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Abstract: The economy of Pakistan relies on the agricultural sector which mainly depends on the
irrigation water generating from the upper Indus river basin. Mangla watershed is a trans-boundary
basin which shares borders of India and Pakistan, it comprises five major sub-basins, i.e., Jhelum,
Poonch, Kanshi, Neelum and Kunhar. The runoff production of this basin is largely controlled by
snowmelt in combination with the winter precipitation in the upper part of the basin and summer
monsoon. The present study focusses on the application of a statistical downscaling method to
generate future climatic scenarios of climatic trends (temperature and precipitation) in Mangla
watershed. Statistical Downscaling Model (SDSM) was applied to downscale the Hadley Centre
Coupled Model, version 3, Global Climate Model (HadCM3-GCM) predictions of the A2 and B2
emission scenarios. The Soil and Water Assessment Tool (SWAT) hydrological model was used for
the future projected streamflows based on developing climate change scenarios by SDSM. The results
revealed an increasing trend of annual maximum temperature (A2) at the rates of 0.4, 0.7 and 1.2 ◦C
for the periods of 2020s, 2050s and 2080s, respectively. However, a consistent decreasing trend of
temperature was observed at the high-altitude region. Similarly, the annual minimum temperature
exhibited an increasing pattern at the rates of 0.3, 0.5 and 0.9 ◦C for the periods of 2020s, 2050s and
2080s, respectively. Furthermore, similar increases were observed for annual precipitation at the rates
of 6%, 10%, and 19% during 2020, 2050 and 2080, respectively, for the whole watershed. Significant
increasing precipitation trends in the future (2080) were observed in Kunhar, Neelum, Poonch and
Kanshi sub-basins at the rates of 16%, 11%, 13% and 59%, respectively. Consequently, increased annual
streamflow in the future at the rate of 15% was observed attributing to an increased temperature
for snow melting in Mangla watershed. The similar increasing streamflow trend is consistent with
the seasonal trends in terms of winter (16%), spring (19%) and summer (20%); however, autumn
exhibited decreasing trend for all periods.
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1. Introduction

Upper Indus River Basin (UIRB) serves as a main source of irrigation water for agricultural
sector, which originates from the mountainous areas of Hindukush-Karakoram-Himalaya (HKH)
range. Several studies highlighted the impacts of climate change over Upper Indus Basin (UIB) [1–5],
for instance, the scientific assessment by the IPCC regarding predicted globally increased temperature
between 1.5 and 4.5 ◦C in the next century with a doubling of the CO2 concentration in the atmosphere [6].
The global climate change created a negative impact on the precipitation patterns, which ultimately
declined the runoff on global and regional scale [7]. Such warming trends not only affect the
global circulation patterns which are often simulated and predicted using the General Circulation
Models (GCM) but also directly affect the local climatic conditions by altering the distribution and
characteristics of precipitation and temperature. Hydrological response resulted from the climate
change may have significant impact on existing water resources systems by changing the hydrological
cycle [8]. Therefore, the hydrologic extremes like floods and droughts have the negative impacts on all
watershed [9]. However, planning and organizing of the new water infrastructure is not developed
according to the projected changes of precipitation, temperature and streamflows for an efficient water
resource management.

Recently, several researchers have conducted the studies to analyze the impacts of climate impacts
on natural resources through climate change and hydrological models and have found it as a complex
process [10–16]. However, the output of GCMs cannot be used directly for local impact studies
due to the coarse resolution (250 × 250 km). Many key challenges in the application of GCMs and
hydrological models still exist [9]. Therefore, downscaling techniques have emerged as a means of
deriving local-scale weather from regional-scale atmospheric predictor variables [17–19].

Many downscaling techniques are available in literature for the conversion of GCM outputs
into daily meteorological variables. For instance, Mascaro et al. [12] stated that the efficacy of the
downscaling techniques used to analyze the future climate variability depends upon the characteristics
of the study area and data availability. Two main approaches, i.e., dynamic downscaling and statistical
downscaling, are generally used to derive information from global climate scenarios at local or regional
scale. Dynamic downscaling (DD) involves a nested regional climate model (RCM) and is suitable in
the regions with complex topography and highly heterogeneous land covers [20]. However, statistical
downscaling techniques develop a statistical link between the GCM’s and variability derived from the
historical time series data on the local level [21,22]. Therefore, compared to other methods, statistical
downscaling approach is relatively easy to use and provide station-scale climate information from the
GCM scenarios [23].

Three types of statistical downscaling techniques were extensively used in previous studies,
i.e., statistical regression methods, weather generators and weather organization systems [24,25]. Therefore,
this method of downscaling is widely utilized in estimation of the anticipated effect under various types
of study scenarios [26]. The main benefit of statistical downscaling is the low cost, facilitate the local level
information under the scenarios of climate and its impacts on the water resources. This method ensembles
the scenarios of climate which permit uncertainty. Among the large scale downscaling approach, Statistical
Downscaling Model (SDSM) has already been used in many studies round the world because of its
universal application in analyzing the climate change impacts [27–33].

Therefore, also, the performance of the statistical downscaling model is evaluated in simulating
the daily temperature and precipitation time series data.

We generate runoff simulations in the Mangla watershed using the Soil and Water Assessment
Tool (SWAT), for the period 2001 to 2010. The present study seeks to apply SWAT by employing
available observed data collected from five major sub-basins, i.e., Jhelum, Poonch, Kanshi, Neelum
and Kunhar as basic input to SWAT. Moreover, the present study aims to investigate the feasibility
correlation of maximum and minimum temperature and precipitation at a local scale with large scale
atmospheric variables using statistical downscaling method. Moreover, future climate change scenarios
of temperature and precipitation on monthly, seasonal and annual basis were developed under outputs
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of HadCM3, GCM model emission scenarios (A2 and B2), which were utilized for analyzing the
influence of climate parameters on a trans-boundary Mangla watershed. The core objective of the work
is to understand the effect of temperature and precipitation on the fluctuation of runoff generated
in Mangla watershed. The river runoff being highly sensitive to precipitation and temperature in
the form of direct (precipitation) and delayed (snowmelt) runoff indicates direct impact of changing
climate. We present the combination of a degree-day model SWAT and SDSM for the first time within
Mangla watershed. It is expected that our findings will make an insightful contribution to directly
inform the development of sustainable water use policies, in the context of a changing climate and
improved water resources management.

2. Data and Methodology

2.1. Study Area

The Jhelum river basin is a trans-boundary watershed shared by Pakistan and India. The basin
originates from Verinag-Spring situated on the southern slopes of the Himalaya Mountains ranges at
the base of Pir-Panjal ranges in Jammu and Kashmir with a drainage area of 33,425 km2 at Mangla dam.
Around 55% area of this basin lies in Indian held Kashmir while the rest of the area is controlled by the
government of Pakistan marked as Azad Kashmir. The total storage capacity of this Mangla dam is
5.8 MAF. The primary purpose of this dam is to irrigate the large agricultural lands of the Punjab and
Sindh provinces. However, the hydropower is also generated as a by-product. There are five major
sub-basins of Mangla watershed, i.e., Jhelum, Poonch, Kanshi, Neelum, and Kunhar drain into the Mangla
reservoir (Figure 1). The tributaries of Jhelum, Neelum and Kunhar rivers join the mainstream at Domel,
Muzaffarabad and Kohala Bridge, respectively (Figure 1). The Jhelum, Poonch and Kanshi rivers enter
the Mangla reservoir in the Mirpur district. In the southeast, Mangla watershed shares borders between
India and Pakistan. The runoff production of this basin mainly dictates by snowmelt and the winter
precipitation in the upper part of the basin and monsoon precipitation affects the lower part of the basin.
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2.2. Data and Analysis

The datasets used for runoff simulation to analyze the current and future climate change impacts
on streamflow in Mangla watershed are shown in Table 1.

Table 1. Type of data used in the present study and their source.

Data Type Source Spatial/Temporal
Resolution Description/Period of Record

Topography USGS National Elevation Dataset 90 × 90 m DEM (Elevation)

Land use data European Space Agency (ESA) Global
Land Cover http://ionia1.esrin.esa.int/ 300 × 300 m Classified land use such as forest,

agriculture, crops, water, etc.

Soil data FAO–International Soil Reference and
Information Centre (ISRIC) 1 km

Classified soil and physical
properties as sand, silt clay bulk
density, etc.

Climate data
Pakistan Meteorological Department
(PMD), Water and Power
Development Authority (WAPDA)

Daily Precipitation, Temperature, solar
radiation, wind speed (1961–2010)

Hydrological data Water and Power Development
Authority (WAPDA) Daily Stream flows (1961–2010)

Climate Scenario Data
(GCM-Had CM3)

Canadian Climate Scenarios Network
(http://www.cics.uvic.ca/scenarios/
sdsm/select.cgi)

2.5◦ latitude 3.75◦

longitude Daily 1961–2099

2.2.1. Climate Change Scenarios (Predictors)

Climate change scenarios were generated from the GCM outputs. These scenarios were developed
for the climate (minimum, maximum temperature and precipitation) variables. The outcomes from the
Hadley Centre Coupled Model, version 3 (HadCM3)—Global Climate Models (GCM) model for the
A2 (high emission scenarios) and B2 (low emission scenarios) have also been utilized to estimate the
future scenarios. Predictor variables provide daily information at large-scale obtained from HadCM3
outputs at 2.5◦ latitude 3.75◦ longitude gridded scale (http://ccds-dscc.ec.gc.ca/?page=pred-hadcm3).

2.2.2. Climate Station Data (Predictands)

Predictands are the observed climatic variables, i.e., temperature and precipitation. Daily maximum
and minimum temperature data of thirteen (13) stations and fifteen (15) stations for precipitation data in
the study area were used as predictands as given in Table 2. The data from these stations were collected
from Surface water Hydrology Project (SWHP), WAPDA and Pakistan Meteorological Department (PMD)
for the period 1961–2010.

Table 2. Climatic stations in Mangla watershed.

Sr. No. Station Lat
(degree)

Lon
(degree)

Elevation
(m) Catchment Max. Temp

(◦C)
Min. Temp

(◦C)
Precipitation

(mm)

1 Murree 33.9 73.4 2206 Jhelum 17.3 8.9 1782
2 Bagh 34.0 73.8 1067 Jhelum 25.1 12.0 1482
3 Mangla 33.1 73.6 282 Jhelum 29.7 17.1 867
4 Gujar Khan 33.3 73.3 457 Kanshi 28.5 14.9 825
5 Kallar 33.4 73.4 518 Kanshi 28.5 16.4 973
6 Balakot 34.6 73.4 995.5 Kunhar 25.1 12.2 1623
7 Naran 34.9 73.7 2363 Kunhar 12.0 2.5 1793
8 Astore 35.2 74.5 2168 Neelum 15.7 4.1 488
9 Garidopatta 34.2 73.6 813.5 Neelum 26.0 12.5 1413
10 Muzaffarabad 34.4 73.5 702 Neelum 27.7 13.6 1484
11 Kotli 33.5 73.9 610 Poonch 28.4 15.3 1219
12 Palandri 33.7 73.7 1402 Poonch 22.9 12.1 1390
13 Rawalakot 34.0 74.0 1677 Poonch 20.6 9.2 1369
14 Khandar 33.5 74.1 1067 Poonch - - 1062
15 Sehr kakota 33.7 74.0 1125 Poonch - - 1342

http://ionia1.esrin.esa.int/
http://www.cics.uvic.ca/scenarios/sdsm/select.cgi
http://www.cics.uvic.ca/scenarios/sdsm/select.cgi
http://ccds-dscc.ec.gc.ca/?page=pred-hadcm3
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2.2.3. Hydrological Data

Daily streamflow data for the period of 50 years (1961–2010) at 9 stations was collected
from Water and Power Development Authority-Surface Water Hydrology Project (WAPDA-SWHP).
The geographical locations of the stream gauge stations along with their respective sub-basins are
presented in Table 3. The mean annual streamflow at low-altitude stations was higher as compared
to the high-altitude stations. The highest mean annual flow was observed in the months of August
and June at low and high-altitude stations, respectively. At the low-altitude station, the source of
stream flow is monsoon rainfalls during the months of June to August. Whereas, high-altitude stations
affected by winter snow and glacier melt during March to May. Three sub-basins (Jhelum, Poonch,
Kanshi) drain into Mangla reservoir with mean annual inflow of 967 m3 s−1. (1961–2010).

Table 3. Stream gauges installed in Mangla watershed.

Sr. No. Station Latitude
(degree)

Longitude
(degree)

Elevation
(m)

Basin Area
(Km2)

River
Name

Mean Annual
(Cumec m3/s)

1 Naran 34.9 73.7 2400 1107 Kunhar 46
2 G-Habibullah 34.4 73.4 820 2433 Kunhar 102
3 Muzaffarabad 34.4 73.5 670 7412 Neelum 325
4 Chinari 34.2 73.8 1070 13,652 Jhelum 300
5 Domel 34.4 73.5 701 14,396 Jhelum 328
6 Kohala 34.1 73.5 560 24,464 Jhelum 776
7 Azad Pattan 33.7 73.6 485 25,967 Jhelum 1239
8 Palote 33.2 73.4 400 867 Kanshi 6
9 Kotli 33.5 73.9 530 3210 Poonch 128

2.2.4. Land Use and Soil Data

The land use maps were prepared by the processing of Global Land Cover data to identify the
major land use classes in the watershed. The map shows 8 different types of land cover (Figure 2):
45% of the basin is covered by irrigated and rain-fed cropland, 20% by mosaic grassland, 6% by
bare soil, and about 4.5% by Water, Snow and Ice. The soil Map was acquired from IRSIC, Global
soil classes developed by the UNO agency Food and Agriculture Organization (FAO). Two major
classes of soil were identified as the loamy non-calcareous (27%) and rock outcrop with mainly
loamy partly gravelly soils (50%) in the watershed. The SWAT uses Agricultural Land-Close-grown
(AGLC), Forest-Deciduous (FRSD), Forest-Evergreen (FRSE), Forest-Mixed (FRST), Pasture (PAST),
Range-Grasses (RNGE), Urbanization (URBN) and Water as shown in Figure 2a.Water 2020, 12, x FOR PEER REVIEW 6 of 23 
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Figure 2. Landuse (a) and soil (b) classes in Mangla basin.
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2.2.5. Statistical Downscaling Model (SDSM)

This model was applied to estimate downscale the large-scale GCM data at local scale. SDSM was
integrated with multiple regression and stochastic downscaling techniques [19,34], previously used in
the many studies worldwide [35–37]. The model employs an ordinary least squared algorithm for the
estimation of parameters of the regression equation. In downscaling the temperature data, a direct link
among large-scale predictors and predictand at local level was assumed.

In this technique, most relevant predictor variables were selected by the approach of correlation
matrix. The scatter plots were also used between predictors and prediction variables. SDSM model was set
to consider the variance inflation, bias correction and transformation functions for screening [38,39] and the
predictor variables with acceptable correlation value and probability were selected. Identified predictor
variables for the selected stations and predictand variables are presented in Table 4. This calibration
and validation of SDSM relied on the outcomes from the second step. The selection of the predictor
parameters utilized the base of the National Centre for Environmental protection (NCEP) data for the
selected gridded box. After that, links between the specific and selected predictor variables are estimated.
From this, multiple linear regression equation is determined.

Table 4. Selected predictor variables with their respective predictand.

Station Precipitation Maximum Temperature Minimum Temperature

Kotli shum, p5_z, p8_f, p850, rhum p500, temp p500, temp, shum
Rawalakot temp, p850, mslps, p5_f, r850 p500, temp p500, temp, shum
Plandri shum, p8_f, p850, p5_f, p_z, p5_u p500, temp p500, temp, shum
Khandar temp, shum, p5_z, rhum, mslp, p_v, p_zh, p5_v - -
Sehr Kokata temp, shum, rhum, p5_f, p5_u - -
Murree p5-z, p8-f, r850, rhum, shum p500, temp p500, temp, shum
Bagh p5-f, p5-u, p5th, shum p500, temp p500, temp, shum
Gujar Khan mslp, p5-f, p5th, 9850, shum, temp p500, temp p500, temp, shum
Kallar mslp, p5-u, p5th, r500, shum p500, temp p500, temp, shum
Mangla mslp, p5th, p850 shum p500, temp p500, temp, shum
Balakot p5-f, p5th, p8-f, r850, rhum, shum p500, temp, shum p500, temp
Muzaffarabad mslp, p5-v, p850, r850, shum p500, temp p500, temp, shum
Naran p-v, p500, p5th, shum, temp p500, temp, shum p500, temp, shum
Astore p-f, p-u, p-v, p8-f, rhum, temp p500, temp, shum p500, temp, shum
Garidopatta mslp, p-f, p-u, p-v, p8-f, rhum, temp p500, temp, shum p500, temp, shum

Mslp = mean sea level pressure; rhum= near surface relative humidity; shum = surface specific humidity; p5_z = 500 hpa
voritcity; p8_f = 850hpa airflow strength; r850 = relative humidity at 850 hpa; r500 = relative humidity at 500 hpa;
p5-f = 850 hpa airflow strength; p5-v= 500 hp meriodinal velocity; p5th = 500 hpa wind direction; p-f = surface air flow
strength; p-u = surface zonal velocity; p-v = surface meridian velocity; temp= mean temperature at 2 m.

In this investigation, the calibration was applied for the base period of 30 years (1961–1990)
for most of the stations. The monthly based model used to investigate the temporal variation on
the monthly basis. From 1991–2001, ten years of simulation were taken from the validation process.
Three types of climate data set were utilized through the H3A2 and H3B2 scenarios for validation of
SDSM model. Eight evaluation objective functions were applied in the simulation series as average
(µ), coefficient of variation (Cv), skewness (Cs), R square (R2), Root Mean Square Error (RMSE),
Nash-Sutcliffe Coefficient (Nr), Percent bias (PBIAS) and Mean Absolutely Error (MAE) to qualify the
simulation results of temperature and precipitation series in each station as shown in Table 5.

It was found that R2 values are higher than 0.27 for the precipitation time series on daily basis.
These values are high as compared to the previous studies [12,24,40]. Such subject of downscaling is
very difficult for the daily precipitation due to stochastic processes. It could be seen that precipitation
was underestimated (PBIAS was up to −10) for all three sets of atmospheric data. Results indicated that
R square values between simulated and observed temperature for the investigated weather stations
increase above 90% while for downscaled precipitation are lower than 40%.
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Table 5. Comparison of determination coefficient (R2), Root Mean Square Error (RMSE), Nash-Sutcliffe
Coefficient (Nr), Percent bias (PBIAS) and Mean Absolutely Error (MAE) between observed and
simulated results of maximum temperature, minimum temperature and precipitation for each station
in the validation period (1991–2000).

Variable R2 RMSE (mm or
◦C/Month) Nr PBIAS (%) MAE (mm or

◦C/Month)

Range Mean Range Mean Range Mean Range Mean Range Mean

Precipitation
NCEP 0.17–0.6 0.36 46–172 93 −0.1–0.6 0.25 −11.1–29 −7.8 32–121 66
H3A2 0.17–0.4 0.27 47–171 105 −0.8–0.3 0.25 −10.8–26 −4.7 33–125 77
H3B2 0.11–0.5 0.28 46–167 103 −0.6–0.3 0.15 −10.4–14 −10 32–120 72

Max. Temperature
NCEP 0.88–0.97 0.93 1.5–3.4 2.2 0.7–1 0.92 −11–3.5 −2.4 1.2–2.8 1.7
H3A2 0.87–0.96 0.92 1.7–3.9 2.3 0.7–1 0.93 12–3.9 −1.4 1.3–3.2 1.7
H3B2 0.87–0.95 0.91 1.7–3.7 2.4 0.7–1 0.89 11–4.2 −0.7 1.3–3 1.8

Min. Temperature
NCEP 0.90–.98 0.95 0.9–2.6 0.92 0.86–0.98 0.92 40–14 −2.1 0.7–2.1 1.4
H3A2 0.92–0.97 0.94 1.2–2.8 1.9 0.86–0.97 0.93 18–8 −0.1 1–2.2 1.5
H3B2 0.92–0.96 0.94 1.4–2.9 2 0.87–0.96 0.92 15.3–9.1 1 1.1–2.3 1.5

2.3. Hydrological Model

A semi-distributed (SWAT) model was used to simulate the stream flows of Mangla basin. This
system application is integrated with the geographic information system (GIS), which consists of the
various spatial data sets included soil type, land use pattern and topographic features. This model
is efficient and uses the easily available datasets, enabling users to investigate the long run impacts.
Furthermore, it is the physically based, long term series and efficient hydrological model [41]. This
model is categorized as semi-distributed model because it divides sub-watersheds into further small
units called hydrological response units (HRUs). The hydrologic response unit (HRUs) consists of
homogeneous land cover, soil characteristics and management practices. Further subdivisions of
sub-basins into HRUs enable to account for the impact of different land cover types, management
practices and soil characteristics on the hydrologic cycle of any basin. The model generates the daily
datasets of the climate variables using the arithmetical techniques which are derivative from the
average monthly datasets. The basic input data for SWAT model run include the digital elevation
model (DEM), soil map, soil properties, land use cover map, climatological variables (precipitation
and temperature) and hydrological (streamflow) data.

2.4. Model Evaluation

For each station, the reliability of the model is assessed using different model performance criteria.
The criteria used include the determination coefficient (R2), Nash-Sutcliffe Coefficient (Nr) and Percent
bias (PBIAS). Analysis is common, and reference is made to applications in [15]. Each of the criteria is
briefly described below:

• Nash-Sutcliffe Coefficient (Nr)

Nr = 1−

∑N
i=1(Si −Oi)

2∑N
i=1

(
Oi −O

)2 (1)

• Percent bias (PBIAS)

PBIAS =

∑N
i=1(Si −Oi)

O
(2)

where N is the number of observations; Si and Oi are the simulated and corresponding observed
values at time i; Ō is the average observation.
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2.5. Time Scales

Three time-series were selected, i.e., 2020s (2011–2040), 2050s (2041–2070) and 2080s (2071–2099)
to present the simulated climatic projections. The future climate change scenarios were also developed
at monthly, seasonal and annual scales. Different seasons of Mangla watershed are defined as
follows: Winter (December–February), spring (March–May), summer (June–August) and autumn
(September–November). Annual mean is the average of January to December monthly means.

3. Results

3.1. Model Simulation

SWAT was simulated by using the precipitation and temperature data for the period of 1 January
1996 to 31 December 2010. During calibration procedure, some other parameters also need to be adjusted
to achieve GOF, which are given in Table 6. The observed and simulated values were plotted against
each other in order to determine the goodness-of-fit (GOF) criterion of coefficient of determination
(R2) for runoff. The (R2) values of rivers Jhelum, Poonch and Kanshi for daily time span 2001–2005
were 0.836, 0.715 and 0.804, and for 2006–2010 were 0.819, 0.789 and 0.826 as given in Table 6. Figure 3
shows that almost all the parameter values produce similar model efficiency. The main purpose of
these plots was to demonstrate the parameter sensitivity as well as distribution of sampling points.
The daily observed and simulated hydrographs during calibration periods at Azad Pattan, Kotli and
Palote stations for Jhelum, Poonch and Kanshi rivers, respectively are shown in Figure 4.

Table 6. Model calibration and verification statistics for daily and monthly stream flow comparison.

Objective
Function

Rivers

Jhelum Poonch Kanshi

Cal-P1 Cal-P2 Val Cal-P1 Cal-P2 Val Cal-P1 Cal-P2 Val

Daily Simulation
R2 0.836 0.819 0.752 0.883 0.810 0.710 0.804 0.826 0.697
NSE 0.83 0.79 0.62 0.837 0.77 0.68 0.85 0.81 0.74
PBIAS 3.8 4.6 7.3 9.1 −2.1 5.8 7.2 4.5 −8.2

Monthly Simulation
R2 0.893 0.871 0.826 0.929 0.941 0.902 0.963 0.893 0.894
NSE 0.69 0.823 0.729 0.857 0.871 0.93 0.95 0.89 0.786
PBIAS −0.93 5.07 −5.6 10.12 0.05 7.46 5.54 3.64 5.13

Cal-P1 = Calibration Period 1st (1996–2010), Cal-P2 = Calibration Period 2nd (2006–2010). Val = Validation for the
period (2001–2005).

The model was validated by comparing simulated and observed runoff hydrographs at the Azad
Pattan, Kotli and Palote stations for Jhelum, Poonch and Kanshi rivers, respectively for five years
as shown in Figure 5. The validation was carried out for the years 2001 to 2005. It was observed
that the model simulated streamflows were consistent with the observed streamflows. The values of
parameters for precipitation lapse rate (PLAPS) and Surface runoff lag time (SURLAG) at a given range
of the model. Several simulation trials were run to calibrate the model successfully during calibration
procedure, some other parameters also need to be adjusted to achieve GOF, which are given in Table 7.

3.2. Generation of Future Climate Change Scenarios

In this study, the duration from 1961–1990 was considered as a base period. The similar time
period was used in various studies at a global and regional scale. The future scenario was arranged
into three intervals as 2020s (2011–2040), 2050s (2041–2070) and 2080s (2071–2099). From the obtained
data from H3A2 and H3B2. The climate variability was assessed using the above-mentioned base
period for the entire Mangla catchment.
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3.2.1. Downscaling Daily Temperature under Future Emission Scenarios

It was observed that under scenario A2, the annual maximum temperature would increase for the
duration of the 2020s, 2050s and 2080s in the (A2) emission scenarios as shown in Figure 5. The results
proposed an increasing temperature pattern at the rates of 0.4, 0.7 and 1.2 ◦C during three future
time intervals, respectively. Some of the high-altitude sub-basins exhibited decreasing temperature;
however, an increasing trend was observed at low elevated basins. Seasonal Tmax would be increased
in all seasons by different magnitude in the whole basin. All sub-basins have the decreasing trend of
winter Tmax under both scenarios as shown in Figure 6. The decreasing trends in Summer Tmax were
also observed for the Kunhar, Neelum and Poonch basins. Highest positive changes were seen for the
autumn Tmax for all sub-basins under both scenarios.
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Figure 3. Dotty spots exhibit the parameters variability of Soil and Water Assessment Tool (SWAT) during
calibration; x-axis shows values of parameters, while y-axis represents R2 values (upper pan represents
1st calibration period 1996–2000, while, lower pan shows 2nd calibration period 2006–2010). TLAPS
(Temperature lapse rate); PLAPS (Precipitation lapse rate); SFTMP (Snowfall temperature); SMTMP
(Snow melt base temperature); SNOEB (Initial snow water content in elevation band); TIMP (Snow pack
temperature lag factor); SMFMN (Melt factor for snow); SMFMX (Melt factor for snow); SURLAG
(Surface runoff lag time); ALPHA BF (Base flow alpha factor); SOL AWC (Available water capacity);
ESCO (Soil evaporation compensation factor); EPCO (Plant uptake compensation factor).
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Table 7. List of calibrated parameters and their optimized value.

Parameter Description Range

Optimized Value of Parameters for Rivers

Jhelum Poonch Kanshi

Cal-P1 Cal-P2 Average Cal-P1 Cal-P2 Average Cal-P1 Cal-P2 Average

TLAPS Temperature lapse rate (◦C/km) 0−10 −3.1 −4.6 −3.85 −5.7 −6 −5.85 −7 −6.3 −6.65
PLAPS Precipitation lapse rate (mm H2O/km) 0,100 13 17 15 9 11 10 8 9 8.5
SFTMP Snowfall temperature (◦C) −5 + 5 3 3 3 2 1 1.5 − − −

SMTMP Snow melt base temperature (◦C) −5 + 5 2.1 1.7 1.9 3.1 3.5 3.3 − − −

SNOEB Initial snow water content in elevation band (mm) 0,300 200 190 195 150 150 150 − − −

TIMP Snow pack temperature lag factor 0.01,1 1 1 1 1 1 1 − − −

SMFMN Melt factor for snow (mm H2O/◦C-day) 0,10 3 4 3.5 4.5 4.5 4.5 − − −

SMFMX Melt factor for snow (mm H2O/◦C-day) 0,10 4.2 4 4.1 5 5.3 5.15 − − −

SURLAG Surface runoff lag time (hrs) 0,96 31.3 28.5 29.9 17.2 15.8 16.5 9 7.8 8.4
CN2 Runoff Curve Number 54–85 67 70 68.5 69 70 69.5 65 65 65
SOL K Saturated hydraulic conductivity 0.0 to 2000 0 0
ALPHA BF Base flow alpha factor 0.00 to 1.00 0.0143 0.014 0.01415 0.012 0.012 0.012 0.014 0.014 0.014
SOL AWC Available water capacity 0.0 to 1.00 0 0
ESCO Soil evaporation compensation factor 0.7–1.0 0.95 0.8 0.875 0.85 0.85 0.85 0.7 0.8 0.75
EPCO Plant uptake compensation factor 0.4–0.9 0.7 0.7 0.7 − − − 0.7 0.7 0.7
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Figure 6. The percentage change representing (scenarios-historical period) of seasonal and annual
maximum temperature (compared to base period) in 2020s, 2050s and 2080s under A2 and B2 scenarios
((a,b) Mangla basin; (c,d) Kunhar basin; (e,f) Neelum basin, (g,h) Poonch basin and (i,j) Kanshi basin).

Figure 7 shows the absolute changes of Tmin annually and seasonally for the periods of the 2020s,
2050s and 2080s in the A2 and B2 emission scenarios for Mangla basin and its sub-basin. The changes
in Tmin (scenario A2) in the Mangla sub-basin were observed as 3%, 4% and 8%, however, for Kunhar
basin, such changes were expected as 7%, 10% and 16% during the 2020s, 2050s and 2080s, respectively.
The Neelum sub-basin will exhibit the changes as 5%, 4% and 10%, respectively during these three
future intervals. As far as low altitude eastern sub-basins Poonch and Kanshi are concerned, changes
would be expected as −2%, 3%, 5% and 3%, 5% and 7%, respectively for the same time intervals.
Tmin during winter and spring seasons showed decreasing tendency in the 2020s and 2080s under
both future scenarios; however, increasing trends in 2050s were observed. Spring season exhibited the
highest warming trend for all three-time intervals.



Water 2020, 12, 3254 13 of 21

Water 2020, 12, x FOR PEER REVIEW 15 of 23 

 

under both future scenarios; however, increasing trends in 2050s were observed. Spring season 
exhibited the highest warming trend for all three-time intervals. 

 
Figure 7. The percentage change representing (scenarios-historical period) of seasonal and annual 
minimum temperature (compared to base period) in 2020s, 2050s and 2080s under A2 and B2 
scenarios ((a,b) Mangla basin, (c,d) Kunhar basin, (e,f) Neelum basin, (g,h) Poonch basin and (i,j) 
Kanshi basin). 

3.2.2. Downscaling Daily Precipitation under Future Emission Scenarios 

The changes in precipitation based on H3A2 and H3B2 datasets were compared to the base 
period. The results revealed that the precipitation would be increased annually during the periods of 
2020, 2050 and 2080 with the values of 6, 10, and 19% in the Mangla basin under the H3A2 scenario, 
respectively (Figure 8). Similarly, the precipitation (A2) would be increased annually in Kunhar, 
Neelum, Poonch and Kanshi at the rates of 16, 11, 13 and 59%, respectively, for the period of 2080s. 
For B2 scenario, the precipitation changes in Mangla and Kunhar sub-basins were observed as 6, 11, 
16 and 4, 9, 15% during three future intervals; however, Neelum sub-basin exhibited precipitation 

Figure 7. The percentage change representing (scenarios-historical period) of seasonal and annual
minimum temperature (compared to base period) in 2020s, 2050s and 2080s under A2 and B2 scenarios
((a,b) Mangla basin, (c,d) Kunhar basin, (e,f) Neelum basin, (g,h) Poonch basin and (i,j) Kanshi basin).

3.2.2. Downscaling Daily Precipitation under Future Emission Scenarios

The changes in precipitation based on H3A2 and H3B2 datasets were compared to the base period.
The results revealed that the precipitation would be increased annually during the periods of 2020,
2050 and 2080 with the values of 6%, 10%, and 19% in the Mangla basin under the H3A2 scenario,
respectively (Figure 8). Similarly, the precipitation (A2) would be increased annually in Kunhar,
Neelum, Poonch and Kanshi at the rates of 16%, 11%, 13% and 59%, respectively, for the period of 2080s.
For B2 scenario, the precipitation changes in Mangla and Kunhar sub-basins were observed as 6, 11%,
16% and 4%, 9%, 15% during three future intervals; however, Neelum sub-basin exhibited precipitation
changes as 3%, 5% and 10%. Similarly, the low altitude sub-basins Poonch and Kanshi showed −2%,
1% and 2% and 17%, 39% and 51%, respectively. The changes in precipitation seasonally in Mangla
basin and its sub-basin in the scenarios of A2 and B2 presented a complex behavior in different seasons.
We found decreasing trends of precipitation in the winter and spring, while summer and autumn
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precipitation would be increased with different magnitude under both scenarios in Mangla basin.
We noted the highest increase during the summer up to 52% and 47% for A2 and B2, respectively,
in the 2080s.
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3.3. Impact of Climate Change on Water Availability in the Future

The accessibility of water highly depends on the quantity of precipitation and evapotranspiration
over Mangla catchment. Therefore, variations in the precipitation and temperature directly affect
the soil moisture patterns. A2 and B2 scenarios were utilized to analyze the effect of climate on the
natural resources management, particularly water. SWAT model was calibrated for a period of 10 years
(1 January 1996 to 31 December 2000) and 1 January 2006 to 31 December 2010). After calibration,
daily precipitation, minimum and maximum temperature data of future climate change scenarios was
used in SWAT model for three periods, 2011–2040, 2041–2070 and 2071–2099. SWAT was also simulated
with the downscaled climate variables of temperature and precipitation datasets. However, wind speed,
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solar radiation and relative humidity along with the changes in the land use pattern were considered
constant throughout the future intervals to assess the future water availability. These simulation results
are shown in Figures 9 and 10.
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Figure 9. The change percentage of monthly stream flows (compared to base period) in 2020s, 2050s
and 2080s under scenarios A2 and B2 ((a,b) Jhelum River, (c,d) Poonch River, (e,f) Kanshi River and
(g,h) Mangle Reservoir).
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Figure 10. The change percentage of annual and seasonal stream flows (compared to base period) in
2020s, 2050s and 2080s under scenarios A2 and B2 ((a,b) Jhelum River, (c,d) Poonch River, (e,f) Kanshi
River and (g,h) Mangle Reservoir).

Annul flows for the whole Mangle reservoir would be increased by 15% and 9.2% in the investigated
scenarios A2 and B2, respectively, during the period of current and until the 2080s. The observed
changes in seasonal streamflow also indicated the same type of pattern and magnitude that vary with
respect to location as shown in the Figure 10. From the detailed observations, the future scenario has
an effect on the hydrological system of the Upper Indus Basins, which increased the 15% streamflow
annually. A similar increasing trend is observed for all seasons except the autumn season. In the 2080s,
streamflows would decrease in the autumn season up to 17%. The monthly streamflows may have
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changes from −44% to 44% for high emission scenarios A2. It was pointed out that 44% is a very high
value. Similar results have been reported by different researchers such as −6.1% to 89.9% depending
on the RCM in Lake Winnipeg watershed (LWW), Canada [42]; the Western region of Saudi Arabia
has an increase of average daily runoff of 353%, and each of the remaining regions has more than
a 100% increase [43]; annual projected streamflows would be decreasing up to 61.3%, 49.8%, 56.6%
and 44.6% in the Rock River (RRW), Illinois River (IRW), Kaskaskia River (KRW) and Wabash River
(WRW) watersheds in the Midwestern United States, respectively, by the end of this century [44].
The temperature increases of 1 to 4 ◦C have resulted in an increase of about 16.6%, 33.08%, 49.66% and
68.57%, respectively, in current mean annual total flow volume of Hunza basin [45].

4. Discussion

The present study focusses on the application of a degree-day model and statistical downscaling
method to generate future climatic scenarios of climatic trends (temperature and precipitation) in Mangla
watershed. Statistical Downscaling Model (SDSM) was applied to downscale the HadCM3-GCM
predictions of the A2 and B2 emission scenarios. The SWAT hydrological model was used for the future
projected stream flows based on developing climate change scenarios by SDSM. The hydrological
model shows an early spring snow melt effect, which is attributed to the increasing mean and peak
flow in March and April and a corresponding decrease in August. All simulations also showed an
increase in the winter low flows, especially in the months of November and December, while some of
the simulations show a decrease in low flow in the summer and early autumn. However, the models
simulated based on the SDSM downscaled data resulted in an increase in mean annual flow of about
8%, 7% and 41% for Rivers Jhelum, Poonch and Kanshi during the current decade and the 2080s under
the scenarios of HadCM3-A2, respectively. The annual streamflow would be 5%, 1% and 36% for Rivers
Jhelum, Poonch and Kanshi during the current decade and the 2080s in HadCM3-B2, respectively.

Some studies [46] suggested growing annual Snow-covered area (SCA) trend in the monsoon
influenced sub-basins of Mangla basin such as Jehlum basin, attributed to decreased liquid precipitation
with increased solid precipitation. Previous studies concluded a reduced SCA during winter and
autumn but increasing summer SCA within Hunza [47], and Gilgit basins [46], during 2001–2012,
which is still expanding up to 2018 [48]. The growing summer SCA is associated with winter warming
and summer cooling effects [49]. Some studies associated the expansion of SCA with increasing
precipitation trends [48] and significantly reduced temperature [1], at high altitude stations in Gilgit
River basin. Our results partially validated the expansion of SCA attributed to negative temperature
trends at high altitude observed in the present study. These findings are also consistent with significant
decreases in maximum temperature within the Gilgit basin at Gilgit, Gupis, Ushkore and Yasin [1].
The decreasing temperature in summer decreased the melting rate for new snow as well as for
permanent snow and glaciers. The recent temperature and precipitation trends in the Gilgit basin were
comprehensively discussed by [1,2]. They found that both annual and seasonal temperatures had
significantly decreased at Gilgit, Gupis, Ushkore, and Yasin over the period 1991–2013.

We found that SWAT performs excellently in terms of Nr, R2 and PBIAS values. Hydrological
model efficiency, particularly degree-day model’s efficiency, can be improved significantly by using
field-based TLAPS, PLAPS, snow melt base temperature and snow melt factor [48]. Our findings are
inconsistent with the results of [48,50], as they suggested less model efficiency of degree-day model
(SRM) over the Hunza and Gilgit River Basins during (July–August). SWAT simulated peak flows
excellently during the whole ablation period including peak ablation (July–August). We also observed
that SWAT seems more sensitive towards PLAPS and TLAPS as compared to other parameters during
calibration. Specifically, the TLAPS is the most subtle parameter; previous studies suggest −0.68 ◦C/m
for the Karakoram Range. However, our updated analysis proposed average TLAPS ranging from
−0.35 to −0.55 ◦C/m for the Mangla watershed.

Some previous studies claimed that summer flow increases at the rates of 33% and 16% increase
in Hunza and Shyok rivers, respectively when temperature raised to 1 ◦C [49]. These authors also
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proposed that climate variability behaved differently on streamflows for different basins based on
selected methods, hypothesis and basin characteristics. Similarly, some studies suggested increasing
flows since 1986–2010 and 2001−2012 attributed to increased temperature based on similar hydrological
modelling approach (degree-day models) UIB and neighboring basins [48,50,51]. The most recent
cryospheric modelled-based simulation study [48] proposed that the flows were not increasing
according to the temperature increase as there would be less snowmelt and glacier melt due to
intensified warming, so overall water availability in terms of cryospheric extent will be decreased
during 2070–2100. Our findings are partially consistent with the above-mentioned results as increased
future flows are consistent with the increased temperature; however, increased future flows were also
observed in all future time intervals. They associated reduced flows to reduced glacier area in the
future, but Mangla basin being a snow-dominant region would be able to provide substantial melt
water due to seasonal snowmelt.

Climate change impacts on the hydrologic response of the UIB has also been observed, using station
data and model-based studies [1,2,46–48]. However, a number of limitations have been highlighted,
associated with precipitation underestimation and bias calibration methods, which have curtailed the
development of policy to inform more sustainable water resources management in the region [48].
Studies have also highlighted the lack of spatiotemporal data coverage and quality of datasets employed,
which impact the variability in simulations and uncertainty in estimating snowmelt contribution
to runoff. Previous hydrological modelling studies within UIB [46,49–51], assessing the impact of
climate variability on projected future flows, found significant biases in runoff contribution, which they
attributed to the selection of large catchment areas, poor quality/sparse precipitation data and choice
of DDF and TLR [52]. More recent studies have sought to address these shortcomings by employing
more specific DDF and TLR applied at sub-basin scales [48].

5. Conclusions

The present study concluded that the statistical downscaling approach combined with degree-day
hydrological model (SWAT) can be successfully used at the sub-basin scale for trans-boundary
Mangla watershed. The SDSM method was used for the current and future simulation using SWAT.
Our downscaled climatological data provided an excellent model performance during all time intervals.
The specific conclusions from this study are the following.

The annual maximum temperature would increase for the 2020s, 2050s and 2080s under the A2
emission scenarios. We observed prominent changes in terms of temperature and precipitation throughout
the 21st century. Warming trends were observed most noticeably at lower regions, while higher altitude
regions exhibited less warming intensity. Similarly, lower regions will become drier in the future; however,
higher regions will exhibit wetting trends (positive precipitation trends). We found that annual maximum
temperature will increase from −1.5 to 0.83 ◦C decade−1, while annual minimum temperature is expected
to increase from −0.74 to 0.52 ◦C decade−1. The annual precipitation will decrease 110 to 50 mm decade−1;
however, annual streamflow will increase from −66 mm to 17 mm decade−1.

The increased future summer flows could be helpful for hydropower and irrigation. However,
water security remains questionable, depending mainly upon the seasonal snow accumulation and
subsequent temperature for melting in Mangla watershed. Moreover, Pakistan’s available water
storage capacity will be unable to meet such increased flows in the future. The excessive water will be
a disaster rather than a beneficial source by damaging standing crops, resulting in a severe drought
in terms of food and water scarcity. Water management facilities in Pakistan are still unable to store
surplus water during the peak-water/flooding season to serve during drought/low-flow periods.
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