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Abstract: In this work, we develop an enhanced particle shifting strategy in the framework of weakly
compressible δ+-SPH method. This technique can be considered as an extension of the so-called
improved particle shifting technology (IPST) proposed by Wang et al. (2019). We introduce a new
parameter named ”φ” to the particle shifting formulation, on the one hand to reduce the effect of
truncated kernel support on the formulation near the free surface region, on the other hand, to deal
with the problem of poor estimation of free surface particles. We define a simple criterion based on
the estimation of particle concentration to limit the error’s accumulation in time caused by the shifting
in order to achieve a long time violent free surface flows simulation. We propose also an efficient and
simple concept for free surface particles detection. A validation of accuracy, stability and consistency
of the presented model was shown via several challenging benchmarks.

Keywords: smoothed particle hydrodynamics; particle shifting technique; violent flows; δ+-SPH
method; tensile instability

1. Introduction

Smoothed particle hydrodynamics (SPH) is a numerical method that belongs to the Lagrangian
meshless family. It was developed initially by Gingold and Monaghan [1] to simulate astrophysical
phenomena, and since it has been known for a wide range of different different fields now, from coastal
to ocean and marine engineering problems [2–9], especially for the simulation of large deformation
fluid flows [10–13].

Several SPH models have been proposed to deal with incompressible fluid flow simulation,
such as ISPH [14–16], Riemann-based SPH [17–20], Eulerian–Lagrangian incompressible SPH [21,22],
δ-SPH [23–25]. Thanks to the robustness, simplicity of implementation, and the ease of extension
from the standard SPH model [26] without cumbersome modifications, the δ-SPH has been known
as a good progress, and got the attention of researchers and engineers in several fields [27,28].
However, this model is suffering from some numerical problems, particularly the so-called tensile
instability [29,30] that results in clustering of fluid particles. Such numerical artifacts are principally
caused by the negative pressures due to the use of weakly compressible hypothesis, and the Lagrangian
character of the SPH method, that leads the particles to follow the Lagrangian trajectories [31].
The non-uniform distribution resulting from clustering of fluid particles can significantly affect
the convergence, stability and accuracy proprieties of the SPH method [32,33]. To deal with these
challenging problems, Sun et al. [34] have combined a particle regularization technique, called particle
shifting technique (PST) with δ-SPH model for the first time to create the so-called δ+-SPH model,
while being inspired from Lind et al.’s work [35]. This SPH variant has shown an important
improvement in solving some challenging problems, thanks to the obtained results in terms of the
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achievement of regular particle distribution. As noted by Sun et al. [36], the continuous enforcement
of the particle regulating by PST can lead to some consistency issues due the accumulation of errors
in time. This issue can be manifested by un-physical changes in the potential energy of the particles
in the case of the simulation of violent free-surface flows characterized by cycles of breaking and
splashing events (Dam break, sloshing problems), and by particle volume rising in the case of the
simulation of confined flows. To overcome theses drawbacks, Sun et al. [36] have proposed again
a consistent particle shifting technique within the δ+-SPH context by adding a deviation velocity
that results some additional terms to the initial governing equations. This technique has shown a
significant improvement in terms of accuracy and attenuation of the issues due to the accumulation of
errors in time. In the case of simulation of free surface flow, a special treatment is added to the particle
shifting formulation in the vicinity of the free surface region to deal with the problem of truncation
of kernel function that leads to overestimation of the shifting. In δ+-SPH only tangential component
of particle shifting vectors to the free surface is considered. The neglecting of the normal component
may lead to nonphysical gaps between the free-surface and inner particles as it is shown in [37].
Wang et al. [37] have recently proposed other treatment near to the free surface region by reducing
the PST formulation [34] to only the part containing the artificial pressure-like function described by
Monaghan [30]. The resulting formulation has been called improved particle shifting technology (IPST).
Comparing to the conventional particle shifting proposed in [34], this formulation has shown better
performance in maintaining more regular particle distributions near the free surface region, and thus
presents more accurate and stable simulations that results in low energy dissipation. Moreover,
since the IPST formulation is independent of the normal vectors of the free-surface, all problems
related to the inaccurate estimation of normal vectors are avoided. However, this method is still
suffering from the consistency issues due the accumulation of errors over the time and it is very
sensitive to the free surface detection, because if the free surface particles are poorly detected, a risk of
disturbance is highly expected.

Several methods have been proposed in the literature for detecting the free surface particles.
The traditional technique evaluates the particle intermediate densities, ρ∗, as if particle i satisfies
ρ∗i < 0.99ρ0 condition, i belongs to the free surface region [15,38–42]. A similar volume based technique
is developed by [43]. Lee et al. [44] represented a free surface detection algorithm based on the
divergence of the particle’s position compared subsequently with a fixed threshold value (accordingly
to the number of space dimensions). One should note that in these models the poor estimation of
physical parameters (such as density) and the clustering of fluid particles significantly affect the
accuracy of the free surface detection. Marrone et al. [45] and Barecasco et al. [46] proposed accurate
geometrical free surface detection techniques based on predefined scan region. It has been shown that
combining the well developed algorithms strengthens the detection of free surface regions in particle
methods [37,47].

In this work, an extension of improved particle shifting technique (IPST) proposed by
Wang et al. [37] has been proposed, and it is applied in the context of Weakly compressible δ+-SPH
method. The effect of truncated kernel support on formulation the shifting particles near the free
surface region as well as the risk of the interface disturbance of free surface due to the poor detection of
free surface particles are reduced by introduction of a new parameter so-called ”φ” to the IPST. A simple
criterion based on the estimation of particle concentration is added to the particle shifting technique to
limit the accumulation of errors over the time. Similar to Marrone et al. [45] and Barecasco et al. [46],
A simple and efficient free geometrical free surface particle detection technique has been also proposed
in the framework of the present work. The validation of the presented model was done via four
challenging benchmarks with a gradual difficulty.

The paper is organized as follows. First, the governing equations are introduced. Then, in Section 3,
the discrete form of the equations with the proposed contribution in terms of particle shifting technique
and free surface particle detection algorithm are presented. Finally, in Section 4, validation examples
are presented.
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2. Governing Equations

The Navier–Stokes and displacement equations expressed in Lagrangian form for the inviscid
fluid flows in isothermal condition, read as

dρ
dt = −ρ∇ · u

du
dt = −∇p

ρ + f
dr
dt = u

(1)

where d(.)
dt represents the material derivative following an infinitesimal fluid particles. ∇ is the nabla

operator (gradient), ρ, p, u, r and f represent the density, the pressure, the velocity, the position and the
body force (e.g., the gravity force) of the fluid phase, respectively.

The system (1) requires the equation of state (EOS) to represent a weakly compressible fluid flow
by explicitly defining the pressure field from the density variable. Here, the weakly compressible
smoothed particle hydrodynamics (WCSPH) approach [48] employs a linear form of the equation of
state [49] given as:

p = c2
0 (ρ− ρ0) (2)

where ρ0, ρ and c0 denote the reference density, the density and the reference speed of sound of the
background pressure, respectively.

Since the choice of the time step for the simulation is directly related to the stability conditions,
an artificial speed of sound is used as the reference value c0 instead of the real physical speed of
sound, in order to obtain a reasonable time step. Thus, following [11,49] we determine the value of c0

as follows:

c2
0 ≥ max

{
U2

0
δρ

,
‖g‖L0

δρ
,

µU0

ρ0L0δρ

}
(3)

where U0, L0 and µ are the reference velocity, the reference length, the dynamic viscosity and the
surface tension coefficient, respectively, and δρ denotes the dimensionless density variation limited
to 1%.

3. Numerical Method

3.1. The Discrete System of Equations

The SPH method discretizes the physical domain into moving particles without implementing
any connectivity among them. This method approximates any physical scalar (or vector) field using
a convolution procedure. Numerically, it is performed by replacing the Dirac delta function with a
smoothing function. This function denoted as the kernel function (W) must satisfy conditions such
as symmetry (even function), normalization, compactness of its support, among others. More details
regarding the particle approximation methodology are represented in [50]. The kernel function depends
on the smoothing length, h, which defines the influence domain. In this work, the C2-Wendland [51]
kernel function is chosen among others thanks to its low computational cost and its efficiency in
terms of numerical convergence (for more details, we advise the reader to refer to [52]). The constant
smoothing length h is chosen relative to the initial inter-particle distance ∆x0 (h = 2∆x0). Further,
the initial particle volume is given as V0 = ∆x0

d (with d being the space dimensions number) and the
mass of each particle i remains invariant over the simulation time (m = ρ0V0).

In this study, we adopt the δ+-SPH method [34,53] to discretize the governing equations within
the framework of weakly-compressible SPH method. A diffusive term added to the continuity equation
(to compensate false diffusion) and the particle shifting technique regulating the fluid particles (by δri)
characterize the δ+-SPH method. The added diffusive term reduces the high-frequency noise to
stabilize the density/pressure fields [54], while the particle shifting vector dispositions the particles to
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the area with less particle concentration to overcome the so-called tensile instability [34]. We summarize
the δ+-SPH model as fellows:

dρi
dt = −ρi ∑

j
(uj − ui) · ∇iWijVj + δhc0 ∑

j
Dij · ∇iWijVj

dui
dt = − 1

ρi ∑
j
(pi + pj)∇iWijVj + αhc0

ρ0

ρi
∑

j
πij∇iWijVj + gi

dri
dt = ui; pi = c2

0(ρi − ρ0); ri = r∗i + δri; Vi =
m
ρi

;

(4)

where the symbol ∇i is the gradient operator following a generic particle i and Wij = W
(
|ri − r j|, h

)
denotes the kernel function. The quantities ρi, ui, pi, ri, r∗i , δri, πij and Vi represent the density,
the velocity, the pressure, the advected position, the particle’s position after shifting, the small position
shift given by the particle shifting technique, the artificial viscosity term and the volume with respect
to particle i, respectively. The variables sub-scripted by the index j belong to the neighboring particles
of the particle i (i.e., the particles within the kernel support centred at i). The diffusive parameter, δ,
is set to 0.1 for all the simulations, andDij is expressed as follows [23]:

Dij = 2
[(

ρj − ρi
)
− 1

2

(
〈∇ρ〉Lj + 〈∇ρ〉Li

)
·
(
rj − ri

)] (r j − ri
)∣∣r j − ri
∣∣2 . (5)

Here, 〈∇ρ〉Li and 〈∇ρ〉Lj are the re-normalized density gradients with respect to the particle i and
its neighbors j given by [54]:

〈∇ρ〉Li = ∑
j

(
ρj − ρi

)
Li∇iWijVj (6)

where the re-normalization matrix Li is expressed as

Li =

[
∑

j

(
r j − ri

)
⊗∇iWijVj

]−1

.

In this work, we study the inviscid fluid flows, however, the artificial viscosity term is added
to the momentum equation in order to enhance the stability of the numerical model [23,36,37,53].
We experienced that minimum value of the dimensionless parameter α of the artificial viscosity term is
chosen equal to 0.02 to maintain the numerical stability in our scheme (the same value is used in [23]),
for all the simulations presented and the term πij is read as follows:

πij =

(
uj − ui

)
·
(
r j − ri

)(
r j − ri

)2 . (7)

Here, the low storage 4th-order Runge–Kutta scheme [55] integrates the governing equations.
To ensure the stability of the explicit method, the calculation time steps, δt must fulfill the kinetic and
the body force conditions given by [56]:

δt = min

{
CFL

h
c0

, 0.25
(

h
‖g‖

)1/2
}

(8)

where we set the Courant–Friedrichs–Lewy constant CFL to 1.5, since under this value the numerical
stability is always maintained (the same value of the CFL = 1.5 is also used in [53]). Further,
the generalized wall boundary condition method simulates the solid boundaries [11,57].



Water 2020, 12, 3189 5 of 37

3.2. Enhanced Particle Shifting Technique

To ensure the stability of the particle methods, the particle regularization techniques have shown to
be essential especially for dealing with highly dynamic fluid flows. Among the particle regularization
techniques, the particle shifting (PS) method has been an effective approach for eliminating the tensile
instability and avoiding unwanted fluid fragmentation [34–36,47,58]. Basically, the particle shifting
formulations follow Fick’s law of diffusion to disposition particles toward regions with low particle
concentration. Although the well-developed PS techniques represent promising results in surmounting
the particle clustering, they still suffer from some inaccuracy and instability issues for the long-term
simulations of real test cases involving the potential energy [36,37]. The accuracy of such PS techniques
still relies on the free surface particle detection algorithm and the treatment of fluid particles within
this region. Particularly, the limited number of neighboring particles included in the shifting process
of the free surface vicinity particles (like the improved particle shifting technology (IPST) presented
in [37]) may affect the regular particle distribution at the free surface. Furthermore, by applying the
particle shifting continuously for long-term simulations of free surface flows, the potential energy of
the system increases nonphysically (see [36]), and thus non-physical behavior of fluid flow can be
generated. To surmount these issues related to the particle shifting techniques, here, we propose a free
surface detection algorithm and modify the particle shifting equation. The former employs a simple
but effective condition for detecting the free surface particles. While, for the latter we introduce a
dynamic coefficient into the particle shifting equation to adapt its magnitude at the vicinity of the free
surface (to control the false diffusion toward the free surface).

3.2.1. Free Surface Detection Algorithm

In this study, we employ a simple geometrical technique for detecting the free surface particles
comparable to the methods proposed in [45,46]. This technique uses the concept of human eye vision
(see Figure 1 where the human eye is presented by particle i). The vision distance, 2∆x0, and the angle
of vision, θ, define the vision field corresponding to particle i. In the first step of the detection, if the
particle i observes any particle within its vision field, the algorithm considers particle i as an inner
particle, ri ∈ DI . Otherwise, as the vision area is empty, particle i is a free surface particle, ri ∈ DFS
(see step 1 of Figure 2). Moreover, to distinguish the splashed particles, if the number of neighboring
particles of particle i, Ni, is less than or equal to Nmin (Nmin = 8 in 2D or 26 in 3D), the algorithm treats
particle i as a free surface particle. To specify the normal vector, ni, we utilize the re-normalization
matrix, Li, as follows:

ni =
Li ∑j∇iWijVj

|Li ∑j∇iWijVj|
(9)

in which the symbol |.| denotes the magnitude of vector {.}. We summarize the first step of the free
surface detection algorithm as follows:

arccos
(

rij ·ni
|rij |

)
≤ θ

2 and rij ≤ 2∆x0

or
Ni ≥ Nmin

(10)

where rij = rj− ri and particle i satisfying this condition is considered as aneps inner particle (ri ∈ DI),
otherwise, it belongs to the free surface particles (ri ∈ DFS)).

In the second step, we identify the particles which have at least a free surface particle (r j ∈ DFS)
within their neighbor list (as the kernel support is expected to be truncated). To do so, the fluid particle
i situated near the free surface region is considered as the inner free surface particles (i.e., rij ≤ kh as
r j ∈ DFS then ri ∈ DIFS). In other words, all particles that do not belong to the free surface and have at
least one free surface particle as a neighbor are considered as inner free surface particles (ri ∈ DIFS the
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particle colored with gray color in Figure 2). The rest of the particles are the inner particles with the
complete kernel support (ri ∈ DIN) (see step 2 of Figure 2).

We compared our eye vision technique with the umbrella-shape area implemented in the free
surface detection algorithm proposed by [45,47] (Figure 3). compared with the original umbrella
technique [45], our proposed algorithm presents more accurate detection of the free surface particles,
particularly in regions where the wave-breaking event occurs (see the red circles in the zoom region 1 of
Figure 3a). However, comparing to the method proposed by Jandaghian and Shakibaeinia [47], a very
similar results for the free surface particles are observed. This is due to the conservative searching
region we consider for the vision field of the particles. It is worth to note that the proposed method is
time-effective since less arithmetic operations are required (in comparison to [45,47] methods). Further,
similar to the other searching areas and with some numerical simulation we found θ = π

2 to be a
reasonable angle for the vision field in the benchmark test cases of this study.

Figure 1. Free surface particle detection concept. θ is the angle of vision and 2∆x0 is the vision distance.
Where ∆x0 denotes the initial particle spacing.

Step 1 Step 2

Figure 2. Principals of the free surface particles detection, Step 1 presents the free surface particles
detection conditions and Step 3 presents the definition of inner particles near to the free surface particles.



Water 2020, 12, 3189 7 of 37

Zoom regions 1 and 2 Zoom 1 Zoom 2
(a)

Zoom regions 1 and 2 Zoom 1 Zoom 2
(b)

Zoom regions 1 and 2 Zoom 1 Zoom 2
(c)

Figure 3. The free surface particles detected for the dam-break example. The free surface particle of the
fluid are colored with black color (DFS), whereas for the particle colored with yellow and green colors
represent respectively, the inner particle near (DIFS) and far (DIN) from the free surface region. The first
row (a) shows the results via the method proposed by Marrone et al. [45], while the rows (b,c) represent
the results using Jandaghian and Shakibaeinia [47] and the present approaches, respectively.

3.2.2. Modified Particle Shifting Equation

To overcome the particles’ instability at the free surface region, we propose an enhanced version
of the particle shifting equation. Herein, all the neighboring particles defined by the kernel function
radius (kh) are considered for the SPH interpolation (unlike the IPST in [37]). A new parameter
so-called φ is inserted into the equation to reduce the kernel truncation errors on the PS vectors close
to the free surface. Further, a simple criterion based on the estimation of particle concentration Ci is
defined to limit the accumulation of errors in time caused by the continuous application of the PS.
The new formulation is expressed as follows:

δri = −φ CFL ·Ma · 2 · h2 ·∑
j

[
ξ + χij

]
∇iWijVj (11)
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where χij denotes the artificial pressure-like function and is represented as follows [30]:

χij = R
( Wij

W (∆x0)

)n

(12)

in which R and n are constants set to 0.2 and 4, respectively [34,35,37]. CFL and Ma denote the
Courant– Friedrichs–Lewy and Mach numbers, respectively and ∆x0 is the initial inter-particle distance.
We insert the parameter ξ into the PS equation given as:

ξ =

0 ri ∈ DFS ∨ ri ∈ DIFS

1 ri ∈ DIN

(13)

similar to the work of [37]. Particularly to modify the magnitude of the PS vector in the free surface
region and specify the regions where the shifting is applied, we define φ by:

φ =



0 ri ∈ DFS
rijmin .njmin

kh ri ∈ DIFS

1 ri ∈ DIN

0 Ci < 0.98 ∧ ri ∈ DIN

(14)

in which rijmin = rjmin − ri as the particle position rjmin is the nearest free surface particle to particle i.
Ci denotes the concentration of particles located at ri and is given as:

Ci = ∑
j

WijVj (15)

As the PS manipulates the potential energy of the system in the long-term simulations
(by decreasing the particle concentration and expanding the fluid domain, i.e., Ci < 1) it is
necessary to overcome this problem for modeling the free surface flows with several breaking events
(e.g., Sun et al. [36] included additional diffusive terms into the continuity and momentum equations
to compensate the effects of the nonphysical advection of the flow and material properties). Here,
to deal with this issue caused by the PS technique, we deactivate the shifting of the inner particles
(ri ∈ DIN) in the regions where their particle concentration reduces to less than 0.98 (i.e., if Ci < 0.98
then φ = 0). The threshold value of 0.98 is chosen according to the nummerical expriments.Thanks to
this simple criterion within the PS formulation, the long-term simulations of the violent free surface
flows become possible (without implementing the additional diffusive terms into the governing
equations). Furthermore, since the projected quantity,

rijmin .njmin
kh , changes smoothly from 0 to 1 (on the

normal direction started from the free surface to the inner region) φ dynamically adjusts the magnitude
of the PS vectors at the vicinity of the free surface (Figure 4—left). It should be noted that this term
also deactivates the shifting of particles that the free surface detection algorithm may miss to consider
as the free surface particle (poor estimation of free surface particles) (see Figure 4—right).

Note that the particle groups DIFS, DFS and DIN are already defined through the Figure 3.
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Figure 4. Different parameters used to define φ for particle i as ri ∈ DIFS.

4. Validation

Four challenging benchmarks are simulated to show the ability of the present work to achieve
accurate and stable simulations. The first benchmark consists in the simulation of oscillating droplet
under a central conservative force field, whereas for the second benchmark is devoted to simulate
the evolution of initially-square fluid patch. These two problems cannot be simulated neither with
the classical δ−SPH method nor with the standard SPH one [59], due to the presence of strong
tensile instability that may introduce un-physical fragmentation to the fluid domain. Via these two
first benchmarks, we show the superiority of our enhanced PS formulation comparing to the one
developed by Wang et al. [37] in terms of accuracy, stability, and energy conservation even when the
free surface particles are poorly detected. The third and fourth benchmarks are devoted to simulate
violent free surface flow, where dam-break and sloshing tank are chosen. It is known that the classical
δ+-SPH scheme presents a weakness for the simulation of this kind of fluid flows. This is caused
by the continuous introduction of the Particle shifting to the Lagrangian fluid displacement that
subsequently promotes the accumulation of errors in time. The accumulation of theses errors can
generate an un-physical expansion of the fluid domain when breaking events of violent free surface
are presented [36]. Via these last benchmarks, we will demonstrate that our proposed technique can
limit with such kind of problems.

4.1. Oscillating Droplet Uunder a Central Conservative Force Field

In this problem, a two dimensional water drop that initially has a circular shape with radius of
R = 0.5 m evolving under central force field is simulated. The central force field f per unit mass is
acting on the fluid as a body force and it is expressed in the Equation (16). Furthermore, the fluid
drop is initially subjected to the velocity field expressed via the Equation (17) and has as density
ρ = 1000 kg/m3. This test case is initially proposed by Monaghan and Rafiee [60], and after has been
known as a good benchmark for SPH schemes validation [36,37,58,59,61] since its theoretical solution
is available. The circular droplet oscillates and evolves like an ellipse in time, we define a and b as the
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semi-major and semi-minor axis of the evolving ellipse. The schematic of this problem is illustrated in
Figure 5.

f =
(
−Ω2 x,−Ω2 y

)T
(16)

u(x, y, 0) = (σ0 x,−σ0 y)T (17)

where Ω denotes the dimensional parameter and it is taken as 1.5 s−1. The global dynamics of the
osculating drop depends on the ratio σ(0)/Ω, Here it is equal to 1. Thus, the initial value of the
transient velocity parameter σ(t) is then σ0 = σ(0) = 1.5 s−1.

Figure 5. Oscillating droplet under a central conservative force field. R is the raduis of the intial circular
drop, a and b are the semi-major and semi-minor axis of the evolving ellipse, respectively.

The theoretical solution for the oscillating fluid droplet in the case of single phase can be obtained
by the simplification of the multi-phase formulation developed by Monaghan and Rafiee [60] and can
be read as 

dσ(t)
dt =

(
σ(t)2 + Ω2) ( b(t)2−a(t)2

b(t)2+a(t)2

)
da(t)

dt = σ(t)a(t)

a(t) b(t) = R2

σ(0) = σ0 = 1.5

a(0) = b(0) = R

(18)

The theoretical solution is obtained by solving the system of Equation (18) using Rung–Kutta 4th
ordern algorithm [62]. After solving the system of Equation (18), the theoretical kinetic, Potential and
total energies can be calculated, respectively as follows [60]:

Ek(t) =
π

8
σ(t)2 a(t) b(t)

(
a(t)2 + b(t)2

)
ρ0 (19)

Ep(t) =
π

8
Ω2 a(t) b(t)

(
a(t)2 + b(t)2

)
ρ0 (20)
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ET = Ek + Ep (21)

The presented SPH model, has been applied on this benchmark under two different particle
resolutions that correspond to the initial inter-particle distances of dx = R

50 and dx = R
100 . The artificial

speed of sound c0 is set to 15σ0R to match with the weakly-compressible hypothesis.
Figure 6 presents the shape evolution of the oscillating droplet for five time steps t = { 0, 0.16, 0.84, 1.52,

2.44} s under the resolution (dx = R
100 ). The fluid particles are colored with pressure filed on the left

half of the droplet and with φ parameter field on the right half. In Figure 7, the fluid drop under the
resolutions dx = R

100 and dx = R
50 at the time t = 2.44 s are represented respectively via the snapshots

(a) and (b) of Figure 7. As in the previous Figure 6, the fluid particles are colored with pressure and
φ- parameter on the left and the right half of the droplet, respectively. Through the zoom region of
Figure 7b presented in Figure 7d, we show that the parameter φ varies from 0 to 1 normally from
the free surface particle to the inner particles region, which grantees subsequently the progressive
application of particle shifting near free surface region as we expect.

t = 0 s t = 0.16 s

t = 0.84 s t = 1.52 s

t = 2.44 s

Figure 6. Oscillating droplet under a central conservative force field: Pressure and the dimensionless
parameter φ evolution in time. The right half of the droplet is colored by the pressure field, and the left
half is colored by the φ paremeter field.



Water 2020, 12, 3189 12 of 37

(a) (b) (c)

Figure 7. Oscillating droplet under a central conservative force field: The particle are colored with
pressure and dimensionless φ- parameter on the left and the right half of the fluid droplet, respectively
at the time t = 2.44 s. (a) under the resolution of dx = R

100 in the snapshot (a) and dx = R
50 in (b).

The snapshot (c) shows a zoom on the φ field obtained through the selected red rectangle of the
snapshot (b).

Figures 8 and 9 show the time evolution of semi-major (a(t)) and semi-minor (b((t)) axis of the
fluid droplet, respectively. A quantitative comparison between the theoretical results [60], the Improved
particle shifting technology IPST proposed by Wang et al. [37] and the present work is also presented
via these figures. It is shown that the present formulation of particle shifting gives more accurate results
than the IPST formulation for both semi-major and semi minor axis under the resolution dx = R

100 . It is
also shown that when we increase the particle resolution, the results tend to more converge to the
theoretical results.

The time evolution of kinetic and potential energies of the osculating droplet are presented in
the Figures 10 and 11, respectively. Comparing to the theoretical results [60], we can remark that the
present formulation provides better results in terms of kinetic and potential energies than the results
obtained by using IPST [37]. With increasing of particle resolution (dx = R

100 ), the evolution of kinetic
and potential energies converges greatly to the theoretical solutions.

In the Figure 12, the time evolution of total energy is plotted. It is shown that the present particle
shifting formulation is more conservative than the IPST formulation proposed by Wang et al. [37].
It is also shown that the present particle shifting formulation dissipates less energy when a higher
resolution of particles is used.

It should be noted that in this simulation, the particle shifting was not limited over the time since
the defined criterion always remains satisfied in the inner particle region (Ci > 0.98).
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Figure 8. Oscillating droplet under a central conservative force field: horizontal semi major axis
evolution in time a(t). The black solid line presents the theoretical results obtained by solving the
system (18) [60]. The red dotted line represents the results obtained by the present particle shifting
formulation for the fluid droplet of resolution dx = R

50 , whereas for the magenta dash-dot line is for
dx = R

100 . The blue dashed line represents the results obtained by the particle shifting technology
(IPST) proposed by Wang et al. [37]. The bottom part (b) of the figure represents the zoom of selected
red rectangle in (a).
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Figure 9. Oscillating droplet under a central conservative force field: Vertical semi minor axis evolution
in time b(t). The black solid line presents the theoretical results obtained by solving the system (18) [60].
The red dotted line represents the results obtained by the present particle shifting formulation for the
fluid droplet of resolution dx = R

50 , whereas for the magenta dash-dot line is for dx = R
100 . The blue

dashed line represents the results obtained by the particle shifting technology (IPST) proposed by
Wang et al. [37]. The bottom part (b) of the figure represents the zoom of selected red rectangle in (a).
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Figure 10. Oscillating droplet under a central conservative force field: Kinetic energy evolution in
time Ek(t). The black solid line presents the theoretical results obtained by solving the system (18) [60].
The red dotted line represents the results obtained by the present particle shifting formulation for the
fluid droplet of resolution dx = R

50 , whereas for the magenta dash-dot line is for dx = R
100 . The blue

dashed line represents the results obtained by the particle shifting technology (IPST) proposed by
Wang et al. [37]. The bottom part (b) of the figure represents the zoom of selected red rectangle in (a).
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Figure 11. Oscillating droplet under a central conservative force field: Potential Energy evolution in
time Ep(t). The black solid line presents the theoretical results obtained by solving the system (18) [60].
The red dotted line represents the results obtained by the present particle shifting formulation for the
fluid droplet of resolution dx = R

50 , whereas for the magenta dash-dot line is for dx = R
100 . The blue

dashed line represents the results obtained by the particle shifting technology (IPST) proposed by
Wang et al. [37]. The bottom part (b) of the figure represents the zoom of selected red rectangle in (a).

To quantify the error resulting from our present model and δ-SPH scheme [23] compared to
analytical solution given by Monaghan and Rafiee [60], convergence studies were performed at the
time t = 2.44[s] under four particle resolutions including dx = R

12.5 , dx = R
25 , dx = R

50 and dx = R
100

that correspond to different particle numbers of N = 489, 1945, 7821 and 31,377, respectively. The L2

error (ErL2 ) was calculated at all particle positions based on the values of the horizontal velocity field
obtained by our SPH model, δ-SPH and the analytical solution, Its formulation is given as in [63]:

ErL2 =
1
N

√√√√ N

∑
i=1

(uiSPH − uiAnalytical )
2 (22)
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Here ui represents the values of the horizontal velocity of the particle i, Whereas for the subscript
SPH indicates our present SPH model or the δ-SPH model and Analytical is the analytical solution.
The results of the convergence study are shown in Figure 13, where it appears that the order of
convergence of our present SPH model is comprise between 1 and 2, whereas for δ-SPH the presents a
convergence order less than one.
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Figure 12. Oscillating droplet under a central conservative force field: Total energy evolution in time
ET(t). The black solid line presents the theoretical results obtained by solving the system (18) [60].
The red dotted line represents the results obtained by the present particle shifting formulation for the
fluid droplet of resolution dx = R

50 , whereas for the magenta dash-dot line is for dx = R
100 . The blue

dashed line represents the results obtained by the particle shifting technology (IPST) proposed by
Wang et al. [37].
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Figure 13. Oscillating droplet under a central conservative force field: Convergence studies with
present SPH and δ-SPH [23] schemes. The dotted line with small circles denotes the convergence
curve of the δ-SPH scheme and the dotted line with small squares denotes the convergence curve of
the present SPH model. The dashed and continues lines represent 1st and 2nd order of convergence
slops, respectively.
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4.2. Evolution of an Initially-Square Fluid Patch

This test case presents an evolution of an inviscid fluid patch that initially has a shape of a
square with side length L = 1 m (see Figure 14). This test is originally proposed by Colagrossi [64],
and after it is used as numerical benchmark for the stability and accuracy assessment of particle
methods [31,61,65,66]. The fluid square is initially subjected to a velocity field defined in the
Equation (23) and pressure field obtained by solving the related Poisson equation (for more details,
see [64]). Under these conditions, the fluid patch starts to rotate, and its middle part shrinks to the
center, whereas for its corners extend to form gradually four fluid jets generated by the centrifugal force.

u(x, y, 0) = (ω y,−ω x)T (23)

where ω = 1 rad/s denotes the constant angular velocity of the fluid path. The density of the fluid is
taken equal to ρ = 1000 kg/m3.

For the numerical simulation, an initial regular particle distribution as Cartesian lattice is
considered under two spacial resolutions of dx = L/100 and dx = L/200 (10,201 and 40,401 particles,
respectively). The numerical speed of sound is taken equal to c0 = 5

√
2ωL.

Figure 14. Evolution of an initially-square fluid patch: initial configuration.

The evolution of the fluid path at three different dimensionless times tω = {0.6, 1.2, 2.04} is
plotted in Figure 15 under the particle resolution of dx = L/100. The fluid particles are colored
with pressure field. The black nodes in the Figure 15 present the free surface obtained by using the
Lagrangian finite difference method (FDM) [61]. A good agreement between FDM and present results
in terms of free surface interfaces is observed.

For a more advanced time, we present in the Figure 16 the evolution of the fluid shape at
tω = {6.0, 8.0, 9.5} under the particle resolution of dx = L/100. The four corners of fluid evolve in
time and become thin and thin until reaching a fragmentation (abrupt disconnection of particles in the
finest regions) caused by the lack of particular resolution. For the present resolution (dx = L/100),
the fluid particles remain connected until time tω = 9.5, wheres for the resolution (dx = L/200), it can
even exceed tω = 12.

At time tω = 2.2 the distribution of fluid particles obtained by using the present particle shifting
model (the left column) and IPST model (the right column) [37] under the particle resolution of
dx = L/100 is depicted in the Figure 17.
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To show the efficiency of our particle shifting model, we have deliberately used a value of
θ = 0.95π for the free surface detection algorithm in order to generate a poor detection of free surface
particles, while θ is set to π

2 in the IPST model of [37] to have a good free surface particle detection.
The Figure 17 shows the different regions of particles, where the free surface particles are colored
with black color (DFS), the inner particles in the vicinity of the free surface (DIFS) are colored with
yellow color, and interior particles (DIN) are colored with green color. Using our approach, it is clearly
observed that in the fluid interface, there is some free surface particles that are not detected, and are
considered as inner particles in the vicinity of the free surface (DIFS), since they are near to other
detected free surface particles. From the right column of Figure 17 it is clear that a good detection of
free surface particle is obtained. However, we observe that the free interface presents a low smoothness
compared to our particle shifting approach.

Through the Figure 18, we show the φ parameter field can play the role of a corrective parameter
where the poor detection of the free surface particles is appeared. The parameter φ takes values of
zeros (or very close to zero) in non-detected free surface particles which subsequently exclude them
from being shifted as expected and can be demonstrated by the Equation (11).

tω = 0.6 tω = 1.2

tω = 2.04

Figure 15. Evolution of an initially-square fluid patch: Pressure field obtained at dimentionless times
tω = {0.6, 1.2, 2.04}. The black bold points present the free surface evaluated by the Lagrangian Finite
Difference Method [61].
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tω = 6 tω = 8

tω = 9.5

Figure 16. Evolution of an initially-square fluid patch: Pressure field obtained and evolving shape of
the square path at dimensionless times tω = {6, 8, 9.5}.

Figure 19 plots the time evolution of the pressure at the center of the fluid path for the
particle resolution of dx = L

100 and dx = L
200 . We compare our results with the numerical results

obtained by mixed Euler–Lagrangian-boundary element method (MEL-BEM) solver [61]. A good
agreement in the overall behavior of the pressures is noted with the presence of oscillations due to
the weakly-compressible fluid hypothesis. From the enlarged view (second row of Figure 19), it is
shown that with the increase of the particle resolution, the pressure curve match more with the one of
(MEL-BEM) solver [61] and presents less oscillations.
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zoom 1

zoom 2

zoom 3

Figure 17. Evolution of an initially-square fluid patch: The fluid particles distribution at the
dimensionless time tω = 2.2. The left column presents the results obtained by using our particle
shifting approach (here a poor detection free surface is presented), whereas for the right column shows
the results obtained using by using IPST [37]. The three last rows of the figure present the zooms on
the three selected regions.

Figure 20 compares the dissipation of the kinetic energy (Equation (24)) for the present approach
under two particle resolutions (dx = L

100 and dx = L
200 ) and the so-called IPST proposed by

Wang et al. [37] under the resolution of dx = L
100 . It is shown that with the increase of the particle

resolution, the dissipation of total kinetic energy becomes less (at tω = 8, presents 2.7% and 4.95%
of energy loss for the resolutions of dx = L

200 and dx = L
100 , respectively). It is also shown that the

proposed particle shifting strategy has a better performance in terms of energy conservation comparing
to IPST [37] at the same resolution dx = L

100 .

KE(t) =
(

∑i‖ui(t)‖
∑i‖ui(0)‖ − 1

)
× 100 (24)
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zoom 1 zoom 2 zoom 3

Figure 18. Evolution of an initially-square fluid patch: The fluid particles distribution at the
dimensionless time tω = 2.2 in the case of poor detection free surface. The particles are colored with
dimensionless φ-parameter field. The second row presents the zooms on the three selected regions.

Figure 19. Cont.
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Figure 19. Evolution of an initially-square fluid patch: Time evolution of the pressure at the
center of the fluid path. The red dotted line represents the results obtained by the present particle
shifting formulation for the particle resolution of dx = L

100 , whereas for the magenta dash-dot line,
it corresponds to the particle resolution of dx = L

200 . The black dotted line with diamond marker
denotes the pressure results obtained by BEM-MEL solver [61]. The second row of the figure presents a
zoom region.
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Figure 20. Evolution of an initially-square fluid patch: Dissipation of the kinetic energy. The red dotted
line presents the results obtained by the present particle shifting formulation for the particle resolution
of dx = L

100 , The blue dashed line represents the results obtained by using IPST [37] for the particle
resolution of dx = L

100 . whereas for the magenta dash-dot line presents the results obtained by the
present particle shifting formulation for the particle resolution of dx = L

200 .

As we have noted previously in Section 4.1, the defined criterion always remains satisfied in
inner particle region part (Ci > 0.98), and thus the particle shifting is applied contentiously to the
Lagrangian displacement during all the simulation time.

4.3. Dam Break Problem

For this validation test case, we consider a two-dimensional dam break problem. This test has
been experimentally investigated by several authors such as Martin et al. [67], Zhou et al. [68] and
Buchner [69]. Since the generated flow is of complex with large deformation natures, it is becoming
one of the most used benchmarks to validate SPH and other particle-based methods [23,47,57,70–73].
The initial configuration of the problem is illustrated in Figure 21. A water column of height H
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and length of 2H is located in a rectangular tank of length 5.366H. Here, H is taken equal to 0.6 m
as in the experimental test of Buchner [69]. The water flow is considered inviscid with a density
of 1000 kg/m3. The water column flows under the effect of gravity acceleration g = (0,−9.81)T .
To record the pressure signal, a pressure probe P located at the downstream wall exactly at y/H = 0.19
from the bottom of the tank is used (see Figure 21). Note that the probe position is slightly different
from the experiments, and shift produces a better agreement with the SPH method due to several
uncertainties in the measurements [74].

Figure 21. Dam break flow: problem configuration.

A particle resolution of 12,800 particles that corresponds to dx = H/80 was considered for
the simulation using our present particle shifting approach and that proposed by Wang et al. [37].
The formulation of analytical solution of the Poisson equation on the water column (see [75]) is used
to initialize the pressure field. The water column is considered at rest at the time t = 0, and thus
the initial velocity is taken equal to zero for all particles. The numerical speed of sound used for the
simulation is taken as c0 = 10

√
2gH.

Several snapshots of the pressure field, φ parameter field and particle shifted regions at different
time instances are shown in Figure 22. The obtained results present relatively smooth pressure field
with a very low-frequency noise thanks to the application of particle shifting strategy. We can see via
the second column of Figure 22 that the φ parameter field seems to well follow the free surface particles
and it is also well defined through the vicinity region of free surface particles, which subsequently
guarantees the correct application of the present particle shifting strategy. The last column shows with
blue color the region when our particle shifting technique is considered, whereas for regions with
yellow color, the shifting is excluded as in theses regions the errors caused by the continuous shifting
are considered highly accumulated (extended fluid regions with Ci < 0.98).

The Figure 23 depicts a comparison between the present particle shifting strategy, and IPST
developed by Wang et al. [37] at three different times t

√
g/H = {6.00, 14.80, 20.03}. A very similar

results between the present and IPST approaches, are shown in the early stage of simulation when
the inner fluid region remains unextended (here, the defined criterion is always satisfied: Ci > 0.98).
After, when the breaking event becomes more important (t

√
g/H > 7), the continuous process of

shifting using IPST approaches will cause an accumulation of errors in time and can be manifested
as un-physical expansion of the total fluid domain (Ci < 0.98). The right column shows the results
obtained by IPST approach [37], we observe that total volume the free surface level at the later stage
(advanced timing) is tending to be more and more higher than the expected one (magenta solid line
found at the height of y ≈ 0.3748H), whereas for the left column where our approach is used, the free
surface level tends to match with the expected theoretical level.
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t
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Figure 22. Dam break flow: Snapshots of the computational results at dimensionless times t
√

g/H =

{1.61, 5.45, 6.14, 10.24, 20.02}. The left column presents the pressure field, the middle column denotes
the φ-parameter field and the right column presents the restriction field (no shifting is applied on the
yellow region).

It should be noted that the expansion of the fluid volume is principally due to the continuous
application of the particle shifting to the particle displacements, and not because of IPST technique
developed by Wang et al. [37].

The dimensionless water wave front X f (X f =
x f−2H

H , with x f being the x coordinate of the water
front) obtained by the present particle shifting strategy and IPST are compared with the analytical
solution obtained from shallow water theory [76], and experimental data given by Buchner [69] in
Figure 24. A perfect agreement is shown between both numerical approaches since at this stage the
accumulated errors due to the use of particle shifting is not significant (non-expansion is observed
during all the time presented in Figure 24, in other words, Ci > 0.98 everywhere in the inner particles).
As a quantitative comparison, the numerical results correspond relatively to the analytical solution
from shallow water theory [76], and experimental data given by Buchner [69], however, it should
be noted that a slower front wave is observed in experiments caused by several factors such as
uncertainties of the measurements and wall roughness [77].
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t
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zoom on the red rectangle at t
√

g/H = 20.03

Figure 23. Dam break flow: Snapshots of pressure field at dimensionless times t
√

g/H =

{6.00, 14.80, 20.03}, The left column depicts the results obtained by the present method. The right
column presents the results obtained with IPST [37]. The solid magenta line shows the position of final
free surface at equilibrium, should the total volume conserve.

Figure 25 shows the time history of the recorded impact pressure signals on the right vertical
wall at probe P. A very good compatibility is observed between the present particle shifting strategy
and IPST developed by [37] since the measurement is done on the early stage of the simulation. Both
numerical methods are with good agreement in the overall behavior with experimental data presented
by Buchner [69]. The difference between numerical and experiments specially for peak pressures can
be due to the influence of the air-cushioning cavity on the sensor measurement which is not taken into
account in the numerical simulation (see [70]), and also the 3D effects.

The time evolution of the numerical dissipation of mechanical energies ∆E obtained with the
present particle shifting technique, IPST approach [37] and reference results of Marrone et al. [23].
(δ− SPH scheme) are plotted in Figure 26. The formulation proposed by Marrone et al. [23] is used to
calculate ∆E, and it reads as

∆ET =
Ek(t) + Ep(t)− E0

p

E0
p − E∞

p
(25)
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where Ek(t) is the time evolution of kinetic energy, Ep(t) the potential energy, E0
p the initial potential

energy and E∞
p the potential energy when the flow reaches a hydrostatic steady state. A quantitative

agreement is observed between the results obtained by the proposed particle shifting technique and the
reference results of Marrone et al. [23]. Whereas for the results obtained by using IPST approach [37],
a non-physical increase in mechanical energy is observed. This is caused by the increase in kinetic
energy which is revealed by the non-physical expansion of the fluid particles (see the zoom regions in
Figure 23 at t

√
g/H = 20.03). This non-physical expansion of the total fluid domain is principally due

to the breaking events that promote the accumulation of shifting errors to the Lagrangian displacement
of the particles [36].

Figure 24. Dam break flow: time evolution of the water front, the green solid line presents the analytical
solution from shallow water theory [76], The black triangles denotes the experimental data given by
Buchner [69]. The blue dash-dot line represents the results obtained by using IPST [37], whereas for the
magenta dashed line presents the results obtained by the present particle shifting formulation.

Figure 25. Dam break flow: History of the pressure signals recorded at P. The black triangles denotes
the experimental data given by Buchner [69]. The blue dash-dot line represents the results obtained
by using IPST [37], whereas for the magenta dashed line presents the results obtained by the present
particle shifting formulation.
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Figure 26. Dam break flow: Time evolution of mechanical energy. The blue dash-dot line represents the
results obtained by using IPST [37], whereas for the magenta dashed line presents the results obtained
by the present particle shifting formulation. The black reference curve is taken from Marrone et al. [23].

Through the Table 1, we compare the computational times obtained by using our present particle
shifting formulation and IPST [37] for simulating 5 s of the physical time of the dam break case under
12,800 particles. It is found that our method takes a little longer than IPST [37], which is quite expected
since in our method additional computational tasks are required as for calculating φ-parameter and
expansion criterion are added. Both simulations are done in serial calculation on a machine equipped
with a processor model: Intel(R) Core(TM) i7-6700HQ CPU @ 2.60 GHz and Random-access memory
of 8 GB.

Table 1. Dam break flow: comparison table of the computational times using our present particle shifting
formulation and IPST [37] for simulating 5 s of the dam break physical time under 12,800 particles.

Particle Shifting Model Computational Time in s

Present particle shifting formulation 6813

IPST [37] 6608

4.4. Sloshing in a Rectangular Tank

Through this test case, the motion of a fluid inside a partially filled tank that is subjected to
periodic motion is numerically investigated. This flow is known as the fluid sloshing problem [78,79].
When the frequency of the tank motion is close to the natural frequency of the fluid due to gravitational
wave, the resonance conditions prevail and may cause important loads impacts to the tank structures.
Because this phenomenon is of complex and highly non-linear nature, the liquid sloshing flow has
been used in several works to validate SPH models [77,80–82].

As it is illustrated in Figure 27, the initial configuration of the water sloshing in rectangular tank
is presented. The same configuration as the experimental work of Rafiee et al. [80] is considered, when
a rectangular tank of height D = 0.9 m and length of L = 1.3 m is partially filled with water to 20%
of its height D (i.e., H = 0.2D = 0.18 m). The water flow is considered inviscid with a density of
1000 kg/m3, The gravity acceleration is taken as g = (0,−9.81)T . The motion of tank is considered as
a regular sinusoidal excitation along the horizontal direction (X-axis) with an amplitude of A0 = 0.1 m
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and frequency f0 = 0.496 Hrz that corresponds to the resonance frequency (i.e., x̃ = A0 sin(2 f0πt)).
To record the pressure signals, three pressure probes P1, P2 and P3 located on the right wall of the tank
respectively at the heights of 0.165 m, 0.18 m and 0.195 m from the bottom of the tank are used (see
Figure 27).

Figure 27. Sloshing in a rectangular tank: initial configuration.

In this work, a particle resolution of dx = L/208 that corresponds to 5824 particles is considered
for the simulation using our present particle shifting approach and that proposed by Wang et al. [37].
The initial pressure is taken as hydrostatic pressure. The velocity of the fluid is initialized by the same
initial velocity of the tank as follows

u(x, y, 0) =
(

dx̃
dt

(t = 0), 0
)T

= (2 f0 A0, 0)T (26)

Figure 28 shows snapshots of the pressure field, φ parameter field and particle shifted regions at
different times t = {1.74, 3.32, 3.0, 3.39, 6.90, 7.60} s. The application of present particle shifting results
a relatively smooth pressure filed at different times. We can also observe that the φ parameter is well
defined, since it follows perfectly different regions of the fluid flow, and thus, it insures the correct
application of the present particle shifting formulation. Via the third column of Figure 28, we show the
application regions of the particle shifting technique.
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t = 1.74[s]

t = 2.32[s]

t = 3.00[s]

t = 3.39[s]

t = 6.90[s]

t = 7.60[s]

Figure 28. Sloshing in a rectangular tank: Snapshots of the computational results at times t =

{1.74, 2.32, 3.00, 3.99, 6.90, 7.60} s. The left column presents the pressure filed, the middle column
denotes the φ-parameter filed and the right column presents the restriction field (no shifting is applied
on the yellow region).

We compare via the Figure 29 at three different times t = {6.80, 8.00, 8.50} s, the pressure fields
obtained by using the present particle shifting strategy and the improved particle shifting technique
IPST developed by Wang et al. [37]. At these advanced times, the errors due to the continuous
application of particle shifting strategy are highly accumulated, and thus will affect significantly the
physics of the fluid flow. We can see that thanks to the application of particle shifting only in the
region that meet our defined criterion (shifting applied only when (Ci > 0.98)), the pressure filed are
of fine smoothness comparing when we apply the IPST continuously without any limitation criterion.
Furthermore, a non-physical dilatation of the total fluid volume is clearly visible in the second row of
Figure 29 caused by the continuous application of the shifting.
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t = 6.80 s t = 8.00 s t = 8.50 s

t = 6.80 s t = 8.00 s t = 8.50 s

Figure 29. Sloshing in a rectangular tank: Snapshots of pressure field at times t = {6.80, 8.00, 8.50} s,
The first row depicts the results obtained by the present method. The second row presents the results
obtained with IPST [37].

The time history of pressure signals recorded on the right vertical wall of the fluid tank at the
positions P1, P2 and P3 are plotted in Figure 30. A good agreement in the overall behavior of the
pressure between the present particle shifting technique and the experimental data [80] is noted
along all the simulation. The peaks of pressure are overestimated by the numerical since the effect of
entrapped air pockets is included in the experimental measurement. The pressure signals obtained by
the continuous application of IPST [37] are of high oscillation frequency at advanced time and match
less with the experimental data than our present approach. Such issue is produced because of the
accumulated errors due to the particle shifting are significantly affect the overall flow physics as is
shown previously in Figure 29. The noise presented in our pressure signals it may come naturally from
the rapid dynamics of the highly violent fluid flows.

As it was already noted in the previous section, the non-physical dilation of fluid domain is
caused by the continuous application of the particle shifting IPST. Thus, an application of criterion for
deactivating the shifting where the particles expansion is occurred may overcome such issue.

After reaching the 5th motion period of the sloshing tank, exactly at t = 10.25 s and t = 11.70 s,
we present in Figure 31 the state of the flow within the tank obtained when our particle shifting
approach and IPST [37] are used, The results obtained by our approach stay stable and show a
correct physical behavior as expected. Nevertheless, when IPST is continuously applied to the particle
positions, the fluid continues to expand and flows in a non-physical way and presents an unrealistic
and unstable pressure field.
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Figure 30. Sloshing in a rectangular tank: time history of the impact pressure at the three installed
probes P1, P2 and P3. figures (a–c) present the comparison between the present numerical and
experimental pressure signals obtained at the probes P1, P2 and P3, respectively. The black triangles
denotes the experimental data given by Rafiee et al. [80]. The blue dashed line represents the results
obtained by using IPST [37], whereas for the magenta dash-dot line presents the results obtained by
the present particle shifting formulation.
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t = 10.25 s t = 11.70 s

t = 10.25 s t = 11.70 s

Figure 31. Sloshing in a rectangular tank: Snapshots of pressure field at times t = 10.25 s and t = 11.70 s.
The first row depicts the results obtained by the present method. The second row presents the results
obtained with IPST [37].

5. Conclusions

Through this work, an enhanced Particle Shifting strategy has been developed in the framework
of weakly compressible δ+-SPH method. This technique can be considered as an extension of improved
particle shifting technology (IPST) proposed by Wang et al. [37]. A new parameter ”φ” is defined,
on the one hand to reduce the effect of truncated kernel support on the formulation of the shifting
particles near the free surface region, on the other hand, to deal with the problem of poor estimation
of free surface particles. A simple criterion based on the estimation of particle concentration is also
defined to limit the error’s accumulation in time caused by the shifting in order to achieve a long
time violent free surface flows simulation. An efficient and simple concept for free surface particles
detection has been also proposed via this paper.

The accuracy, stability of the present particle shifting strategy has been shown via four challenging
benchmarks: Through the oscillating droplet under a central conservative force field and the evolution
of initially-square fluid patch benchmarks, the superiority of our enhanced formulations of the particle
shifting (PST) comparing to the one developed by Wang et al. [37] in terms of numerical proprieties and
energy conservation are shown even when the free surface particles are poorly detected. Whereas for
the two last benchmarks, the dam break flow and liquid sloshing flow in rectangular tank, it is
demonstrated that the present approach with newly defined criterion can deal with violent free surface
flows characterized by cyclic and high breaking wave events problems, which is considered as a
weakness point for other particle shifting techniques.
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Since our code is currently tow-dimensional, a validation of our present method in the context of
3D simulations will be considered in the future work. Furthermore, the application of our model in the
case of a multi-phase and granular flows is targeted for future investigations.
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