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Abstract: In the process of hydrological forecasting, there are uncertainties in data input, model
parameters, and model structure, which cause a deterministic forecasting to fail to provide useful risk
information to decision-makers. Therefore, the study of ensemble forecasting and the analysis of
hydrological uncertainty are of great significance to guide the actual operation of reservoirs in the
flood season. This study proposed a Bayesian ensemble forecast method, comprising of a Gaussian
mixture model (GMM), a hydrological uncertainty processer (HUP), and an Autoregressive (AR)
model. First, the GMM is selected as the marginal distribution function to estimate the uncertainty of
observed and modelled data. Next, the AR model is used to correct the forecast rainfall data. Then,
a modified HUP is used to deal with the uncertainty of hydrological model structure and rainfall
input data. In the end, the ensemble flow forecast results are composed of the expected values of the
posterior distribution obtained by HUP under different rainfall conditions. Taking the Three Gorges
Reservoir (TGR) as a case study, the ensemble flow prediction in the forecast period is calculated
by using the above method. Results show that the method proposed in this paper can improve the
accuracy of runoff forecasts and reduce the uncertainty of the hydrological forecast.

Keywords: ensemble flow forecast; autoregressive model; hydrological uncertainty processer; Three
Gorges Reservoir

1. Introduction

Flooding is the most common natural hazard and third most damaging globally after storms
and earthquakes [1]. Flood forecasting can provide key information for disaster warning and flood
control, which plays an important role in reducing the damage caused by flooding [2,3]. The common
flood forecasting methods generally use a deterministic hydrological model to predict the future
flood process [4–7]. However, the traditional deterministic hydrological forecast cannot provide the
hydrological forecast value in the forecast period to meet the needs of the corresponding river basin
management department [8].

Ensemble flow forecasting can provide more hydrological forecasting information for policymakers
in order to better ensure the safety of life and property in downstream areas and improve the social and
economic benefits [9,10]. Ensemble weather forecasting (EWF) plays an important role in ensemble
flow forecasting [11]. First, EWF contains more information, which can provide more comprehensive
meteorological data for a hydrological forecast in a future period [12]. Second, research shows that
combining EWF with a hydrological forecast model can improve the reliability and accuracy of
forecast results [13]. However, due to the diversity of atmospheric conditions and topography, the
simplification of physical and thermodynamic processes, the uncertainties of parameterization of
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models, and the limited spatial resolution, the standard EWF offers systematic deviations compared
with the observations [14]. Thus, EWF should be corrected first before being applied to the hydrological
forecasting process. For example, Hamill et al. [15] used a logistic regression method to process
the set rainfall forecast and obtained the conditional distribution function of rainfall under given
conditions. Sloughter et al. [16] used a logistic regression function and the Gamma distribution to
describe the distribution of rainfall events of zero value and non-zero value, respectively, then built a
mixed distribution function to describe the distribution of rainfall events, and improved the Bayes
Model Averaging (BMA) method to make it applicable to the post-processing of aggregate rainfall
forecasts. Wilks [17] improved the traditional logistic regression approach by introducing quartiles into
the function as independent variables, thus, providing a continuous probability distribution function
to describe the distribution of rainfall. However, the above methods need to make assumptions about
the distribution of rainfall in EWF, and the calculation process is tedious. To overcome the above
problems, the Autoregressive (AR) model, which is independent of the rainfall distribution, was used
to post-process the precipitation value of EWF.

In recent years, great progress has been made in the research and theory of hydrological
ensemble forecasting. Mylne [18] conducted a multi-mode ensemble prediction test, proving that
the information given by multi-mode ensemble prediction is more accurate than that provided by a
single mode prediction in either the probabilistic sense (such as probability density distribution) or
the deterministic sense (such as average ensemble prediction). Brown et al. [19] used the National
Center for Environmental Forecasting (NCEP) ensemble prediction model to drive the distributed
hydrological model to obtain the hydrological ensemble prediction results, and the results showed that
the ensemble prediction could improve the effective flood warning period. Choubin et al. [20] proposed
a new flood sensitivity set prediction method based on multiple discriminant analysis (MDA) and
classification and regression trees (CART), combined with support vector machine (SVM). However,
most of the above methods only consider the uncertainty of hydrological models or the uncertainty of
rainfall input data, and fail to reflect the comprehensive impact of uncertainties from different sources
in the prediction process and results. Therefore, this paper proposes a method that combines an AR
model with a Bayesian forecast system (BFS). The proposed model, comprehensively considering the
uncertainties of rainfall input, model structure, and parameters, is designed to yield good ensemble
flow forecast results in this paper.

Krzysztofowicz constructed the theoretical system of BFS for the first time in 1999 [21], and pointed
out that the source of uncertainty in short-term runoff forecasting is mainly the future time series
of rainfall as input to the hydrological model. BFS generates probabilistic forecasts of hydrological
variables through deterministic hydrological models. As a result, the basic principle is to divide the
sources of hydrological uncertainty into two categories: one is the input uncertainty with rainfall as
the core and the other is the structural uncertainty of the hydrological model. Quantitative research,
which is then combined into the final uncertainty probability forecast results, verifies that BFS can be
combined with any deterministic hydrological model, and is independent of whether the hydrological
model structure is linear or not [22,23].

Marshall [24] realized the probabilistic forecast by combining the Markov Monte Carlo (MCMC)
with Bayesian method, and compared it with conceptual rainfall-runoff model to illustrate the
advantages of probabilistic prediction. Subsequently, Marshall [25] used the Adaptive Metropolis
Algorithm to calculate the posterior density of Bayesian probability prediction and verified the feasibility
of Bayesian probability prediction as a hydrological prediction model. Henry [26,27] proposed a
random ensemble Bayesian probabilistic forecast system (REBFS) based on the BFS. The REBFS model
can output multiple set elements, effectively reducing the scale of the set weather prediction system,
and making it more feasible to apply the BFS to large-scale regions. However, the process of parameter
estimation of the above methods is complicated, which makes their application inconvenient. Feng et
al. [28] used the Gaussian mixture model (GMM) to fit the marginal distribution and applied it to the
hydrological uncertainty processer (HUP), and concluded that GMM had good applicability in HUP.
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However, it did not consider the effect of precipitation uncertainty. In order to solve the above two
problems, a method combining precipitation-dependent HUP (PD-HUP) and GMM is proposed in this
paper. The GMM function is used as the marginal distribution function in BFS, and the uncertainty of
precipitation input data is also considered.

In summary, the main objective of this paper is to propose a Bayesian ensemble forecast method
considering uncertainty of hydrological models and precipitation. First, the Autoregressive (AR) model
is used to correct the rainfall data of Ensemble Weather Forecasts (EWF). Then, a precipitation-dependent
HUP (PD-HUP) based on GMM is proposed to deal with the uncertainty of both the input data and
the hydrological model. Finally, the ensemble flow forecast results are generated from the results
determined by the PD-HUP method.

2. Methods and Data

2.1. Postprocessing of Ensemble Weather Forecasts

The Autoregressive (AR) model was used to postprocess the precipitation series of the EWF. The
AR model only reflects the influence and effect of related factors on the prediction target through its
own modelling of historical observations of time series variables. It is not restricted by the assumptions
that the model variables are independent of each other. The model constructed can eliminate the
difficulties caused by independent variable selection and multicollinearity in general regression
prediction methods. The mathematical expression of the AR model is shown below. e j

t = α
j
1e j

t−1 + α
j
2e j

t−2 + . . .+ α
j
pe j

t−p + ξ j

w j
c = w j

f ore,t − e j
t

, (1)

where w j
f ore,t is the uncorrected rainfall forecast value of jth ensemble member, e j

t(t = 1, 2, . . . , N) is
the prediction error sequence of the jth ensemble member at time t and represents the difference
between the EWF result and the observed precipitation. N is the length of the precipitation sequence
of each ensemble member. e j

t−1, e j
t−2, . . . , e j

t−p is the prediction residual series for the p periods of the

jth ensemble member before time t, α j
1,α j

2, . . . ,α j
p are the regression coefficients of the jth ensemble

member, p is the order, which can be determined by the Akaike information criterion (AIC) criterion,
ξ j represents a white noise sequence who’s mean value is 0, and variance is determined from the

parameterization and w j
c being the corrected prediction of the jth ensemble member. The calculation

steps of the AR model are as follows.
First, determine the order of p according to the AIC criterion. Letting p take different values,

calculate the AIC value of each ensemble member, and select the p value with the minimum AIC value
as the regression order of the AR model. AIC is expressed as follows:

AIC = 2k + n ln(L), (2)

where k is the number of parameters, referring to the order of AR in the model in this paper, and L is
the variance of the residuals.

Y = [ep+1, ep+2, . . . , eN]
T, (3)

and
ξ = [ξt−1ξt−1 . . . ξt−n]

T, (4)

A = [α1,α2, . . . ,αp]
T, (5)
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Then the p-order AR model can be expressed as:

Y = XA + ξ, (7)

The estimation of model parameters can be obtained from the least square principle.

A =
(
XTX

)−1
XTY, (8)

In the end, the AR models with the parameters determined above were used to correct the
precipitation forecast errors.

2.2. Establishment of the Ensemble Flow Forecast Model

The Bayesian probability forecast system (BFS) was first proposed by Roman Krzysztofowicz
in 1999. As an important part of BFS, the hydrologic uncertainty processor (HUP) presents the
hydrological prediction values in a probabilistic form through Bayesian analysis and calculation of the
results of the deterministic hydrological prediction model.

2.2.1. The Hydrological Uncertainty Processor Methodology

Let n (n = 0, 1, 2, . . . , N) denote forecast time. Suppose that hn(n = 0, 1, 2, . . . , N) represents the
observed inflow to the Three Gorges Reservoir (TGR) and sn(n = 0, 1, 2, . . . , N) represents the reservoir
inflow simulated by the hydrological model. Hn and Sn are, respectively, the implementation values of
the random variables. The prior probability density function (PDF) under different prediction periods
can be expressed as the following equation.

gn(hn|h0) =
γ(hn)

(1− c2n)1/2q(Q−1(Γ(hn))
× q

Q−1(Γ(hn)) − cnQ−1(Γ(h0))

(1− c2n)1/2

, (9)

where γ(·) is the marginal PDF of observed inflow, q(·) is the standard normal density function, Q−1(·)

is the standard normal quantile function, Γ(·) is the marginal cumulative probability function (CDF) of
Hn, and c is the Pearson correlation coefficient obtained from the normal quantile transform.

The PDF under different prediction periods can be expressed as follows.

ϕ(hn|sn, h0) =
γ(hn)

Tnq(Q−1(Γ(hn)))
×(

Q−1(Γ(hn))−AnQ−1(Λn(sn))−DnQ−1(Γ(h0))−Bn
Tn

) (10)

where Λn(·) is the marginal distribution function of the reservoir inflow simulated by the hydrological
model, and An, Bn, Dn, and Tn are the parameters calculated in the normal quantile conversion space
and the expression are as follows.

An =
anτ2

n

a2
nτ

2
n + σ2

n
, (11)

Bn =
−anbnτ2

n

a2
nτ

2
n + σ2

n
(12)
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Dn =
−andnτ2

n

a2
nτ

2
n + σ2

n
(13)

T2
n =

τ2
nσ

2
n

a2
nτ

2
n + σ2

n
(14)

In the normal space, the stochastic dependence between Wn and Wn–1 is governed by a
normal-linear equation.

Wn = cnWn−1 + Ξn, (15)

where cn is Pearson’s correlation coefficient, Ξ is a stochastically independent and normally distributed
variable of Wn with a mean of zero and a variance of τ2

n = 1− c2
n.

The stochastic dependence between Xn and Wn, Wn−1, W0 is governed by a normal-linear equation.

Xn = anWn + dnW0 + bn + Θn, (16)

where an, bn, and dn are the regression coefficients, and Θn is a stochastically independent and normally
distributed variable of (Wn, W0) with a mean of zero and a variance of σ2

n.

2.2.2. Precipitation-Dependent Hydrological Uncertainty Processer Based on Gaussian Mixture Model

In the calculation process of the HUP, the selection of marginal distribution function directly
affects the accuracy of calculation results and the complexity of parameter estimation. Feng et al. [28]
proposed that the Gaussian mixture model has better performance in fitting the marginal probability
distribution of the observed flow and simulated flow, which can improve the performance of the
prediction method based on HUP.

The marginal density function and distribution function in the HUP are estimated as follows.

γ(·) ≈ gmm(·|θΓ), (17)

Γ(·) ≈ GMM(·|θΓ) (18)

Λn(·) ≈ GMM(·|θΛn) (19)

where gmm(·|θΓ) and GMM(·|·) approximately represent the PDF and CDF of Hn, where θΓ and θΛn

are the distribution parameters to be estimated. More details about the GMM can be found in Feng
et al. [28]. Then, on the conditional of observed inflow at time t0, the prior distribution of Hn can be
expressed as:

gn(hn|h0) =
gmm(hn |θΓ)

(1−c2n)
1/2q(Q−1(GMM(hn |θΓ)))

×q
(

Q−1(GMM(hn |θΓ))−cnQ−1(GMM(h0 |θΓ))

(1−c2n)
1/2

) (20)

Similarly, according to Equation (10), under the condition that the observed inflow at time t0 is h0

and the simulated flow is sn, the posterior probability density function of Hn is the following.

ϕn(hn|sn, h0) =
gmm(hn |θΓ)

Tnq(Q−1(GMM(hn |θΓ)))

×q
(

Q−1(GMM(hn |θΓ))−AnQ−1(GMM(sn |θΛn ))−DnQ−1(GMM(h0 |θΓ))−Bn
Tn

) (21)

In order to accurately describe the uncertainty of the rainfall input data, the parameters of the
posterior probability need to be discussed, according to the precipitation during the lead-time period.
Krzysztofowicz [23] discussed the HUP model in the case of rainfall occurrence and non-occurrence,
and proposed the precipitation-dependent HUP (PD-HUP) model considering the uncertainty of
rainfall. However, there are only a few periods during the flood season when no rainfall is generated,
so it is difficult to accurately estimate the marginal distribution function of observed and predicted flow
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in the case of no rainfall. Therefore, this paper establishes a PD-HUP model based on the precipitation
in the lead time period, divided into two types of effective rainfall and negligible rainfall, and then
weighs the two to form a PD-HUP based on Gaussian mixture model (PD-HUP-GMM) model that
takes rainfall uncertainty into account.

Let Variable V represent different rainfall conditions and W represent precipitation. When v = 1,
it means effective rainfall (w ≥ 1 mm) and v = 0 (0 ≤ w ≤ 1 mm) means negligible rainfall.
Let γov(h0) = p(h0|V = v) represent the marginal PDF of h0 under the condition V = v where
v = P(V = 1) represents the probability of effective rainfall in the lead time period. Then, the marginal
PDF of Hn is as follows.

γ0(h0) = γ00(h0)(1− v) + γ01(h0)v, (22)

Under the condition that the observed inflow is h0, the probability of effective and negligible
rainfall is as follows.

P(V = 1|H0 = h0) =
γ01(h0)v
γ0(h0)

, (23)

P(V = 0|H0 = h0) =
γ00

(h0)(1− v)γ0(h0)
(24)

Under the condition that the observed inflow is h0, the PDF of the Sn is as follows.

kn(sn|h0) = kn0(sn|h0)
γ00(h0)(1− v)

γ0(h0)
+ kn1(sn|h0)

γ01(h0)v
γ0(h0)

, (25)

Under the condition that the observed inflow is h0 and simulated inflow is sn, the probability of
effective and negligible rainfall is as follows.

P(V = 1|Sn = sn, H0 = h0) =
kn1(sn|h0)γ01(h0)v

kn(sn|h0)γ0(h0)
, (26a)

P(V = 0|Sn = sn, H0 = h0) =
kn1(sn|h0)γ00(h0)(1− v)

kn(sn|h0)γ0(h0)
(26b)

Thus, finally, the posterior probability can be expressed as:

Water 2020, 12, x FOR PEER REVIEW 6 of 16 

 

0 1

1 1 1
0

( | )( | , )
( ( ( | )))

( ( | )) ( ( | )) ( ( | ))
                       

Γ
−

Γ

− − −
Γ Λ Γ

=

 − − −
×   

 

n

n
n n n

n n

n n n n n

n

gmm hh s h
T q Q GMM h

Q GMM h A Q GMM s D Q GMM h B
q

T

θϕ
θ

θ θ θ
, (21)

In order to accurately describe the uncertainty of the rainfall input data, the parameters of the 
posterior probability need to be discussed, according to the precipitation during the lead-time period. 
Krzysztofowicz [23] discussed the HUP model in the case of rainfall occurrence and non-occurrence, 
and proposed the precipitation-dependent HUP (PD-HUP) model considering the uncertainty of 
rainfall. However, there are only a few periods during the flood season when no rainfall is generated, 
so it is difficult to accurately estimate the marginal distribution function of observed and predicted 
flow in the case of no rainfall. Therefore, this paper establishes a PD-HUP model based on the 
precipitation in the lead time period, divided into two types of effective rainfall and negligible 
rainfall, and then weighs the two to form a PD-HUP based on Gaussian mixture model (PD-HUP-
GMM) model that takes rainfall uncertainty into account. 

Let Variable V represent different rainfall conditions and W represent precipitation. When v = 1, it 
means effective rainfall ( 1 mmw ≥ ) and v = 0 ( 0 1 mmw≤ ≤ ) means negligible rainfall. Let 

0 0( ) ( | )ov h p h V vγ = =  represent the marginal PDF of h0 under the condition V = v where ( 1)v P V= =  
represents the probability of effective rainfall in the lead time period. Then, the marginal PDF of Hn is as 
follows. 

0 0 00 0 01 0( ) ( )(1 ) ( )h h v h vγ γ γ= − + , (22)

Under the condition that the observed inflow is h0, the probability of effective and negligible 
rainfall is as follows. 

01 0
0 0

0 0

( )( 1 | )
( )
h vP V H h
h

γ
γ

= = = , (23)

00 0
0 0

0 0

( )(1 )( 0 | )
( )
h v

P V H h
h

γ
γ

−
= = =  (24)

Under the condition that the observed inflow is h0, the PDF of the Sn is as follows. 

00 0 01 0
0 0 0 1 0

0 0 0 0

( )(1 ) ( )( | ) ( | ) ( | )
( ) ( )n n n n n n
h v h v

k s h k s h k s h
h h

γ γ
γ γ

−
= + , (25)

Under the condition that the observed inflow is h0 and simulated inflow is sn, the probability of 
effective and negligible rainfall is as follows. 

1 0 01 0
0 0

0 0 0

( | ) ( )( 1 | , )
( | ) ( )

n n
n n

n n

k s h h v
P V S s H h

k s h h
γ
γ

= = = = , (26a)

( )1 0 00 0
0 0

0 0 0

( | ) ( ) 1
( 0 | , )

( | ) ( )
n n

n n
n n

k s h h v
P V S s H h

k s h h
γ

γ
−

= = = =  (26b)

Thus, finally, the posterior probability can be expressed as: 

0 0 00 0
0 0 0

0 0 0

1 0 01 0
1 0

0 0 0

( | ) ( )(1 )( | , ) ( | , )
( | ) ( )

( | ) ( )                            ( | , )
( | ) ( )

n n
n n n n n

n n

n n
n n n

n n

k s h h v
h s h h s h

k s h h
k s h h vh s h
k s h h

γϕ ϕ
γ

γϕ
γ

−
=

+
, (27)

2.2.3. Generation of Ensemble Flow Forecasts 

(27)

2.2.3. Generation of Ensemble Flow Forecasts

In order to convert the probability flow forecast result obtained by the PD-HUP-GMM method into
the ensemble flow forecast result, the expected value of the probability flow forecast result under each
rainfall condition is taken as the member of the flow forecast set to constitute the flow forecast ensemble.

First, the value of flood expectation under a different rainfall forecast is as follows.

E(Hn,t) =

+∞∫
−∞

hn,tϕ(hn,t|sn,t, h0)dhn,t, (28)
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where Hn,t represents the simulated value of the nth flood ensemble forecast member at time t, and
E(Hn,t) is the expected value of Hn,t. Then, the ensemble flow forecast result can be expressed as follows.

E(H1,1) E(H1,2) · · · E(H1,T)

E(H2,1) E(H2,2) · · · E(H2,T)
...

...
. . .

...
E(HN,1) E(HN,2) · · · E(HN,T)

, (29)

where T represents the number of periods of simulated runoff sequence, and each row in the matrix
represents a member of a flood ensemble forecast. The flow chart describing the Bayesian ensemble
forecast method is shown in Figure 1.

Figure 1. Flow of methods. The PD-HUP-GMM represents the precipitation-dependent hydrological
uncertainty processor (PD-HUP) based on a Gaussian mixture model (GMM).

2.3. Data

The Three Gorges Reservoir (TGR) located on the Yangtze River in China was selected as a case
study and located at Yichang on the Yangtze river in China, which is the world’s largest hydroelectric
project. Its geographical location is shown in Figure 2. The main functions of the Three Gorges
Reservoir are flood control, power generation, and navigation, etc. The basin area of the Three Gorges
Reservoir is 1 × 106 km2, the surface area of the reservoir is about 1080 km2, and the average width is
about 1100 m [29].
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Figure 2. Schematic of the Three Gorges Reservoir (TGR) in China.

The historical daily inflow data of TGR and precipitation from 2006 to 2017 during the flood
season were used in this study. This study uses the EWF data from the second edition of the Global
Ensemble Forecast System (GEFS) developed by the National Center for Environmental Forecasting
(NCEP). This is one of the most widely used numerical forecasting systems in the world. The data set
contains 11 set forecast members, and the spatial resolution in latitude and longitude is 1 ◦ × 1 ◦. Data
from January to September in 2017 was used in this study. The Xin’an Jiang model is selected as the
deterministic prediction model of the PD-HUP-GMM method with the precipitation and evaporation
in the study area used as the input. We decided to restrict the forecast period to one day ahead.

3. Results and Discussion

3.1. Correction of Ensemble Weather Forecasts

First, the value of order p was determined according to the AIC criterion. In this paper, p takes
different values (1, 2, . . . , 10). When we calculate the AIC value of each ensemble member, the result is
shown in Figure 3. The p value (p = 8) with the minimum AIC value was selected as the regression
order of the AR model.

Figure 3. The AIC value of each ensemble member.

Then, the mean absolute error (MAE) and root-mean square error (RMSE) were used to evaluate
the performance of the AR model. The MAE and RMSE are defined as follows.

MAE =
1
N

N∑
t=1

|Ft −Ot|

Ot
, (30)
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RMSE =

√√√
1
N

N∑
t=1

(Ft −Ot)
2 (31)

where Ft represents the forecast precipitation, and Ot represents the observed precipitation. The MAE
and RMSE value of each GEFS member before and after correction are shown in Table 1.

According to Table 1, after AR model correction, the MAE of precipitation data of GEFS members
decreased by an average of 18.10 m3/s, while RMSE decreased by an average of 16.05 m3/s. It shows
that the AR model can effectively reduce the precipitation deviation of GEFS. However, there are still
some bias and uncertainties in the corrected GEFS precipitation data. Therefore, the PD-HUP model
was adopted in this paper to further deal with the uncertainty of hydrological forecast caused by
rainfall forecast bias.

Table 1. Comparison of MAE and RMSE before and after correction.

GEFS Member
MAE RMSE

Before Correction After Correction Before Correction After Correction

1 30.46 11.25 32.42 15.98
2 29.95 11.49 31.89 16.36
3 29.45 12.09 31.54 16.30
4 28.87 11.49 31.03 15.82
5 28.13 11.75 30.29 15.14
6 28.54 10.44 30.86 14.17
7 29.47 10.73 31.83 14.94
8 29.74 11.61 31.72 15.36
9 28.92 10.55 30.71 14.18

10 28.76 10.83 30.97 14.91
11 29.98 10.91 32.19 15.77

3.2. Estimated Parameters of Ensemble Flow Forecast Model

3.2.1. Generation of Ensemble Flow Forecasts

The observed flow data in the flood season from 2006 to 2016 were used to fit the marginal
distribution. In order to obtain the marginal distribution function of the simulated flow, the Xin’an
Jiang model was used to calculate the simulated flow value in the same period as the observed flow at
first, and the lead time n was set to one day. The number of days with effective rainfall is 1178, and the
number of days with negligible rainfall is 164.

Following the ideas of Feng [28], the GMM with three Gaussian components was used to fit the
observed inflow and simulated inflow data of TGR. The Maximum Likelihood Estimate (MLE) was
used to estimate the parameters of the marginal distributions under heavy effective and negligible
rainfall conditions, respectively. The estimated parameter values are given in Tables 2 and 3. The fitting
of marginal CDF is shown in Figure 4. As can be seen from Figure 4, GMM fits the observed and
simulated flow marginal distribution under effective and negligible rainfall conditions.

Table 2. Estimated parameters of GMM distributions under effective rainfall.

Dataset Components Weight Mean Variance

Observed value
1 0.49 1.59 × 104 1.16 × 107

2 0.17 3.61 × 104 9.36 × 107

3 0.34 2.49 × 104 2.20 × 107

Simulated value
1 0.51 1.75 × 104 1.26 × 107

2 0.12 3.96 × 104 9.19 × 107

3 0.36 2.77 × 104 2.18 × 107
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Table 3. Estimated parameters of GMM distributions under negligible rainfall.

Dataset Components Weight Mean Variance

Observed value
1 0.46 1.63 × 104 1.12 × 107

2 0.16 2.59 × 104 6.03 × 107

3 0.38 1.06 × 104 3.29 × 107

Simulated value
1 0.57 1.25 × 104 4.55 × 107

2 0.12 2.82 × 104 4.79 × 107

3 0.31 1.92 × 104 1.20 × 107

Figure 4. Fitting of the marginal CDF of observed value and simulated flood value. (a) Marginal CDF
of observed value. (b) Marginal CDF of simulated value. GMM (v = 1) and GMM (v = 0), respectively,
represent the fitting of the distribution function in the case of effective rainfall and negligible rainfall.

3.2.2. Parameters of PD-HUP

The calculation method of prior density, likelihood function, and posterior is shown in
Equations (15)–(18). The parameters of prior density and likelihood function in the transformed space
is shown in Table 4 and the parameters of parameters of post distribution in the transformed space is
shown in Table 5.

Table 4. Parameters of prior density and likelihood function in the transformed space.

V c an dn bn σn tn

1 0.931 1.058 −0.150 −0.080 0.420 0.365
0 0.974 0.868 0.715 0.043 0.384 0.225

Table 5. Parameters of parameters of post distribution in the transformed space.

V An Bn Dn Tn

1 0.434 0.065 0.538 0.269
0 0.236 −0.169 0.765 0.200

3.3. Ensemble Forecast Analysis

In order to verify the effectiveness of the method proposed in this paper, precipitation and inflow
data of TGR in the flood season of 2017 were taken as model input data, and the above method was
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used to calculate the ensemble inflow forecast results of TGR. Three scenarios as shown in Table 6
were set up for comparative analysis. The Nash-Sutcliffe efficiency (NSE) and RMSE were selected to
evaluate the accuracy of forecast results under different scenarios and the variance was used to evaluate
the uncertainty of the Bayesian ensemble forecast result, as discussed in the following subsections.

Table 6. Brief descriptions of the four scenarios.

Scenarios Description

Observed data + Xin’an Jiang model Use observed data only to run Xin’an Jiang model
and get deterministic forecast

GEFS data + Xin’an Jiang model Use GEFS to run the Xin’an Jiang model and get
ensemble forecast

Corrected GEFS data + Xin’an Jiang model Corrected GEFS data to run the Xin’an Jiang model
and get ensemble forecast

Bayesian ensemble forecast
Use HUP to postprocess the result of corrected GEFS

data with the Xin’an Jiang model and get the
ensemble result

3.3.1. Comparison of Forecast Accuracy

For the deterministic forecast, the NSE and RMSE were calculated by observed inflow and
simulated result of the Xin’an Jiang model. For the ensemble forecast evaluate, the mean value of
ensemble members and observed were used to calculated NSE and RMSE. The forecast results of
different scenarios are shown in Figure 5. The formula for calculating NSE is as follows and the
calculated results of indicators are shown in Table 7.

NSE = 1−

N∑
i=1

(Qsim −Qobs)
2

N∑
i=1

(
Qsim −Qobs

)2
, (32)

It can be seen from the simulation results that, when the observed historical rainfall data is used
as the input of the hydrological model, the NSE of the simulation results can reach 0.92, as shown in
Table 7, indicating that the Xin’an Jiang model can be used as a deterministic model for hydrological
prediction in the research area. When GEFS data is directly used as input data of the Xin’an Jiang
model, the simulation results of the hydrological model are significantly larger than the actual runoff

process NSE= −7.14. When the GEFS data is corrected by using the AR model and the corrected GEFS
data is used as the input of the Xin’anjiang model, the simulation accuracy of the Xin’an Jiang model
has been significantly improved. However, by comparing the ensemble average with the observed
inflow process, the NSE improves to only 0.56, which is difficult to meet the demand for prediction
accuracy in actual production. This is mainly because the uncertainty of rainfall input data affects the
accuracy of hydrological model simulation results. Furthermore, by using the PD-HUP-GMM method
proposed in this paper, it can be found that the simulation results of the hydrological model have been
effectively improved. The NSE of the ensemble average value is up to 0.91 and the RMSE decreases by
52.6% when compared with the scenario of directly adopting the corrected GEFS data, greatly improve
the accuracy of the runoff simulation, and enough to meet demand for hydrological forecast accuracy
in practical production. It shows that the method proposed in this paper greatly improves the accuracy
of inflow forecast of TGR and is sufficient to meet the demand of hydrological prediction accuracy in
actual production.



Water 2020, 12, 3138 12 of 15

Table 7. NSE and RMSE of the four scenarios.

Scenarios NSE RMSE

Observed data + Xin’an Jiang model 0.92 1364.02
GEFS data + Xin’an Jiang model −7.14 13613.12

Corrected GEFS data + Xin’an Jiang model 0.56 3167.20
Bayesian ensemble forecast 0.91 1501.23

Figure 5. Cont.
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Figure 5. Simulated result of the four scenarios: (a) Observed data + Xin’an Jiang model, (b) GEFS data
+ Xin’an Jiang model, (c) Corrected GEFS data + Xin’an Jiang model, and (d) Bayesian ensemble forecast.

3.3.2. Uncertainty Evaluation of Ensemble Prediction Results

In order to analyze the uncertainty of hydrological model simulation results under different
scenarios, the variances of ensemble members in different time periods and different scenarios are
calculated. The formula for variance used is shown below.

Vart =

n∑
i=1

(
Qi,t −Qt

)2

n− 1
, (33)

where n is the number of ensemble members, Qi,t represents the prediction result of the ith ensemble
member at time t, and Qt is the mean value of the prediction result of all ensemble members at time t.
The variance of ensemble members in each scenario changes over time as shown in Figure 6.

Figure 6. The variance of ensemble flow forecast members at different moments of the 2017 flood
season under different scenarios.

As can be seen from Figure 6, when different rainfall input data are used, the uncertainty of
hydrological model simulation results is significantly different. When GEFS rainfall data is used to
directly drive the hydrological model, the variance of the ensemble member of the hydrological model
simulation results can reach 2.49 × 107, indicating that the simulation results are highly uncertain.
However, by using the adjusted GEFS rainfall data to drive the hydrological model, the variance of
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the ensemble members of the inflow prediction in different periods will significantly decrease, and
the uncertainty of the prediction results will significantly decrease. When the Bayesian ensemble
forecast method proposed by this paper is adopted, the uncertainty of hydrological prediction results
is further reduced.

4. Conclusions

In this paper, the precipitation data of the Global Ensemble Forecast System (GEFS) was
postprocessed by an Autoregressive (AR) model, and a precipitation-dependent hydrological
uncertainty processor based on GMM (PD-HUP-GMM) was proposed to generate the ensemble
flow forecast. Then, the Nash-Sutcliffe efficiency (NSE), root-mean square error (RMSE), and variances
of ensemble members were used to evaluate the accuracy and uncertainty of the ensemble flow forecast.
The TGR was selected as a case study. The main conclusions of this study are summarized as follows.

(1) The results of the AR model show that this model can effectively correct GEFS precipitation
data, and it is simple and feasible. The use of AR models to correct the GEFS rainfall data also helps to
improve the simulation accuracy of the deterministic hydrological model.

(2) The proposed method was compared with three different forecast methods. Results of the case
study show that the PD-HUP-GMM method combined with the corrected GEFS data can significantly
improve the NSE and RMSE of flow forecasting. From this point of view, the proposed method
performs well.

(3) The proposed method can effectively deal with the uncertainty of precipitation input data and
the hydrological model and, thus, improve the accuracy of the ensemble flow forecast average value to
a useful level.

Future work will involve extending the forecast period to a longer horizon to further evaluate the
potential of HUP in operational flow forecasting and improve its practical significance.

Author Contributions: Conceptualization, X.Y. and J.Z. Methodology, X.Y. Data curation, J.Z. Writing—original
draft preparation, X.Y. Writing—review and editing, X.Y, W.F., Y.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation Key Project of China (No.
52039004) and National Natural Science Foundation of China (No. U1865202).

Conflicts of Interest: The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

References

1. Chen, L.; Singh, V.P.; Guo, S.; Zhou, J.; Ye, L. Copula entropy coupled with artificial neural network for
rainfall–runoff simulation. Stoch. Environ. Res. Risk Assess. 2014, 28, 1755–1767. [CrossRef]

2. Yaseen, Z.M.; Naganna, S.R.; Sa’Adi, Z.; Samui, P.; Ghorbani, M.A.; Salih, S.Q.; Shahid, S. Hourly River
Flow Forecasting: Application of Emotional Neural Network Versus Multiple Machine Learning Paradigms.
Water Resour. Manag. 2020, 34, 1075–1091. [CrossRef]

3. Ramaswamy, V.; Saleh, F. Ensemble Based Forecasting and Optimization Framework to Optimize Releases
from Water Supply Reservoirs for Flood Control. Water Resour. Manag. 2020, 34, 989–1004. [CrossRef]

4. Bashir, A.; Shehzad, M.A.; Hussain, I.; Rehmani, M.I.A.; Bhatti, S.H. Reservoir Inflow Prediction by
Ensembling Wavelet and Bootstrap Techniques to Multiple Linear Regression Model. Water Resour. Manag.
2019, 33, 5121–5136. [CrossRef]

5. Fu, J.-C.; Huang, H.-Y.; Jang, J.-H.; Huang, P.-H. River Stage Forecasting Using Multiple Additive Regression
Trees. Water Resour. Manag. 2019, 33, 4491–4507. [CrossRef]
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