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Abstract: The quantitative analysis of the disaster effect on water supply systems can provide useful
information for water supply system management. In this study, a total disaster index (TDI) was
developed using open-source public data in 419 water treatment plants in Korea with 23 input
variables. The TDI quantifies the possible effects or damage caused by three major disasters (typhoons,
heavy rain, and earthquakes) on water supply systems. The four components (regional factor,
risk factor, urgency factor, and response and recovery factor) were calculated using input variables to
determine the disaster index (DI) of each disaster. The weight of the input variables was determined
using principal component analysis (PCA), and the weights of the DI of three natural disasters and
four components used to calculate the TDI were determined by the analytical hierarchy process
(AHP). Specifically, two ensemble machine learning models, random forest (RF) and XGBoost (XGB),
were used to develop models to predict the TDI. Both models predicted the TDI with the coefficient of
determination and root-mean-square error-observations standard deviation ratio of 0.8435 and 0.3957
for the RF model and 0.8629 and 0.3703 for the XGB model, respectively. The relative importance
analysis suggests that the number of input variables can be minimized, which improves the models’
practical applicability.

Keywords: disaster management; ensemble model; machine learning; water supply; water treatment
system

1. Introduction

Various natural disasters, such as floods and earthquakes, cause considerable damage to water
supply systems. This damage includes the destruction of plants, intake systems, pipelines, and electric
systems, and the consequent interruption of water supply to the public [1]. The assessment of
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damage to water supply systems caused by natural disasters is important for proper management and
decision-making processes to prevent and restore the damage caused by natural disasters [2,3].

Assessing risk and measuring disaster resilience are the keys for predicting possible events,
quantifying contributing factors, and identifying potential consequences. One good example is the
lone house that remained standing after Hurricane Ike in 2008. It was rebuilt based on the experience
from Hurricane Rita in 2005 on elevated ground, with an appropriate roof pitch and windows that
were designed to withstand winds of up to 209 km/h, thus surviving Hurricane Ike with its winds
of 177 km/h [4]. Although there have been many efforts to develop quantitative and indicator-based
assessments, such as the comprehensive disaster resilience index (CDRI) [5,6], there is no universal
standard for the measurement of disaster and related consequences [7]. A reliable disaster resilience
framework with unified terminology and its quantitative evaluation would be an important tool in the
decision-making processes for both policymakers and engineering professionals [8].

Statistical methods such as principal component analysis (PCA) or analytic hierarchy process
(AHP) are often applied for the evaluation of disaster effects on civil infrastructures. For example,
Park et al. [9] suggested a disaster risk index for 51 high-speed railroad stations in Korea. The index was
calculated from a linear equation of four main indices (hazard, exposure, vulnerability, and emergency
response and recovery capability) suggested by Rossi and Gilmartin [10] where the weights of each
main index were determined by PCA. Recent studies have also used statistical analysis based on survey
data for the assessment of disaster risk on flooding or water security [11,12].

In recent decades, advanced technologies of data mining and machine learning (ML) have been
used to manage disasters such as typhoons and earthquakes [13–19], and various emerging remote
sensing technologies have also been increasingly used for monitoring and detecting data related
to disaster managements [20]. The continuous increase in available data due to advanced data
collection technologies, such as remote sensors or unmanned aerial vehicles (UAV), has accelerated
the application and accuracy of ML models [21–23]. Ofli et al. [21] used aerial images captured from
UAVs for identifying features of interest such as damaged shelters and blocked loads to assist with
disaster response. The features of interest in the image were annotated and used for training ML
models, including support vector machine (SVM) and random forest (RF), where the overall accuracy
of the model’s classification results ranges from 0.73 to 0.85. Sheykhmousa et al. [24] analyzed satellite
images of land cover and land use using an SVM classifier. The image data during Typhoon Haiyan,
which caused massive damage in the Philippines in 2013, was compared with the image data in 2017,
four years after Typhoon Haiyan, to assess the post-disaster recovery process. Chen et al. [15] analyzed
the impact indices of flood disasters using RF and developed a risk assessment model based on the
neural network method. Various data, including rainfall and socioeconomic data in the Yangtze River
Delta area between 2008 and 2018, were used for model development. More recently, Kao et al. [19]
used an advanced deep learning algorithm, long short-term-memory (LSTM), to forecast flood events.

Recent studies also used social platforms with text information about disasters to analyze the
characteristics of disasters such as typhoons and earthquakes [14,25,26]. Resch et al. [25] analyzed
earthquake characteristics from social media information during an earthquake in Napa, California,
USA, in 2014 using latent Dirichlet allocation (LDA), which is widely used for topic analysis. The spatial
hot spots of the earthquake were determined from the LDA model with 86.45% accuracy compared
with the United States Geological Survey earthquake footprint report. More recently, Yu et al. [14]
analyzed text information in social media during Typhoon Anemone along the coast of China in August
2012 to develop a typhoon disaster classification system using a model based on a convolutional
neural network.

ML is also increasingly used in environmental management. Zhang et al. [27] predicted air
pollution by PM 2.0 with a fusion model based on three gradient boosted decision tree (GBDT)
algorithms. The root-mean-squared error (RMSE) of the fusion model was 32.300. Bi et al. [28] also used
a GBDT-based model, light gradient boost, coupled with a fast Fourier transform for the assessment of
a liquefaction disaster. However, even with substantial efforts on the classification and analysis of
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disaster, its quantitative and indicator-based assessments on the water infrastructure have not been
thoroughly conducted.

In this study, the effects of various disasters on water supply systems from the perspective of
management are quantified by statistical data analysis methods, PCA, and analytic hierarchy process
(AHP). From the statistical approach, a total disaster index (TDI) was developed. In the second part,
tree-based ensemble models (i.e., RF and GBDT) were used to predict TDI, which provides valuable
information for the safety management of water supply systems.

2. Methods

2.1. Data Sources

Total 23 input variables of facility specification and operational data in 419 water treatment
plants in Korea were used to develop a TDI. The data were obtained from statistical yearbooks and
open-source public data (Table 1). The 23 input variables provide information about the water supply
systems, including water supply capacity, pipeline density, number of customers, management labor,
and regional characteristics of natural conditions where the water treatment plants are located (Table 2).
The local peak ground acceleration by an earthquake at each water treatment plant was estimated from
the Korea Seismicity Map program developed by Cao et al. [29]. The data for regional natural conditions
were obtained from meteorological data available from the national meteorological administration
information portal [30]. The financial status of a local government that manages the water treatment
plant was collected from the public data portal of the Ministry of the Interior and Safety in Korea [31].

Table 1. Data sources.

Data Reference

Water treatment plant operational information
and facility specification

Statistical yearbook of water treatment system [32]

Meteorological data Meteorological administration information portal [30]

Financial status in local government Ministry of the interior and safety information portal [31]

Design standard for wind speed Korean Design Standard [33]

Local peak ground acceleration by earthquake Korea Seismicity Map [29]

Table 2. Input variables.

Variables Description

CUSTOMER Population that receives drinking water from the water treatment plant

EMPLOYEES_AREA Employees per management area of the authority * (person/km2)

EMPLOYEES_SITE Employees per number of water treatment plants of the authority * (person/ea)

EQ1 Seismic design application status (applied: 1, not applied: 0)

LINE_DENSE Total pipeline length per management area of the authority * (m/km2)

LOCAL_EMPLOYEES Number of employees in the water supply plant

MONEY Financial independence of the local government (%)

PGA_500 500 years frequency peak ground acceleration (%)

PGA_1000 1000 years frequency peak ground acceleration (%)

PGA_2400 2400 years frequency peak ground acceleration (%)

PUMP Number of water supply pumps in the water treatment plant (ea)

PUMP_EP Sum of electrical capacity of all water supply pumps in the water supply plant (kW)
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Table 2. Cont.

Variables Description

Q Water supply capacity of the water treatment plant (m3/day)

Q_DAILY Daily average water production capacity of the water treatment plant (m3/day)

Q_MAX Daily maximum water production capacity of the water treatment plant (m3/day)

Q_PRO Total annual water production capacity of the water treatment plant (m3)

QT Maximum water supply capacity per hour of the water treatment plant (m3/h)

QW Total annual electric power usage of the water treatment plant (kWh)

QY Total annual amount of water treated by the water treatment plant (m3/year)

RAIN
Number of flood warning advisories between 2015 and 2019 in the region where

the water treatment plant is located (times/km2)

SWIND
Number of strong wind advisories between 2015 and 2019 in the region where the

water treatment plant is located (times/km2)

TYPHOON
Number of typhoon warning advisories between 2015 and 2019 in the region where

the water treatment plant is located (times/km2)

WIND_R Regional standard wind speed (m/s) in the region where the water treatment plant
is located

* authority: the owner of the water supply plant (i.e., the local government) and one authority may manage
multiple plants.

2.2. Disaster Index

2.2.1. Type of Disaster

Typhoons and heavy rains are among the most frequent disasters in Korea, while Korea has
been known to be relatively safe from earthquakes. However, interest in earthquakes in Korea has
increased since the two earthquakes with magnitudes of 5.8 and 5.4 on the Richter scale in 2016 and
2017, respectively. In this study, three natural disasters, typhoons, heavy rains, and earthquakes,
were selected as the most influential disasters on the water supply system and used for the TDI
development considering natural characteristics in Korea.

2.2.2. Component of Disaster Index

The four components (i.e., regional factor, risk factor, urgency factor, and response and recovery
factor), describing the level of the damage caused by each type of disaster, were used to determine the
disaster index (DI) of three natural disasters as follows.

1. Regional factor (RE) represents regional characteristics such as the frequency of natural disaster
occurrence in the selected areas;

2. Risk factor (RI) represents the quantity of possible damage caused by natural disasters.
For example, the RI increases as the capacity of water treatment plants or the length of water
supply pipelines increases;

3. Urgency factor (UR) represents the urgency of recovery after a disaster. For example, the UR
increases with a larger population in the area receiving drinking water; and,

4. Response and recovery factor (RR) represents the recovery ability during and after a disaster,
which is estimated by the financial status or manpower of the authority of a water treatment
plant, such as the local government.

A total of 23 input variables obtained from open-source public data were used to determine the
four components (RE, RI, UR, and RR), as summarized in Table 2.
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2.2.3. PCA Analysis for Index Weight

The weights of each variable for the DI of three natural disasters (typhoon, heavy rain,
and earthquake) were determined using PCA. PCA is a statistical method that reduces the dimension of
variables and determines each variable’s relative importance using an eigenvector. The input variables
were standardized as an average of zero and standard deviation of one for PCA analysis [34–36].

2.2.4. AHP Analysis

The DI of three natural disasters and four components were used for the calculation of TDI in
419 water treatment plants. However, there was limited data available for the statistical determination
of the relative weight of each natural disaster and four components for the TDI calculation. In addition,
although the effect of earthquakes on the water supply system is expected to be extremely large,
there were only two significant earthquakes in Korea that occurred in 2016 and 2017. Thus, it should
be noted that quantitative data for the analysis of the effect of earthquakes was limited.

The weights of three natural disasters and four components used to calculate the TDI were
determined by the AHP suggested by Saaty [37,38]. The AHP is a structured data analysis method for
complex decision-making, which is also widely used to analyze disaster data [9,23,39]. In AHP, a pairwise
comparison matrix of each element for the decision-making process is structured. This structure
relates to the matrix’s eigenvector, which represents the weight of each element in the decision-making
process [37,40].

The survey results from 62 experts or engineers currently working in water treatment plants
were used for AHP analysis. The survey data with a consistency ratio (CR) of less than 0.2 was
used to calculate the weight of each input variable to maintain the consistency of the AHP analysis
result [40–42].

CI =
λmax − n f

n f − 1
and CR =

CI
RI

(1)

where
λmax: principal eigenvalue in the pairwise comparison matrix,
nf: number of features,
CI: consistency index,
RI: random consistency index (RI = 0.90 for n = 4 and RI = 0.58 for n = 3), and
CR: consistency ratio.

2.2.5. Disaster Index Model

The TDI is determined by the weighted sum of the DI for three natural disasters using the
following equations (Equations (2)–(5)).

TDI = a(TI) + b(HI) + c(EI) (2)

TI = at(REt) + bt(RIt) + ct(URt) − dt(RRt) (3)

HI = ah(REh) + bh(RIh) + ch(URh) − dh(RRh) (4)

EI = ae(REe) + be(RIe) + ce(URe) − de(RRe) (5)

where
TI: DI for typhoon;
HI: DI for heavy rain;
EI: DI for earthquake;
a, b, and c: weight of each natural DI; and
at, bt, ct, dt, ah, bh, ch, dh, ae, be, ce, and de: weight of each component.
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Subscripts (i.e., t, h and e) from Equations (3)–(5) represents typhoon, heavy rain,
and earthquake respectively.

2.3. Disaster Prediction Model

2.3.1. Model Selection

Two ensemble models, RF and GBDT, have been increasingly used as ML models to manage the
water environment. Both models show good performance, even for nonlinear relationship analysis,
and data with outliers are also applicable for both classification and regression [43,44].

RF is a tree-based ensemble model in which a random data selection approach generates multiple
decision trees. RF randomly selects several sets of input features from the original input features
by a bagging method before generating the decision trees, which increases the independence and
variability of each decision tree. The final RF prediction is determined by averaging the predictive
results from individual decision trees in RF [45]. Consequently, the prediction performance of RF
can be dramatically improved [46–48] and outperforms other ML models [49]. RF has shown high
performance in various domains and has also been continuously applied to environmental research,
such as water quality prediction [50,51].

GBDT is an ensemble model based on a gradient boosting method (GBM), called a sequential
tree-based calculation process [45,52,53], and a set of decision trees. Unlike RF which determines the
final prediction by voting (for classification) or averaging (for regression), GBDT uses the decision tree,
called a weak learning model, from a previous stage in the ML process to improve model performance
in the following stage. Residual errors of the prior stage are included in developing the decision
tree in the current stage to reduce the residual errors by optimizing a specified loss function [45,52].
This optimization process is sequentially performed until the predefined number of decision trees is
reached, which is a major difference with RF, where the calculation of each tree is independent.

GBDT is optimized by minimizing an objective function, J, for a training data set with n samples.
The regularization term can be added to avoid overfitting of the model [44,54]. Equation (6) shows an
illustrative example of the objective function of GBDT [44,54].

J =
∑n

i=n
L(yi, ŷi) +

∑K

k=1
Ω( fk) (6)

where
fk: function of the kth decision tree,
L: loss function that calculates the difference between an observation (yi) and model prediction

(ŷi) in each decision tree,
Ω: regularization function that penalizes the complexity of the model, and
n: number of data samples.
The schematics of RF and GBDT are compared in Figure 1, where X denotes input features as

X = x1, x2, . . . , xn, h(X, θk), (k = 1, 2, . . . , K) is a collection of decision trees, and the θk are independent
and identically distributed random vectors [44,45,54].
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Figure 1. Schematics of the random forest (RF) and gradient boosted decision tree (GBDT) models.

In this study, both RF and GBDT models were used for the TDI estimation of 419 drinking water
treatment plants. The Python open-source libraries of Scikit-learn (for RF) and XGBoost (for GBDT)
were used for regression model development [55,56]. XGBoost (XGB) is one of the most popular GBDT
implementations developed by Chen and Guestrin [45,54]. Scikit-learn is also a popular Python-based
ML library developed by Pedregosa et al. [55].
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2.3.2. Model Optimization

The hyperparameters of RF and XGB were optimized by a trial and error method with ten-fold
cross-validation using the grid search library in Scikit-learn [57]. The models were developed with
23 input variables of 419 water treatment plants, where the ratio of data used for training and testing
of the models was 8:2.

2.3.3. Feature Importance (FI) of Input Variables

The relative importance of input variables on RF and XGB model performance was calculated
using the feature importance (FI) algorithm in Scikit-learn [57]. The FI in the tree-based model was
computed as the total impurity reduction of the model brought by that feature [55,58,59].

2.3.4. Model Evaluation

The model performance was evaluated by three evaluation indexes (Equations (7)–(9)), RMSE,
coefficient of determination (R2), and RMSE-observation standard deviation ratio (RSR). RSR ranges
from 0 to 1 and approaches 0 when the model shows a good fit with observation. The model is
considered to predict the observation when RSR < 0.70 [60,61].

R2 = 1−

∑n
i=1

(
Mi,obs −Mi,model

)2

∑n
i=1

(
Mi,obs −Mi,obs

)2 (7)

RMSE =

√∑n
i=1

(
Mi,obs −Mi,model

)2

n
(8)

RSR =

√∑n
i=1

(
Mi,obs −Mi,model

)2√∑n
i=1

(
Mi,obs −Mi,obs

)2
(9)

where
Mi,obs: observed values,
Mi,obs: mean of observed values, and
Mi,model: model predicted value.

3. Results and Discussion

3.1. Characteristics of Input Variables

Total 23 input variables for the development of DI were identified from open-source public
statistical data. The characteristics of the input variables are summarized in Table 3. The frequency of
warning advisories of natural disasters was calculated at each water treatment plant from the sum
of the three variables in Table 3 (i.e., RAIN, SWIND, and TYPHOON). The frequency of warning
advisories ranged from 0.017 to 1.29 times/km2 and tended to be higher in areas near the ocean as
shown in Figure 2 using ArcGIS pro.
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Figure 2. A spatial distribution of water treatment plants and frequency of natural disasters determined
from the disaster warning advisories in Korea.

Table 3. Characteristics of input variables.

Variables Average Max Min Standard
Deviation

CUSTOMER 89,902.749 3,030,917.000 0.000 276,768.491
EMPLOYEES_AREA 0.195 3.017 0.006 0.449
EMPLOYEES_SITE 25.819 304.333 0.833 50.505

EQ1 0.222 1.000 0.000 0.416
LINE_DENSE 2718.442 25,817.066 274.779 3812.635

LOCAL_EMPLOYEES 8.043 134.000 0.000 16.030
MONEY 18.972 78.450 4.020 15.198
PGA_500 8.532 11.000 3.199 1.792

PGA_1000 11.515 14.000 5.431 1.884
PGA_2400 16.695 19.000 9.222 1.959

PUMP 2.852 176.000 0.000 9.093
PUMP_EP 444.527 14,400.000 0.000 1637.036

Q 48,083.905 1,600,000.000 30.000 141,017.670
Q_DAILY 30,932.308 1,081,369.000 6.000 90,686.216
Q_MAX 37,629.160 1,221,400.000 20.000 106,454.278
Q_PRO 11,278,843.986 394,699,507.000 2288.000 33,103,181.424

QT 1818.253 69,120.000 0.000 6465.596
QW 2,406,152.687 78,414,779.000 0.000 7,988,910.560
QY 11,623,330.642 402,072,337.000 3276.000 33,936,442.393

RAIN 0.084 0.900 0.009 0.123
SWIND 0.077 0.813 0.002 0.108

TYPHOON 0.016 0.060 0.001 0.013
WIND_R 29.084 44.000 24.000 5.143
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3.2. Disaster Index (DI) Model Development

3.2.1. PCA Analysis

The weights for each natural disaster index were determined from PCA with 23 input variables
(Table 4). The eigenvectors were calculated from PCA and normalized to make the sum of weights of
each component to be 1.

Table 4. PCA analysis for weight of each component.

Disaster (Index) Component Input Variable (Symbol) Weight

Typhoon (TI)

REt

WIND_R (REt1) 0.309
TYPHOON (REt2) 0.345
SWIND (REt3) 0.346
sum 1.000

RIt

Q (RIt1) 0.143
QY (RIt2) 0.143
Q_PRO (RIt3) 0.144

PUMP (RIt4) 0.052
PUMP_EP (RIt5) 0.140
QT (RIt6) 0.132
QW (RIt7) 0.136
LINE_DENSE (RIt8) 0.110
sum 1.000

URt

Q_DAILY (URt1) 0.334
Q_MAX (URt2) 0.334
COSTUMER (URt3) 0.332
sum 1.000

RRt

LOCAL_EMPLOYEES (RRt1) 0.248
MONEY (RRt2) 0.235
EMPLOYEES_SITE (RRt3) 0.263
EMPLOYEES_AREA (RRt4) 0.254
sum 1.000

Heavy rain (HI)

REh

WIND_R (REh1) 0.500
RAIN (REh2) 0.500
sum 1.000

RIh

Q (RIh1) 0.143
QY (RIh2) 0.143
Q_PRO (RIh3) 0.144
PUMP (RIh4) 0.052
PUMP_EP (RIh5) 0.140
QT (RIh6) 0.132
QW (RIh7) 0.136
LINE_DENSE (RIh8) 0.110
sum 1.000

URh

Q_DAILY (URh1) 0.334
Q_MAX (URh2) 0.334
COSTUMER (URh3) 0.332
sum 1.000

RRh

LOCAL_EMPLOYEES (RRh1) 0.248
MONEY (RRh2) 0.235
EMPLOYEES_SITE (RRh3) 0.263
EMPLOYEES_AREA (RRh4) 0.254
sum 1.000
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Table 4. Cont.

Disaster (Index) Component Input Variable (Symbol) Weight

Earthquake (EI)

REe

PGA_500 (REe1) 0.333
PGA_1000 (REe2) 0.336
PGA_2400 (REe3) 0.331
sum 1.000

RIe

Q (RIe1) 0.143
QY (RIe2) 0.143
Q_PRO (RIe3) 0.144
PUMP (RIe4) 0.052
PUMP_EP (RIe5) 0.140
QT (RIe6) 0.132
QW (RIe7) 0.136
LINE_DENSE (RIe8) 0.110
sum 1.000

URe

Q_DAILY (URe1) 0.334
Q_MAX (URe2) 0.334

COSTUMER (URe3) 0.332
sum 1.000

RRe

LOCAL_EMPLOYEES (RRe1) 0.234
EQ1 (RRe2) 0.056
MONEY (RRe3) 0.222
EMPLOYEES_SITE (RRe4) 0.249
EMPLOYEES_AREA (RRe5) 0.239
sum 1.000

3.2.2. AHP Analysis

The weights for each disaster type were determined from the AHP analysis using the survey data
(CR < 0.2) (Table 5). The response rate of the survey was in the range between 52 and 69% for each
item. The weights of each disaster are in the order of typhoons, earthquakes, and heavy rain.

Table 5. Analytical hierarchy process (AHP) analysis results.

(a) Weights for Disaster Type.

Disaster Weight

Typhoon 0.481
Heavy rain 0.198
Earthquake 0.321

Sum 1.000
CR 0.054

(b) Weights for Each Component.

Disaster Component Weight

Typhoon

REt 0.275
RIt 0.265
URt 0.216
RRt 0.244
Sum 1.000
CR 0.017
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Table 5. Cont.

(b) Weights for Each Component.

Disaster Component Weight

Heavy rain

REh 0.279
RIh 0.247
URh 0.221
RRh 0.253
Sum 1.000
CR 0.004

Earthquake

REe 0.215
RIe 0.370
URe 0.235
RRe 0.180
Sum 1.000
CR 0.040

3.2.3. Disaster Index (DI)

The TDI was determined using the following model (Equations (10)–(13)) which were developed
from PCA and AHP analysis (Tables 4 and 5).

TDI = 0.481(TI) + 0.198(HI) + 0.321(EI) (10)

TI = 0.275(REt) + 0.265(RIt) + 0.216(URt) − 0.244(RRt) (11)

where
REt = 0.309(REt1) + 0.345(REt2) + 0.346(REt3),
RIt = 0.143(RIt1) + 0.143(RIt2) + 0.144(RIt3) + 0.052(RIt4) + 0.140(RIt5) + 0.132(RIt6) + 0.136(RIt7) +

0.110(RIt8),
URt = 0.334(URt1) + 0.334(URt2) + 0.332(URt3), and
RRt = 0.248(RRt1) + 0.235(RRt2) + 0.263(RRt3) + 0.254(RRt4).

HI = 0.279(REh) + 0.247(RIh) + 0.221(URh) − 0.253(RRh) (12)

where
REh = 0.500(REh1) + 0.500(REh2),
RIh = 0.143(RIh1) + 0.143(RIh2) + 0.144(RIh3) + 0.052(RIh4) + 0.140(RIh5) + 0.132(RIh6) + 0.136(RIh7)

+ 0.110 (RIh8),
URh = 0.334(URh1) + 0.334(URh2) + 0.332(URh3), and
RRh = 0.248(RRh1) + 0.235(RRh2) + 0.263(RRh3) + 0.254(RRh4).

EI = 0.215(REe) + 0.370(RIe) + 0.235(URe) − 0.180(RRe) (13)

where
REe = 0.333(REe1) + 0.336(REe2) + 0.331(REe3),
RIe = 0.143(RIe1) + 0.143(RIe2) + 0.144(RIe3) + 0.052(RIe4) + 0.140(RIe5) + 0.132(RIe6) + 0.136(RIe7)

+ 0.110(RIe8),
URe = 0.334(URe1) + 0.334(URe2) + 0.332(URe3), and
RRe = 0.234(RRe1) + 0.056(RRe2) + 0.222(RRe3) + 0.249(RRe4) + 0.239(RRe5).
Using the developed models, TDI values of 419 water treatment plants were determined with the

range between −0.526 and 3.813 with an average of 0 and a standard deviation of 0.343. A higher TDI
represents a higher potential of effect or damage by a disaster in water treatment systems. The TDI
tends to be higher in water treatment plants near metropolitan cities as well as the areas near ocean.
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The TDI was developed considering the natural status of Korea. For example, there were only
two earthquakes in 2016 and 2017, which were considered to have caused actual damage to water
treatment plants in Korea. As the data available for the quantification of damage by earthquakes is
minimal, the AHP based on survey data was used for the DI calculation.

Although there were not many cases of damage in water treatment systems from earthquakes,
the weight of the earthquake was larger than that of heavy rain. The AHP results represent that,
although earthquakes have been rare in Korea, the damage and consequences by an earthquake would
not be negligible when it occurs, indicating that a preventive plan against earthquakes should be
prepared in advance. In addition, given that most of the facilities already experience heavy rain and
are relatively well prepared for these instances, it is expected that the actual damage caused by heavy
rain is relatively small compared to other disasters.

3.3. Ensemble Model Simulation

3.3.1. Total Disaster Index (TDI) Prediction using Ensemble Models

Two ensemble ML models, RF and XGB, were used to develop a model to predict TDI. The model
performance with the test data set was evaluated by three indices, as summarized in Table 6. The R2 and
RSR were 0.8435 and 0.3957 for the RF model and 0.8629 and 0.3703 for the XGB model, respectively.

Table 6. Summary of model evaluation results.

Model RMSE R2 RSR

RF 0.100 0.8435 0.3957
XGB 0.093 0.8629 0.3703

The observed data and model predictions are compared in Figure 3. The model prediction shows
a similar good fit with observations both in the RF and XGB models, while XGB showed a slightly
better performance for all three evaluation indexes (Table 6 and Figure 3).
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3.3.2. Feature Importance (FI) Analysis

The FI of 23 input variables for both RF and XGB models to predict DI are shown in Figure 4. The FI
was different between RF and XGB, while the variables that represent the scale of water treatment
plants such as PUMP_EP and Q tend to have a higher effect on model performance for both models.
For RF, the sum of FI in the highest nine input variables was more than 80%, while for XGB, the sum of
FI in the highest four variables was more than 80% of the total FI for XGB.
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The performance of the models was compared between RF and XGB using fewer input variables,
starting with 1 and adding up to 10 input variables with the order from the highest FI (Figure 5). The RF
model showed a tendency to improve the performance of the model as the number of input variables
increased from one to ten, and even when using three input variables, the RSR was 0.6954, indicating that
the model accurately predicted the observation. XGB shows better performance when using fewer
input variables. The RSR is 0.5323 when only three input variables were applied, which reduces to
0.3937 when using ten input variables. The FI analysis shows that several input variables with higher
feature importance have a considerable effect on model performance. The analysis results show that
both the RF and XGB models show similar performance when using five or more input variables with
higher FI. The FI is one of the factors and not an absolute standard considered for model structure.
The necessary input variables are not always obtainable from the actual operation and management of
water treatment systems. Thus, the practical applicability of the model would be improved as fewer
input variables are used. The FI analysis suggests that the model shows acceptable performance if only
part of the input variables with the highest FI would increase the practical applicability of the model.Water 2020, 12, x FOR PEER REVIEW 15 of 18 
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4. Summary and Conclusions

In this study, a disaster index (DI) for predicting the effect or damage caused by three major natural
disasters in Korea (i.e., typhoons, heavy rain, and earthquakes) was newly developed to quantify each
natural disaster’s effect on water utilities.

Although the operational data in water utilities provided a good understanding regarding the
effect of disasters, the data is usually collected in an individually specified format often site-specific,
making it difficult to collect, organize, and analyze the data. In addition, the operational data for
water utilities was not easily accessible, limiting the comprehensive development of the DI. Therefore,
in this study, the DI of natural disasters in water treatment systems was developed using statistical
open-source public data. Two well-defined statistical data analysis methods (i.e., AHP and PCA) were
used for the determination of DI.

The open-source public data have greater accessibility and are updated regularly, so the DI can
also be updated considering the current status, which is also a significant benefit of using open-source
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public data. The DI developed in this study may be site-specific at a given location and conditions of
water utilities, but the developed framework would be applicable for quantifying the effect of disasters
on water treatment systems in other regions with different natural status.

In the second part, two ensemble models (i.e., RF and XGB) were used to develop models to
predict TDI. Both RF and XGB showed similar satisfactory performance for prediction of the DI,
while the XGB showed a slightly better performance in general. The FI analysis also suggested that the
models have sufficient performance for practical use with only several input variables of the highest FI,
which can improve the practical applicability of the models.

Quantitative assessment of disaster effects on water treatment systems is essential for better
management of the water treatment systems and stable supply of drinking water to the public.
However, data related to disaster analysis are often limited and even hardly quantifiable. One of
the possible solutions would be to keep collecting data, analyze them statistically, while facilitating
frequent discussions from experts experiencing the disasters in their utilities [11,35]. The recent
advance of information and communication technologies, such as sensor-based real-time monitoring
methods, can provide various continuous monitoring data about the operational condition of water
treatment plants and related infrastructure, which can improve the pre- and post-management planning
processes [20,22]. However, the quantification and assessment of disasters on water treatment systems
are still in an early stage, and the use of field operational data and responses, in particular during
disaster events, is currently limited at this time.

This study provided quantified information on the impact of various natural disasters on water
treatment systems with open-source public data, which would be useful for creating a plan to reduce
damage to water supply systems caused by natural disasters. Further study is warranted to use
high-frequency real-time data to improve the model performance and practical applicability.
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