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Abstract: Traces of Molybdenum (Mo) in drinking water pose potent dangers owing to its harmful
effects on the health of humans. This study used nanoscale zero-valent iron (Fe0) supported by
activated carbon (NZVI/AC) for removing Mo(VI) from raw water. In an attempt to gain an
understanding of the various factors that affect the process, we designed the study to look into the
impact of various experimental parameters including pH, adsorption kinetics, and coexisting ions on
the Mo(VI) removal using fixed-bed column runs and a batch-adsorption method and for Mo(VI)
removal using NZVI/AC. The optimum conditions were found to be pH 4.5 and an equilibrium
time of 9 h and 72 h for simulation water (SW) and raw water (RW), respectively. The removal of
Mo(VI) was remarkably inhibited by the presence of silicate (SiO2−

4 ) and phosphate (PO3−
4 ), while the

impact of humic acid and some other anions was insignificant. Metal cations such as Fe3+, Al3+, Zn2+,
and Ni2+ enhanced the adsorption of Mo(VI). The influent contaminant concentration Mo(VI) in raw
water was found to be 0.1603 mg/L, the empty-bed contact time (EBCT) was 3 and 6 min, whereas the
breakthrough empty-bed volumes were 800 and 1100 and at the value of 70 µg/L provided by WHO
provisional guidelines, respectively.
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1. Introduction

Plants and animals need Molybdenum (Mo) as an essential trace element, which has a relatively
low level of toxicity at <5 µg/L. However, due to the massive amounts of Mo effluents generated from
mining tailings, several tens of µg/L to mg/L Mo have been detected in water systems. Moreover,
incidents of Mo pollution have been reported at a few places around the world including the San
Joaquin Valley, USA, Brenda Mines in British Columbia, Canada, and Wujintang and other Reservoirs,
China. The quest for a feasible method for Mo removal from aqueous solutions has become a growing
concern since the maximal Mo contaminant level in drinking water has reached 0.07 mg/L according to
the Chinese drinking water standard (GB 5794-2006).

Ion exchange [1], solvent extraction [2], coagulation (coprecipitation) [3], bioremediation [4],
and adsorption [5–13] are some techniques contemporarily employed for removing Mo from water.
Owing to the simplicity of technique and economy of cost, adsorption is a frequently employed
practice for removing Mo from water. Elemental iron is extensively employed as an adsorbent for Mo
elimination [5,13] due to its high affinity for Mo. In fact, recent reports suggest the use of nanoscale
zero-valent iron (NZVI) as an excellent material for remediation of Mo-polluted water in situ [14].
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As for the removal of Mo from drinking water, it also has a promising potential due to its large active
surface area as well as an increased capacity to adsorb Mo.

However, due to the appearance of NZVI as fine powders, it is not possible to apply it in
fixed-bed columns unless they come in the shape of granules. NZVI particles tend to agglomerate
into larger particles, a tendency manifested by other nanomaterials, particularly due to its intrinsic
magnetic interactions and high surface energies, resulting in the decline in reactivity performance as
well as a reduction of surface area. NZVI immobilization in supports like activated carbon [15,16],
sand [13], resin [6], and multiwalled carbon nanotubes is an approach with the potential to solve the
aforementioned problem. In addition, as an environmentally friendly material, iron will not cause harm
to human health. However, there has been no study on the kinetics of Mo(VI) elimination from raw
water by nano zero-valent iron supported on activated carbon (NZVI/AC). Furthermore, an in-depth
understanding of its dynamics and fixed-bed column experiments would help in accelerating the
application of nanomaterials in engineering.

In our previous work, activated carbon supports were used for nanoscale zero-valent iron to
achieve arsenic removal from drinking water. The current study was based on our attempt to test
its performance for Mo removal from water using nano zero-valent iron supported on activated
carbon (NZVI/AC). The impact of different parameters such as adsorption kinetics, common ions, pH,
and fixed-bed column runs on Mo removal were ascertained.

2. Experimental

2.1. NZVI/AC; Synthesis and Characterization

The synthesis and characterization of NZVI/AC were carried out as follows. The carbon was
washed by soaking in HNO3 followed by repeated rinsing with distilled water. AC was equilibrated
with ferrous sulfate solution. The solution was diluted using a mixture of ethanol and deionized
water. NaBH4 was then added in a dropwise manner into the solution with magnetic stirring and N2

bubbling. Ferrous iron (Fe2+) was reduced. After agitation, the AC-supported NZVI was separated
from the mixture and washed with acetone, vacuum-dried and stored in a N2-purged desiccator [15].
Its main features are listed in Table 1.

Table 1. Main features of nano zero-valent iron supported by activated carbon (NZVI/AC).

Thickness Shape Diameter Fe Content Total Pore Volume BET Surface Area

~20 nm flakes <100 nm ~8.2% 0.45 cm3/g 821.7 m2/g

BET: Brunauer-Emmett-Teller

2.2. The Simulation Water and Raw Water Quality Parameters of a Reservoir

Specific ions were dissolved in de-ionized water in mentioned concentrations to make simulation
water of certain chemical composition.

In order to investigate how the synthesized NZVI/AC perform to remove Mo(VI) from raw water,
we took water from a reservoir in Songxian county, Henan Province, China, which has molybdenum
mines in the upper streams of its river. Its water quality parameters are shown in Table 2.

Table 2. The water quality parameters of a reservoir/µg·L−1.

Element Mo As Cd Cr Cu Fe Hg Mn Al

Average value 160.3 3.29 0.742 8.01 4.12 38.9 0.029 1.53 157.8

Element Ni Pb Zn pH NH3-N TN TP CODCr BOD5

Average value 6.90 0.59 8.69 8.13 186 2043 19.2 2027 983



Water 2020, 12, 3162 3 of 12

Due to the large daily consumption of drinking water, it is impossible to adjust its pH value in
industrial production, and it can only be quantified at its natural pH around 8.1. Therefore, this study
fixed the pH value at around 8.1.

2.3. Adsorption Kinetics

In the previous experiments, we screened the activated carbon with the weakest molybdenum
adsorption from the common activated carbons. In this experiment, the adsorption of molybdenum
by activated carbon was only 1.1%, so we ignored its ability to adsorb molybdenum in batches
and fixed-bed.

0.5 g/L NZVI/AC absorbent was added to each of the three conical flasks having 0.1603 mg/L
Mo(VI) in 500 mL volume. The pH of the solution was maintained at 8.1 using 0.1mol/L HCl or NaOH.
An air-bath shaker was used to shake the mixtures at 25 ◦C for 72 h. An aliquot of the supernatant was
drawn at intervals and a 0.22 µm membrane filter (Millipore) was employed to filter it for analysis of
aqueous Mo. The mean value was reported after running each experiment in triplicate.

The following expression was used to calculate residual concentration in the adsorbent (qt, mg/g):

qt =
V(C0 −Ct)

Ws
(1)

where V represents the volume of solution (in L), C0 and Ct are the respective Mo(VI) concentrations
initially and at a time t (in mg/L), and Ws stands for the adsorbent weight (g). The following equation
was used to calculate the percentage of removed Mo(VI) (R%):

R (%) =
C0 −Ct

C0
× 100 (2)

2.4. Models

Mo(VI) adsorption kinetics were computed using an intraparticle diffusion model [16] in the
current investigation by employing the expression given below.

qt = kid t0.5 (3)

qt (mg/g) represents the quantity of Mo(VI) adsorbed at time t, and kid describes the original
intraparticular diffusion rate (mg·g−1

·h−0.5).

2.5. The Influence of pH on the Adsorption Behavior of NZVI/AC

The mineral suspensions containing Mo(VI) were adjusted to an initial pH range of 3.5–9.5 using
1 M NaOH or 1 M HCl while keeping the total volume change under <2%.

A 1000 mL conical flask was taken, and a 500 mL portion of Mo(VI) solution along with 0.25 mg
of NZVI/AC. Mo(VI) concentration initially was 0.1603 mg/L in simulation water (SW) or raw water
(RW), and the pH was in the range of 3.5–9.5. A to-and-fro shaker maintained at 25 ± 1 ◦C and 150 rpm
was used to mix the samples. Multiple adjustments of the samples resulted in the attainment of a
stable desired pH. Following 9 or 72 h, sample aliquots were drawn for analyzing Mo(VI) using an
atomic absorption spectrophotometer with graphite furnace (AAS-GF, ZA3700, Hitachi High-Tech
Instruments Co., Ltd. Kumagaya-shi, Japan).

Specific ions dissolved in deionized water define the chemical makeup of the simulation water.

2.6. Effect of Humic Acid and Coexisting Ions

We investigated the impact of commonly present anions (carbonate, oxalate, sulfate, phosphate,
silicate, chromate, arsenate), cations (iron, aluminum, zinc, nickel), and humic acid (HA) on Mo(VI)
adsorption onto NZVI/AC. The concentration of humic acid was maintained at 5 mg/L, and the mole
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ratio of the ions added to Mo(VI) was 10:1. A Mo(VI) solution (500 mL volume of 0.1603 mg/L) having
coexisting ions added to it was adjusted to pH 8.1 and added with 0.5 g/L of the NZVI/AC. The mixtures
were allowed to equilibrate at 25 ± 1 ◦C and a fixed pH for 9 h or 72 h with 150 rpm.

2.7. Column Experiments and Regeneration

A fixed-bed column system was installed to examine the dynamic behavior of removal of Mo(VI)
by NZVI/AC. The polymethyl methacrylate (PMMA) columns having an internal diameter of 1 cm and
a height of 40 cm were set up for conducting column experiments. A small piece of glass wool was
used to plug the column at both ends. The experimental design of the column and the components
associated with it is illustrated in Figure 1. The tests were carried out at 25 ± 1 ◦C. A peristaltic pump
(HL-1S, Shanghai Huxi Analytical Instrument Co., China) was used to attain an affixed flow rate.
In order to ensure that the bed was perfectly saturated, an upward transfer of the Mo(VI) ions solution
was made through the NZVI/AC beds. The tests were carried out as a function of empty-bed contact
time (EBCT). Effluent samples were withdrawn at intervals to estimate the breakthrough points and
for drawing breakthrough curves (BTCs). The tests were carried out until the complete saturation of
adsorbents, followed by the analysis of column data.
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Figure 1. Experimental setup for column tests.

At an effluent Mo(VI) concentration above 70 µg/L, NZVI/AC was taken out of the column for
regeneration and stored in a 250 mL flask. A 0.5 mol/L NaOH solution equivalent to 5 times the volume
of NZVI/AC was added, followed by the shaking of the suspension for 5 h at 150 rpm at 25 ± 1 ◦C, after
which the alkaline solution was discarded. Four repetitions of the desorption process were performed,
and deionized water was used to elute the NZVI/AC treated with alkaline solutions.

3. Results and Discussion

3.1. Adsorption Kinetics

The kinetics of adsorption of Mo(VI) by NZVI/AC, as illustrated in Figure 2, comprises two
steps: initial fast sorption followed later by a relatively slower adsorption event. Roughly 89.5% of
Mo(VI) was eliminated from simulation water during the first 1.5 h, whereas 74.0% was removed
from raw water during the first 14 h; meanwhile adsorption equilibrium was attained in ~9 h and
72 h, respectively. Thus 9 h and 72 h equilibration times were applied in further investigations carried
out with SW and RW. Quite a similar phenomenon was manifested in the case of the adsorption of
metal cations (e.g., AsO3−

4 ) on NZVI/AC and the fast initial adsorption was ascribed to the metal ions
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transferring initially at a fast rate to adsorbent particles’ surface, whereas the slow adsorption following
later was due to metal ions slowly diffusing into the pores of the intra-particle adsorbent [15].

We have used many models to analyze the adsorption kinetic data, but only the intraparticle
diffusion model fitted well (R2 > 0.9) in this study. In an attempt to devise the adsorption-based
treatment systems, the adsorption kinetic data of liquid-phase adsorption was analyzed using many
models; however, in this study, the best explanation of the experimental data is given by the intraparticle
diffusion model (R2 > 0.99) (see Table 3).

Table 3. Rate constants for the adsorption kinetic model of Mo(VI) in simulation water (SW) and raw
water (RW) on NZVI/AC.

Parameter
Weber–Morris Diffusion

1st Step 2nd Step

C0 (0.1603mg/L) kid1 R2 kid2 R2

simulation water 0.2405 0.9908 0.02006 0.9906
raw water 0.0654 0.9908 0.00292 0.9950

It has been illustrated by Weber and Morris that the rate-determining step in an adsorption system
is intraparticle diffusion, and the amount of the substrate adsorbed (qt) varies as a function of the
square root of time (t0.5) in a linear fashion. The speeds of adsorption are then calculated using these
data [9]. A linear relationship was observed in a plot of qt versus t0.5 in two separate stages (Figure 2b).
Therefore, to both these stages, Equation (1) was applied individually. The adsorption on the NZVI
situated in the macropores corresponds to the first linear section of the graph, while the diffusion of
Mo(VI) corresponds to diffusion into meso- and/or micropores. The adsorption was quick on the NZVI
particles in the AC channels or macropores; however, their diffusion was rather slow into micro- and
mesopores due to the blockage of most pores. Additionally, there was the involvement of the corrosion
of the NZVI surface, diffusion, and adsorption in the corrosion layers. For the 1st stage, the kid values
were higher than the 2nd stage, in fact, 11.99 and 22.40 times higher, respectively, in SW and RW,
suggesting a higher velocity of the stage 1 reaction compared to the stage 2, thus corroborating with
Figure 2.
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Figure 2. Adsorption kinetics of Mo(VI) on NZVI/AC. (a) Intraparticle diffusion model of the kinetics 
of Mo adsorption onto NZVI/AC in SW. Right inset shows original data of Mo(VI) adsorption with 
respect to time in SW. (b) Intraparticle diffusion model of the kinetics of Mo adsorption onto 
NZVI/AC in RW. Right inset shows original data of Mo(VI) adsorption with respect to time in RW. 
Conditions: pH = 8.1, 20 × 40 mesh particle size, 150 rpm, adsorbent dosage in simulation water = 0.5 
g/L, t = 72 h, T = 298 K, C0 SW = 0.1603 mg/L, C0 RW = 0.1603 mg/L. 

A similar phenomenon was manifested during adsorption of acidic dye [16], AsO3  and AsO3  
[15], and Cu(II) and Cd(II), on activated palm ash and rice/modified rice husk [17], on NZVI/AC. 
However, when using clay-impregnated nanoscale zero-valent iron for the degradation and 
adsorption of Cu2+ and Zn2+ from wastewaters, the calculated qe values and the rate constants were 

Figure 2. Adsorption kinetics of Mo(VI) on NZVI/AC. (a) Intraparticle diffusion model of the kinetics
of Mo adsorption onto NZVI/AC in SW. Right inset shows original data of Mo(VI) adsorption with
respect to time in SW. (b) Intraparticle diffusion model of the kinetics of Mo adsorption onto NZVI/AC
in RW. Right inset shows original data of Mo(VI) adsorption with respect to time in RW. Conditions:
pH = 8.1, 20 × 40 mesh particle size, 150 rpm, adsorbent dosage in simulation water = 0.5 g/L, t = 72 h,
T = 298 K, C0 SW = 0.1603 mg/L, C0 RW = 0.1603 mg/L.
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A similar phenomenon was manifested during adsorption of acidic dye [16], AsO3−
4 and

AsO3−
3 [15], and Cu(II) and Cd(II), on activated palm ash and rice/modified rice husk [17], on NZVI/AC.

However, when using clay-impregnated nanoscale zero-valent iron for the degradation and adsorption
of Cu2+ and Zn2+ from wastewaters, the calculated qe values and the rate constants were observed to
lie close to the experimental qe values for the pseudo-second-order (PSO) model as compared to when
the pseudo-first-order (PFO) expression was taken into consideration.

The mechanism of removal of Mo(VI) by NZVI is immature. However, it was suggested by Jingge
Shang that, for Cr(VI) elimination by nanoscale zerovalent iron particles supported on herb-residue
biochar, the PSO model provides a better fit with the kinetic data. Hence, the kinetic parameters are
regulated by a chemical process, which implies that the processes occurring during Cr(VI) removal are
reduction and adsorption/coprecipitation [18]. Considering that CrO2−

4 and MoO2−
4 are both anions

(−2 valence) and have the same structure. The radius of CrO2−
4 and MoO2−

4 are 0.240 nm and 0.246 nm,
respectively. We therefore speculate the similarity in the adsorption/coprecipitation mechanism of
Cr(VI) and Mo(VI) in solution by nanoscale zero-valent iron.

3.2. Effect of pH

The adsorption envelopes of Mo(VI) from solutions on NZVI/AC in a pH range of 3.5–9.5 are
shown in Figure 3. Apparently, media pH strongly impacts Mo(VI) removal efficiency, and increased
removal of Mo(VI) from Mo(VI) solution was observed from pH 3.5 to pH 4.5, whereas a decrease
was observed from pH 4.5 to pH 9.5. The previous work also reports a decrease in Mo(VI) adsorption
on nanosized zero-valent iron after pH 5, while adsorption of Mo(VI) exhibited an increase in acidic
solution but a decrease in alkaline media [5]. At pH ~5, the adsorption profiles of arsenate and arsenate
onto iron oxyhydroxide supported by bead cellulose were observed to intersect [19].
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0.5 g/L, T = 298 K, initial Mo concentration in simulation water = 0.1603 mg/L; initial Mo concentration
in raw water = 0.1603 mg/L.

A strong acid will dissolve and lose iron from NZVI/AC, so we investigated the pH of the
simulation and raw water from 3.5 to 9.5, while J.J. Lian studied the pH 2–10 using nano zero-valent
iron supported on biochar [5].

The pH dependency in the adsorption of Mo(VI) onto NZVI/AC is the impact of numerous factors
that compete with one another in regulating adsorption. We suggest that there are three steps in the
adsorption of Mo(VI) onto the NZVI surface: (1) migration onto the surface; (2) deprotonation or
dissociation of an aqueous complex of Mo(VI); and (3) surface complexation [15]. As a prerequisite to
the adsorption reaction, Step 1 is largely controlled by electrostatic interaction (attractive or repulsive)
among the surfaces of the adsorbent and aqueous Mo(VI) species. Hence, the speciation of aqueous
Mo(VI) and the pH of zero-point charge (pHZPC) of the adsorbent are the governing factors. As is
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already known, there exists a negative charge on solid surfaces at pH above pHZPC, whereas a positive
charge exists at pH below pHZPC, leading to a rise in electrostatic repulsion or attraction with anionic
Mo(VI) species, thereby resulting in an increased or decreased efficiency of adsorption. When the
pH increased to 9.0, the percentage of adsorption decreased rapidly toward a negligible efficiency of
removal by the end of the test (<30%). Other studies reported similar observations [5].

3.3. Effect of Coexisting Ions

Various anions and cations are commonly present in drinking water which may positively or
negatively impact the adsorption of Mo(VI). The influence of some common anions (CO2−

3 , C2O2−
4 , SO2−

4 ,
PO3−

4 , SiO2−
4 , CrO2−

4 , AsO3−
4 ), cations (Fe3+, Al3+, Zn2+, Ni2+), and HA on Mo(IV) adsorption by

NZVI/AC were examined in the current study (see Figure 4). The presence of humic acid and anions
adversely affected the removal of Mo(VI). Silicate, arsenate, and phosphate caused a more adverse
effect; however, the HA caused a less-adverse effect on Mo(VI) removal amongst all the oxyanions
investigated in this work.
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Figure 4. Impact of coexisting ions on Mo(VI) removal by NZVI/AC at 8.1. Initial Mo(VI) concentration
was 0.1603 mg/L and 0.1603 mg/L; the molar ratio of Mo to coexisting anions was 1:10; humic acid (HA)
added was 5 mg/L.

Arsenate, molybdenum, phosphate, and silicate can form inner-sphere complexes with an iron
oxide surface. Due to their competition for capturing the similar binding sites, they would decrease the
sorption of molybdenum. Both non-specific and specific sorption is observed for sulfate ions. However,
they have a much weaker strength of bonding with iron (hydr)oxide than molybdate [20]. While earlier
reports suggest that arsenic removal by zero-valent iron improved at an increased concentration of
sulphate [21], the presence of sulfate at a level relevant to the environment manifested a very little
negative effect.

Divalent/multivalent metallic cations of the Fe3+, Zn2+, Ni2+, and Al3+ notably enhanced Mo(VI)
adsorption on NZVI/AC. The positive impact remarkably increased upon the increase in pH, particularly
for ferrous iron Fe3+. This is particularly useful for the treating reservoir water contaminated
with Mo(VI), contamination which normally contains copious amounts of Al3+ dissolved in it.
The augmenting impact of metal cationic species on Mo(IV) adsorption has been mentioned in earlier
reports for iron (hydr)oxides [22]. Presumably, this is because the metal cations present in the solution
transformed the adsorbent surface to a positively charged nature, which in turn led to the adsorbent
showing a higher affinity for Mo(VI) anions.

According to the discussion above, the adsorption of Mo(VI) is majorly regulated by H2MoO4

deprotonating at pH < 9. Fe3+ ions presumably form complexes with Mo(VI) in aqueous media.
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Consequently, the extent of deprotonation/dissociation suppresses and the net adsorption reduces.
The adsorption of metal cations (e.g., AsO3−

4 and AsO3−
3 ) on NZVI/AC also manifested a similar

phenomenon in our previous research [15].

3.4. Fixed-Bed Column Runs

In view of the treatment efficiency, further investigation was based on examining the operational
parameters like EBCT. EBCT is undoubtedly a crucial attribute to be taken into account in adsorption
studies, because the efficiency of removal efficiency is strongly dependent on the duration of contact
between the adsorbate (Mo(VI)) and the adsorbent (NZVI/AC). The empty-bed contact time of the
influent was kept generally at 1.5–12 min when adsorption was employed as a potential technique to
eliminate the pollutants from aqueous systems [23]. Figure 5 shows breakthrough behavior during the
fixed-bed column runs from deionized water supplemented with Mo(VI).
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Figure 5. Mo(VI) breakthrough behavior of the column test from deionized water (temperature
25 ± 1 ◦C, influent pH 8.1 ± 0.1, initial SW and RW [Mo(VI)] 0.1603 mg/L, SW Mo(VI) and RW Mo(VI)
empty-bed contact time (EBCT) = 3.0 and 6.0 min.

As anticipated, EBCT essentially impacted the breakthrough behavior, and the increasing EBCT
resulted in an increase in adsorptive efficiency due to the increase in contact time. At 6.0 min, even when
the effluent volume was as high as 1100 BV, the RW [Mo(VI)] concentration in the remaining solution
remained well below 70 µg/L, whereas at an EBCT of 3.0 min breakthrough (MCL, 70 µg/L) was found
to be 800 BV.

In accordance with WHO’s Mo(VI) maximum contaminant level (MCL, 70 µg/L), at a 3.0 min
EBCT (empty-bed contact time), the SW and RW Mo(VI) effluent concentrations were under 70 µg/L
till the empty-bed volume reached 1600 and 800 BV, respectively. The SW [Mo(VI)] and RW [Mo(VI)]
concentration in the effluent solution was above 70 µg/L, at an EBCT of 6.0 min when the effluent
volume reached 2300 BV and 1300 BV. The RW’s EBCTs of neither 3.0 nor 6.0 min are less than the SWs
attributed to its complicated water quality composition

As the solute concentration in the effluent reaches up to 95% of the influent value, the point of
column exhaustion is attained, where the solid-phase concentration reaches a maximum value. It is
noteworthy that in comparison to the obtained maximum adsorption capacities, the maximal retention
capacities were much lower in batch experiments, which can be attributed to the comparatively
high flow rate in the column experiments, which might result in insufficient contact time between
Mo(IV) and NZVI/AC. Breakthrough empty-bed volume depends primarily on NZVI/AC and influent
Mo(VI) concentration. It should hence have a bigger value at longer EBCTs and lower initial
Mo(VI) concentrations.
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The batch experiments described above exhibit that the adsorption capacity for Mo(VI) by
NZVI/AC was about 3 times compared to that of Mo(VI) at neutral pH. This shows that in batch
experiments, NZVI/AC manifested a higher removal performance for Mo(VI) (neither SW nor RW)
than in fixed-bed column; however, the fixed-bed column is more suitable for continuous industrial
production than batch experiments.

The exhausted NZVI/AC was regenerated in 0.5 mol/L NaOH solution 5 times, and then it was
eluted by deionized water a few times. The alkaline solutions have been analyzed prior to handing over
to the special laboratory hazardous waste treatment center according to Chinese policy. The results
displayed that more than 90% of adsorbed Mo(IV) was recovered and iron showed almost no shedding
when Mo(IV)-saturated NZVI/AC was regenerated with 0.5 mol/L NaOH. The regeneration process
could be interpreted as follows:

Fe-Mo(IV) + OH−� Fe-OH + Mo(IV) (Kdes)

3.5. Mechanism of Removing Mo(VI) from Water by NZVI/AC

The mechanism regulating the removal of molybdenum from water through the use of
zero-valent iron is mainly adsorption, surface complexation, Mo(OH)3 precipitation, and Mo-Fe
mineral (FeMoO4) formation.

In the current work, the removal rate of molybdenum is faster in the initial stage of the reaction,
indicating that adsorption is the major process during the initial stages of reaction. The adsorptive
removal of molybdenum can take place through complexation or electrostatic interaction.

The main mechanism enabling zero-valent iron to remove molybdenum from water is the
combined action of adsorption and chemical precipitation.

Once zero-valent nano-iron enters the solution, it will be oxidized by water to form Fe2+. Fe2+ is
affected by the pH of the solution, oxidation-reduction potential, and other factors to further form iron
(hydrated) oxide and various iron (hydrated) oxides in solution. The molybdenum in the liquid tends
to form compounds such as FeMoO4·xH2O, thus molybdenum in the liquid phase is transferred to the
adsorbent and removed.

In this experiment, the loaded iron was found to play a major role in Mo(VI) elimination.
The nano-iron will react with water and trace oxygen dissolved in water and corrode [7,9,19,20].
According to the results obtained by Bruce et al. [24] using EXAFS research, nano-iron first generates
intermediate products like ferrous iron (Hydrate) oxides, and later produces iron (hydrated) oxides.
The final product may include maghemite (γ-Fe2O3), magnetite (Fe3O4), lepidocrocite (γ-FeOOH), etc.
Following the series of multiphase complex reactions on the iron surface as mentioned above, a variety
of hydrated oxides having a strong adsorption capacity for Mo(IV) are finally formed (see Figure 6).

The above reactions can be expressed as follows [20]:

(1) Fe0 reacts with water or dissolved oxygen to form Fe2+:

Fe0 + 2H2O→Fe2+ + H2 + 2OH−

Fe0 + O2 + 2H2O→Fe2+ + 4OH−

(2) Fe2+ is further transformed into iron (hydrated) oxides by the pH of the solution and the
oxidation-reduction potential and other factors:

6Fe2+ + O2 + 6H2O→2Fe3O4(s) + 12H+

Fe2+ + 2OH−→2Fe(OH)2 (s)
6Fe(OH)2(s) + O2→2Fe3O4(s) + 6H2O

Fe3O4(s) + O2(aq) + 18H2O
12Fe(OH)3(s)
Fe2− + MoO4

2− + xH2O→FeMoO4·xH2O
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Hydrated iron oxide has a large number of active sites (-OH) on the surface, so it has a strong
adsorption capacity for Mo(VI).

It is generally believed that the adsorption of Mo(VI) on the surface of hydrated iron oxide
takes place as a bidentate binuclear chelate [9,16,19]. Recent studies have shown that in neutral to
weakly alkaline media, this form is adsorbed on the surface of hydrated iron oxide; however, it forms
an amorphous iron molybdate surface precipitate (FeMoO4·xH2O) in a weakly acidic medium [25].
Yong H. Huang et al. found a conventional ZVI-only system or a ZVI/Fe(II) system could not be
efficiently removed molybdate from water. The hybridized ZVI/Fe3O4/Fe(II) system can achieve rapid
and sustainable reduction and immobilization of molybdate from water. Molybdate can be rapid and
sustainable reduction and immobilization from water by the hybridized ZVI/Fe3O4/Fe(II) system [26].

4. Conclusions

The supported nano-iron, NZVI/AC, prepared in this study manifests a good potential for the
removal of Mo(IV) in a neutral media among the common anions and cations in natural water
environments. Phosphate and silicate have been found to affect the adsorption and removal of Mo(IV)
with different degrees of inhibition. However, other common ions have little effect on it. The application
of the loaded nano-iron adsorbent to the removal of Mo(IV) in drinking water has potentially valuable
application prospects.
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