, followed by 100% acetone (15 min × 3). The samples were embedded
in the 812 embedding medium, sliced at 60–80 nm thickness with an ultramicrotome (Lecia EM UC7,
Vienna, Austria) and stained with uranium-lead stains (2% uranyl acetate and 2% lead citrate). Finally,
the cell ultrastructure was observed using TEM with 0.144-nm lattice resolution and 0.33-nm point
resolution (Hitachi 7700, Tokyo, Japan).

2.6. Analysis of the Main Compounds of C. rotundus Extracts

The main compounds of C. rotundus extracts were analyzed using ultra-high-performance liquid
chromatography (Waters Acquity UPLC H-Class, Milford, MA, USA) tandem time-of-flight mass
spectrometer (Waters Xevo G2-S tof, Milford, MA, USA) (UPLC-HRMS). The chromatographic column
Acquity UPLC BEH C18, 2.1 mm × 50 mm, 1.7 µm was used to separate compounds. The column
temperature was set at 45 ◦C, the injection volume was 1 µL, and the flow rate was 0.40 mL/min.
The mobile phase comprised acetonitrile (A) and water containing 0.1% formic acid (B). The gradient
elution procedures were as follows: 0–2 min, 3–10% (A); 2–6 min, 10–50% (A); 6–8 min, 50–80% (A);
8–11 min, 80–95% (A); 11–12 min, 95% (A); 12–13 min, 95–3% (A); 13–15 min, 3% (A). Electron spray
ionization was used for the high-resolution mass spectrum (HRMS) in positive ion and negative
ion mode, respectively. The temperature of the ion source was 120 ◦C. The other MS parameters
were set as follows: the capillary voltage was 2.5 kV, the cone voltage was 25 V, the desolvation gas
temperature was 400 ◦C, the desolvation gas flow was 1000 L/h, and the scanning pattern was MSE.
The chemical information of different components was downloaded from the National Center for
Biotechnology Information, the U.S. National Library of Medicine (https://pubchem.ncbi.nlm.nih.gov,
Bethesda, MD, USA).

2.7. Reagents and Algal Cultures

To understand the dose-response of algicidal effect, 1.6 g standard substances of quinic acid (>98%,
Sigma-Aldrich Shanghai Trading Co., Ltd., Shanghai, China) were solubilized in 1 L culture medium
to prepare a stock solution. Then, the stock solution, culture medium and 1 mL algae suspension were
added into flasks (250 mL) and diluted to 100 mL (final algal concentration was 2.5 × 105 cells/mL) at
final concentrations of quinic acid solution: 0.05, 0.1, 0.2, 0.4, 0.8, and 1.6 mg/mL. The experimental
conditions were the same as the co-culture of C. rotundus extracts and P. globosa.

2.8. Statistical Analyses

The cell density was estimated after homogenization using a flow cytometer (BD Accuri C6,
Franklin Lakes, NJ, USA). The inhibition rate of C. rotundus aqueous extracts (IRCr) or quinic acid
(IRqa) on algal growth was estimated by the inhibition rate of two algicidal substances using the
following formula:

IR(%) =

(
1−

N
N0

)
× 100

where N0 represents the cell density in the control groups and N represents the cell density in the
treatment groups.

The differences among the groups were assessed by one-way analysis of variance (ANOVA)
analysis, followed by Duncan’s test (p < 0.05) [45]. EC50 was estimated by the Probit analysis based
on the IR values. The graphs were constructed using Origin 9.0 (Origin Lab Corporation, Microcal,
MA, USA).

https://pubchem.ncbi.nlm.nih.gov
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3. Results

3.1. Effect of C. rotundus Extracts on Algal Growth and Chlorophyll-a Content

The treatment groups with adding C. rotundus aqueous extracts exhibited various inhibitions on
the growth of P. globosa during the experimental period. The concentration of 4 mg/mL exhibited the
highest IRCr of algal growth at 12 and 24 h of exposure. The IRCr of 73.15%, 72.80%, and 81.22% in the
treatment groups of 4, 8, and 16 mg/mL, respectively, indicated significantly higher IRCr than that in
the 1 and 2 mg/mL treatment groups (p < 0.05). These effects were noted at 48 h, and the IRCr increased
continuously in the following 48 h. The 16 mg/mL treatment group showed a profound inhibition
in the growth of P. globosa compared to the other treatment groups and reached the maximum IRCr

(98.54%) at 96 h (Figure 1a).
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Figure 1. Inhibitory effect of C. rotundus aqueous extracts on P. globosa growth (a) and chlorophyll-a
content (b). The data are presented as mean ± standard deviation (n = 4). Different letters indicated
statistically significant differences among different groups at the same experimental time (p < 0.05).

At the beginning of the 24 h, the chlorophyll-a content of the control and all treatment groups
increased over time, albeit without a significant difference among these groups at the same sampling
time (p > 0.05). Following 48 h of exposure to aqueous extracts, the chlorophyll-a content of the
concentrations of 4, 8, and 16 mg/mL was significantly lower than that in the control and the 1 and
2 mg/mL groups (p < 0.05). The control groups reached the maximum content (1.29 mg/L) at 96 h,
which was significantly higher than that in the other treatment groups (p < 0.05) (Figure 1b).

3.2. Inhibition of Algal Photosynthetic Efficiency

The fluorescence intensity of the control groups and the 1 and 2 mg/mL treatment groups increased
in a time-dependent manner and that in the control groups grew higher than the two treatment groups
during the experimental period. The fluorescence intensity of the control and all treatment groups
increased variably at 12 h, whereas that of the 4, 8, and 16 mg/mL treatment groups was lower than
that of the control and the 1 and 2 mg/mL treatment groups. After 24 h of cultivation, the O-J, J-I,
and I-P phases of the treatment groups (4, 8, and 16 mg/mL) were indistinguishable (Figure 2).

The Fv/Fm values of the control and low treatment groups (1 and 2 mg/mL) were about 0.7
during the experiment, whereas that of the other treatments decreased to <0.6 following 24-h exposure.
The Fv/Fm values of 8 and 16 mg/mL continued to decline in the following experimental period,
while the values of PI declined more sharply than those of Fv/Fm, indicating that PI could be more
sensitive to the changes in the photosynthetic apparatus (Figure 3a,b). Overall, the high treatment group
(8 and 16 mg/mL) demonstrated low Fv/Fm values, indicating a severe disruption in photosynthesis.
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phase (O: initial fluorescence value, J: fluorescence value in 2 ms, I: fluorescence value in 30 ms, P:
maximum fluorescence value) at 0, 12, 24, 48, 72 and 96 h, respectively (a–f). The data are presented as
mean values (n = 4).

The effect of C. rotundus aqueous extracts on the microalgae PSII reaction center (RC) was analyzed
based on parameters, such as ABS/RC, TR0/RC, ET0/RC, and DI0/RC. The parameters (ABS/RC, TR0/RC,
and DI0/RC) of the control and the treatment groups did not show any significant differences (p > 0.05)
in the initial 12-h period. Subsequently, the values of ABS/RC, DI0/RC, and TR0/RC of the treatment
groups (4, 8, and 16 mg/mL) increased significantly as compared to the control and the other treatment
groups (p < 0.05), while the ET0/RC values of the treatment groups (4, 8 and 16 mg/mL) decreased
significantly as compared to the control and the other treatment groups (p < 0.05) (Figure 3c–f).

3.3. Ultrastructure of the Test Algae

The control samples exhibited almost no intracellular substances and most of the cells were
healthy (Figure 4a). The cell membrane of the individual cell was distinct and the intracellular
chloroplasts and nuclei did not exhibit a deformed or damaged structure, in addition the chloroplasts
were tightly arranged together (Figure 4d). Additional intracellular substances were noted in the
1 mg/mL treatment group (Figure 4b). Some individual algal cell membranes were slightly ruptured,
while some vacuolization areas could be found in the cytoplasm (Figure 4e). A high number of
intracellular substances were made evident by TEM (Figure 4c), and the majority of the algal cells did
not possess complete morphology. The intracellular organelles could not be distinguished, and the
intracellular substances had outflowed, indicating necrosis of these cells (Figure 4f). The 1 mg/mL
treatment group caused no or slight damage to part of the algal structure. However, the test algae were
severely damaged by a 48-h treatment at 4 mg/mL, which was associated with significant inhibition.
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Figure 3. The bar graph of JIP-test parameters induced by C. rotundus aqueous extracts on photosynthetic
efficiency (Fv/Fm) (a), performance index (PI) (b) and specific energy fluxes per active PSII reaction
center (including ET0/RC, TR0/RC, DI0/RC and ABS/RC) (c–f). The data are presented as mean ±
standard deviation (n = 4). Different letters indicated statistically significant differences among different
groups at the same experimental time (p < 0.05).

3.4. The Main Compounds in C. rotundus Aqueous Extracts

The total ion chromatogram of the UPLC-HRMS obtained for the C. rotundus was satisfactory
and the independent peaks could be identified distinctly. In terms of HRMS, the total ion current in
response to the main component under the positive ion scanning mode was better than that of the
negative ion mode. However, the response to some of the compounds was preferable in the negative
ion mode; consequently, the structure was identified in both positive and negative modes.
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A total of 17 major peaks were observed in the positive ion mode that corresponds to seven
secondary metabolites (Table 2 and Figure 5a). A total of 21 major peaks were observed in the negative
ion mode and 12 secondary metabolites were identified, of which quinic acid, 3-O-feruloylquinic acid,
3-O-trans-Coumaroylquinic acid, 4-O-trans-coumaroylquinic acid and 5-O-trans-coumaroylquinic acid
exhibited unique chromatographic patterns (Table 2 and Figure 5c). 3-O-feruloylquinic acid was an
ester formed between quinic acid and ferulic acid. 3-, 4-, and 5-O-trans-coumaroylquinic acid were
an ester formed between quinic acid and p-coumaric acid, although the binding sites were different.
These substances were classified as phenolic acids (No.1, 3, 4, 5, 6, 8, 9, 10, and 11), non-protein amino
acids (No. 12), alkaloids (No. 13), coumarins (No. 15), and other compounds (No. 2, 7, and 14).

Table 2. Identification of chemical constituents from C. rotundus aqueous extracts.

No.
Rt

(min)
Main Compounds Formula

Exact Mass (m/z)
Peak Area[M+H]+ [M−H]−

1 0.62 Quinic acid C7H12O6 / 191.0556 138,266

2 2.19
2-hydroxy-2-(2-((4-hydroxy-3-
(hydroxymethyl)but-2-en-1-

yl)oxy)-2-oxoethyl)succinic acid
C11H16O9 / 291.0727 24,200

3 3.06 3-O-trans-coumaroylquinic acid C16H16O8 / 337.0910 22,574
4 3.20 Quinic acid derivative C13H24O9 / 323.1328 31,057
5 3.32 3-O-feruloylquinic acid C16H16O8 / 367.1045 11,735
6 3.54 4-O-trans-coumaroylquinic acid C16H16O8 / 337.0910 13,202

7 3.70
4-(1-carboxy-2-(3,4-

dihydroxyphenyl)ethoxy)-2-
hydroxy-4-oxobutanoic acid

C13H14O9 / 313.0544 17,665

8 3.90 5-O-trans-coumaroylquinic acid C16H16O8 / 337.0910 2142
9 3.99 trans-p-coumaric acid C9H8O3 165.0543 163.0398 109,235

10 4.02 cis-p- coumaric acid C9H8O3 165.0543 163.0398 2969
11 4.22 Ferulic Acid C10H10O4 195.0647 193.0489 37,364
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Table 2. Cont.

No.
Rt

(min)
Main Compounds Formula

Exact Mass (m/z)
Peak Area[M+H]+ [M−H]−

12 4.27 N-acetyl-5-carboxytryptophan C14H14N2O5 291.0976 289.0808 2253

13 4.80 5,6,7,8-tetrahydroquinazoline-
2,4(1H,3H)-dione C8H10N2O3 183.0777 / 77,655

14 6.36 2-(4- (methoxymethyl)phenyl)
propan-2-ol C11H16O2 181.1224 / 47,605

15 6.92 Toddanone C16H18O5 291.1220 / 88,422

“/” indicates that no compound was identified.
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3.5. Quinic Acid Test for the Algal Growth Assessment

To better understand the algicidal traits of single phenolic acid, standard substances of phenolic
acid with maximal content in the C. rotundus aqueous extracts were used. The concentration of the
component in the extracts can be determined by the peak area, although no strong link was noted
between the concentration and peak area. However, the concentration of the quinic acid could be
compared among the peaks based on the peak area, since similar classes of compounds may possess
similar chemical features and ionization potential [46]. The quinic acid exhibited the largest peak area
(138266) which was prompted to be investigated (Table 2) and the algicidal activity of quinic acid was
tested in the subsequent experiment. The results of the quinic acid test revealed that the IRqa of all the
treatment groups shows no significant difference (p > 0.05) at the 24 and 48 h sampling time points,
and the 0.05 mg/mL treatment group of quinic acid demonstrated a low IRqa in the following time.
A significant difference (p < 0.05) was noted as compared to the results found in the other treatment
groups at the 72 and 96 h sampling time points (Figure 6a). There was no significant difference (p > 0.05)
within the chlorophyll-a content of all groups at 12 h time point, while the control grew over time in
the following time and showed a significant difference (p < 0.05) compared to all treatment groups.
The 0.05 mg/mL treatment group exhibited a higher chlorophyll-a content than other treatment groups
at 72 and 96 h sampling periods and a significant difference (p < 0.05) was noted (Figure 6b). Finally,
the median effective concentration of quinic acid at 96 h was 22 mg/L.
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indicated statistically significant differences among different groups at the same experimental time
(p < 0.05).
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4. Discussion

4.1. Modes of Physiological Progression

Although observing the effect of plant extracts on the algal growth (in terms of inhibition rate) is the
main purpose of this study, the mode of algal physiological progression can help understand the causes
of this phenomenon, providing an insight into modifying the materials and extraction technologies for
field implementation [47,48]. The algicidal substances used against HABs were involved in various
physiological processes, including oxidative damage, interruption of the electron transfer chain of
PSII, cell division inhibition and DNA damage [49,50]. In the present study, the indexes, such as
inhibition rate, chlorophyll-a content, photosynthetic efficiency and changes in the cell integrity and
ultrastructure showed pronounced inhibition when exposed to ≥4 mg/mL C. rotundus aqueous extracts
and the concentration of quinic acid was 0.027 mg/mL in 4 mg/mL C. rotundus aqueous extracts.

The PEA parameters reflect the photosynthetic efficiency, and Fv/Fm is one of the most widely
characterized parameters. The Fv/Fm value is the intuitive parameter reflecting the potential maximum
photosynthetic capacity in response to stress [51]. The present study indicated that the Fv/Fm values
were normal with the exposure of low concentrations of aqueous extracts, but the growth of microalgae
was slightly inhibited, while Fv/Fm values decreased significantly at high concentrations. To elucidate
the action of PSII under the environmental stress, the chlorophyll-a fluorescence transient induction
curves were drawn, which provided insights into the damage of the photosystem [52].

The OJIP curve is a highly efficient method of studying PSII without damaging the cells [53].
The O-J phase is related to the accumulation of the reduced electron acceptors(QA

−), the J-I phase is
related to the complete closure of PSII RC or a QB-quenching mechanism, and the I-P phase is related
to the plastoquinone pool reduction [54,55]. In the present study, the OJIP curve values decreased with
the increased content of C. rotundus aqueous extracts. This phenomenon was essentially consistent
with the previous reports, which showed that the photosynthetic efficiency of Scrippsiella trochoidea was
inhibited by Gracilaria lemaneiformis [56]. Furthermore, the JIP-test parameters reflected the quantum
efficiency of the reaction center (RC) through the trapped energy flux per RC (TR0/RC), heat dissipation
per RC (DI0/RC), electron transport flux per RC (ET0/RC), and energy absorbed per RC (ABS/RC).
Due to the exposure to a high concentration of C. rotundus aqueous extracts, the proportion of RC
per unit area declined gradually, thereby increasing the absorption of light energy for the remaining
active RC (manifested as the increase in ABS/RC). This feature suggested that high concentration
might inactivate the RC or increase the functional PSII antenna size [57,58]. The decline in the RC
increased the excitation energy, which reduced the QA, thereby indicating that the efficiency of the
remaining active RC increased (manifested as the increase in TR0/RC). The reduction energy in the
electron transport chain beyond the QA

− decreased, suggesting that the active RC captured less
energy for electron transport (manifested as the decrease in ET0/RC); moreover, the heat dissipation
increased (manifested as the increase in DI0/RC). Thus, the superfluous energy could be dissipated by
non-photochemical quenching [59,60]. In addition, phenolic acids could hinder chlorophyll-a synthesis
and reduce chlorophyll-a content [61,62]. Overall, the C. rotundus aqueous extracts interfered with
photosynthesis efficiency by reducing its chlorophyll-a content and electron transfer efficiency.

Phenolic acids exhibit cell-permeability features due to their amphiphilic and lipophilic nature [63,64].
Wang et al. [65] and Zhang et al. [66] found that ferulic acid and p-coumaric acid disrupted the cell
membrane integrity of Microcystis aeruginosa, respectively. In the present study, phenolic acids, the main
components of C. rotundus aqueous extracts, penetrate the cells through passive diffusion, disrupt the
cell membrane integrity and damaged the cell structure, leading to the efflux of intracellular material,
including protein and nucleic acids. Oxidative damage induced by phenolic acids, such as vanillic
acid, protocatechuic acid, ferulic acid and caffeic acid, is regarded as the main reason for the inhibitory
effect of some microalgae [67,68]. Previous studies indicated that algicidal substances extracted from
plants also involved relative gene expressions [69]. Shao et al. [70] found that the gene expressions of
Microcystis aeruginosa were regulated and the antioxidant systems were damaged with the exposure of
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pyrogallol. Moreover, some phenolic acids can influence the phycosphere and interrupt the ecological
relationship between microalgae and other microorganisms, thus influencing algal growth, decay and
nutrient cycling [71].

4.2. Algicidal Potential of Phenolic Acids

The use of extracts from different plants to suppress HABs is considered as one of the most
cost-effective and environment-friendly strategies. Numerous natural algicidal substances have been
isolated and identified [20,25,69,72–74]. The majority of the algicidal substances are categorized as
terpenoids, phenolics (flavonoids, tannins and phenolic acids) and nitrogen-containing secondary
metabolites (alkaloids, cyanogenic glycosides and non-protein amino acids) [75], and most of the
studies focused on terpenoids and phenolics [76]. Terpenoids are lipophilic and insoluble in water [64],
among which monoterpenoids and sesquiterpenoids (constituents of volatile oils) are highly volatile
with short retention time in the water [77], limiting the application of terpenoids in the treatment of
HABs. Previous studies reported that flavonoids show strong algicidal activities [78]. Flavonoids are
natural pigments (flavonols are colorless) [79,80] with low water solubility [81] and render difficultly in
determining the effect of shading interference on algal growth. The algicidal effect of tannins was also
explored [82]. Since tannins can form complexes with proteins, starches, and digestive enzymes [83],
their usage for HABs should be limited.

Phenolic acids are widely distributed allelopathic chemicals in higher plants [84,85]; however,
the inhibitory potential of phenolic acids on the growth of P. globosa has been rarely reported. Previous
studies showed that the allelopathic potential of phenolic acids is the result of phenolic acids in
the plants, and the allelopathic effect of single phenolic acid is not distinct [86,87]. The study by
Nakai et al. [88] demonstrated that quinic acid, p-coumaric acid and ferulic acid (10 mg/L) had no
inhibitory effect on M. aeruginosa, respectively. In the present study, no significant inhibitory effect was
noted concerning the growth of three dinoflagellates, Scrippsiella trochoidea, Alexandrium tamarense and
Karenia mikimotoi, following the exposure to quinic acid (concentration range of 0.1, 0.2, 0.3, 0.4 and
0.5 mg/mL) (data not shown). However, quinic acid exerted a specific inhibitory effect on the growth of
P. globosa. This phenomenon could be attributed to the fact that the algicidal effect is species dependent.
The concentration of quinic acid in the 4 mg/mL C. rotundus aqueous extracts was approximately the
EC50–96h value, but the inhibition rate of the extracts was >90%, indicating that other components
might take effect. To the best of our knowledge, 3-, 4-, and 5-O-trans-coumaroylquinic acids were
first reported in the C. rotundus aqueous extracts. Therefore, the potential to inhibit HABs should be
explored further.

4.3. Bioavailability of Phenolic Compounds

The ideal algicidal substances can be readily degraded in specific environments, can be easily
gained in nature and, can exhibit potent inhibitory effect to target microalgae. Thus, the ideal algicidal
substances exhibit limited or low toxicity to other microalgae of the phytoplankton communities, as well
as animals [49,89]. The bioavailability of phenolic compounds can be realized through the utilization
pattern of microalgae. In the complex aqueous environment, phenolic compounds can be mineralized
into carbon dioxide or converted into a structurally similar molecule through biotransformation,
and other degradative mechanisms [90,91]. Phenolic compounds are also potential alternative carbon
sources required for the growth of microalgae [92,93]. The co-culture experiment by Escapa et al. [94]
showed that Chlorella sorokiniana removes salicylic acid; additionally, the biomass of microalgae was
stimulated. In the present study, monocyclic phenolic acid and phenolic acid ester were the main
components of the C. rotundus aqueous extracts, which benefited to the bioavailability of microalgae
due to the low molecular weight because the persistence of benzene series decrease with the decrease
in molecular weight [95]. In addition, the use of C. rotundus aqueous extracts confronts the problem of
dilution of the allelochemical molecules in the field, and thus degradation by microorganisms or even
inefficiency of their bioactivity. However, excess amounts of extracts to water are not recommended
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because it might cause a risk of secondary pollution. Huang et al. [96] developed continuous-release
beads that contain algicidal substances released continually during the bloom.

This study explored the algicidal mechanism of C. rotundus aqueous extracts and discussed
the bioavailability of phenolic compounds, facilitating the extraction and utilization of secondary
metabolites from marine plants.

5. Conclusions

The aqueous extracts of C. rotundus exhibited a significant inhibitory effect on the growth of
P. globosa with increasing inhibition rate and decreasing chlorophyll-a content. The variables comprising
photosynthetic efficiency and cell integrity were observed based on the parameters of the OJIP curve,
JIP-test parameters and the images of the cell ultrastructure, respectively. UPLC-HRMS analysis
revealed that phenolic acids could be major algicidal active components. The standard substance
quinic acid was tested, and it was found that the algicidal effect of single phenolic acid was limited;
the other components in the extracts might contribute to the algicidal effect. Furthermore, the impact
of C. rotundus aqueous extracts on other species is unknown and should be evaluated with respect to
the ecological risk before practical application in the natural environment. Since the use of C. rotundus
aqueous extracts might confront the bioavailability of microbial species and the dilution in the field,
affecting the algicidal efficiency, more techniques should be developed to prolong the retention time of
the algicidal substances in water.
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