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Abstract: The estimation of the hydraulic parameters of an aquifer such as the hydraulic conductivity
is somehow complicated due to its heterogeneity, on the other hand field and laboratory tests are
both time consuming and costly. The use of geostatistical-based techniques for data assimilation
could represent an alternative tool that allows the use of space-time aquifer behaviour to characterize
hydraulic conductivity heterogeneity. In this paper, a spatiotemporal bivariate methodology was
implemented combining historical hydraulic head data with hydraulic conductivity sparse data
in order to obtain an estimate of the spatial distribution of the latter variable. This approach
takes advantage of the correlation between the hydraulic conductivity (K) and the hydraulic head
(H) behaviour through time. In order to evaluate this approach, a synthetic experiment was
constructed through a transitory numerical flow-model that simulates hydraulic head values in
a horizontally-heterogeneous aquifer. Geostatistical tools were used to describe the correlation
between simulated spatiotemporal data of hydraulic head and the spatial distribution of the hydraulic
conductivity in a group of model nodes. Subsequently, the Kalman filter was used to estimate
the hydraulic conductivity values at nonsampled sites. The results showed acceptable differences
between estimated and synthetic hydraulic conductivity data, with low estimate error variances
(predominating the 1 m2/day2 value for K for all the cases, however, the smallest number of cells
with values above 2 m2/day2 correspond to the bivariate spatiotemporal case) and the best agreement
between the estimated errors and the selected model variance (SMSE values of 0.574 and 0.469) were
found for the bivariate cases, which suggests that the implemented methodology could be used for
reducing calibration efforts, particularly when the hydraulic parameters data are scarce.

Keywords: hydraulic conductivity; groundwater numerical modelling; bivariate spatiotemporal
geostatistics; Kalman filter
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1. Introduction

Hydraulic conductivity (K) represents a fundamental parameter in the drainage and irrigation
systems design, agricultural engineering, soil science and industry, among others [1–3]. Other
applications can be found in construction and building materials; some other examples of infrastructures
where the K is essential are heat-insulation walls, permeable embankments, soil barriers, and backfill
engineering on soft ground [4–6]. Zhong et al. [7] proposed a modification to an existing model in
order to improve the K prediction with measured data in pervious concrete taking into account the
pore size and tortuosity. Turco et al. [8] calibrated a reservoir element model with experimental data of
different rain falls (water retention curve and saturated hydraulic conductivity) on an experimental
five layers permeable pavement.

On the other hand, there are many applications referred to the use of the K for estimating
groundwater yield and prospection, groundwater flow, contaminant transport dynamics and soil
electrical characteristics [9–11]. For example, Luo et al. [12] presented a method based on the effective
groundwater drainage length concept and a dynamic equilibrium condition for predicting the K in a
northwest USA valley with similar results to those obtained in previous works at a few observation
points. Brunetti et al. [13] used data from a Cosmic-Ray Neutron probe to inversely estimate the
soil hydraulic properties such as the hydraulic conductivity and the volumetric water content on a
200 cm deep homogeneous loamy sand soil profile covered by grass. Hörning et al. [14] presented
a modification of a geostatistical simulation technique based on Monte Carlo approach in order to
reduce the computational cost in the calibration phase using two groundwater examples. Different
variables such as the hydraulic head, transmissivity and conductivity were used for inverse modelling.

Numerical flow models are considered as one of the most reliable methods to evaluate groundwater
resources; for its construction, it is necessary to specify the lateral and vertical spatial aquifer limits,
the initial and boundary conditions (including recharge and discharge, whether it is natural or artificial)
as well as the K and the storage coefficient.

In flow modelling, reliable and known hydraulic parameters are required; however, these data
are commonly scarce and presented a high spatial variability due to the local properties heterogeneity
for each geological system. These values are usually obtained on-site from aquifer tests (by pumping,
which provide the most representative values for field conditions), in laboratories through permeability
tests, or alternatively from reference tables. Batlle-Aguilar et al. [15] reviewed some hydraulic and
chemical methods in order to estimate K and the porewater velocity. Likewise, geoelectrical methods
have been used for the estimation of the hydraulic conductivity since they are relatively faster and
cheaper than other tests.

The estimation of the aquifer hydraulic parameters through on-site tests are representative only
for a limited area around the pumping well used, besides, its inherent execution cost and field
implementation difficulties. On the other hand, the values estimated from laboratory permeability
tests do not reflect the aquifer field conditions. Another possibility is to use the values from reference
tables that presented ranges for different geological materials but it is not easy to select an appropriate
value for a specific aquifer because of its several materials. This estimation can be complemented with
resistivity data in areas where the information revealed by the wells and the pumping tests are not
enough, or even missing [16]. Another proposal for estimating soils’ hydraulic conductivity is the use
of pedotransfer functions [17].

As an alternative, different calibration methods are used to predict the hydraulic parameters of a
groundwater model, the selection of the method depends on the study approach. For a manual model
calibration, the boundary conditions must be established in order to minimize the differences between
simulated and observed values. If the conceptual model or the initial and boundary conditions are
not properly defined, it is highly probable that the estimated hydraulic parameters will be far from
reality after the calibration process. In the calibration stage, the use of an optimization algorithm is
essential to minimize the objective function. Besides, different spatial distributions of the hydraulic
parameters (between predefined lower and upper limits) are proposed, so the procedure usually
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requires repeatedly evaluating the objective function till the lowest error between observed–predicted
values is found [18]. Some other approaches have focused on the deterministic inverse approach
considering the solute transport parameters [19].

The conditioning problem for direct measurements has been addressed to geostatistics through
data assimilation, which refers to the process of combining a prediction model of a state variable
with a set of discrete measurements [20]. The objective of data assimilation, in the context of inverse
modelling, is to estimate a random field of state variables, extracting or filtering as much information as
possible from noisy observations, leading to the best possible statistical estimation of the variable field.

Spatial interpolation methods such as kriging are frequently used to estimate the spatial distribution
of hydraulic conductivity (K) at nonsampled locations based on scarce data. Geostatistical methods
based on spatial correlation do not give good results at model validation [21]. For that reason,
some authors have solved the inverse problem by obtaining the K distribution based on secondary
variables. Inverse modelling generates valuable data mainly when the analysed variable is scarce
and heterogeneous.

The Kalman filter (KF) has been widely used in different fields of science, it allows obtaining,
through a recursive procedure, linear unbiased estimates with a minimum variance for the state of a
system using noisy data [22]. If the dynamic system is nonlinear, it is possible to use modifications of
the Kalman filter (i.e., Extended Kalman filter (EKF), Ensemble Kalman filter (EnKF) [23] or Ensemble
Smoother (ES) [24,25]). Monte Carlo (MC) simulation is used in both EnKF and ES to define the state
vector. In the Herrera’s thesis [25], ES was applied for solving groundwater problems in parameters
estimation. Bailey and Baù [26] estimated the hydraulic conductivity through ES using two variables:
hydraulic head data and flow returns. The EnKF based on a Bayesian sequential update rule produces
similar results to those obtained by MC but with a significantly shorter computational time due to
its flexibility for incorporating multiple sources of uncertainty [27,28]. Franssen and Kinzelbach [29]
analysed a synthetic groundwater case with two variables (recharge rate and transmissivity) and
demonstrated that the EnKF requires 80% less computation time than the inverse modelling methods.
Due to the robustness of the EnKF against nonlinearity systems of the state transition function, it has
been successfully used for modelling groundwater flow and transport [20]. Several applications
of the EnKF can be found in the literature to simultaneously estimate the hydraulic parameters,
the hydraulic head and, in some cases contaminant concentrations within aquifers by using numerical
flow and transport models [29–35]. Before any calibration effort, it is desirable to have a good initial
spatial distribution of the hydraulic parameters; therefore, different estimation methods have been
implemented (univariate and bivariate geostatistical techniques).

The objective of this paper was to implement a bivariate spatiotemporal geostatistical-based
methodology that combines spatiotemporal hydraulic head data with hydraulic conductivity (K)
sparse data in order to obtain the spatial distribution of K. Covariances were strictly derived from
geostatistical analyses, not from numerical flow model simulations. This approach was compared with
estimated values using univariate (hydraulic conductivity data only) and spatial bivariate (hydraulic
conductivity as the main variable and hydraulic head data for a single time as secondary variable)
geostatistical approaches.

2. Materials and Methods

In order to evaluate the performance of the proposed approach to estimate hydraulic conductivity,
data from a synthetic numerical flow model was used. It was assumed that in some cells of the model,
hydraulic conductivity values were available, then, a geostatistical analysis was done with these data to
estimate hydraulic conductivity in the remaining cells employing the static Kalman filter as estimator.
In this manner, it was possible to evaluate the proposed approach by comparing the model input data
and the estimated K values.
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Even though the traditional estimation of univariate and bivariate cases is done with kriging
interpolation, in the case study, the Kalman filter is used as the estimation method due to its ease to
incorporate the bivariate spatiotemporal case.

The hydraulic conductivity was estimated by three different geostatistical-based methods:

• Univariate estimation (based on the spatial correlation of hydraulic conductivity data only).
• Bivariate or cross estimation (hydraulic conductivity as the primary variable and hydraulic head

for a single time as the secondary).
• Multivariate spatiotemporal estimation (based on the correlation between the hydraulic

conductivity data and the hydraulic head spatiotemporal data).

In the following subsections, a description of the geostatistical procedure to derive the univariate,
cross and spatiotemporal covariance matrices is presented, then, the scheme for the multivariable
covariance matrix is shown. Finally, relevant aspects of the Kalman filter theory and its implementation
for the proposed methodology are included.

2.1. Geostatistical Theory

Geostatistical analyses were followed in order to determine the spatial, cross and spatiotemporal
structures of covariance matrices derived from variograms.

The sampling variograms were defined as follows:

2.1.1. The Spatial Variogram

The sample variogram is calculated with:

γ∗s =
1

2N(h)

N(h)∑
i=1

[Z(xi) −Z(xi + h)]2, (1)

where N(h) is the number of pairs, Z(xi) and Z(xi + h) are the tail and head values, respectively. i is the
position of coordinates (xi, yi). The separation vector h is specified with some direction and distance
(lag) tolerance [36].

When the variogram model is selected, the covariance matrix can be derived by using the following
property for a second-order stationary spatial random field:

Cs(hs) = Cs(0) − γs(hs), (2)

where Cs(hs) is the spatial covariance, Cs(0) is the variance and γs(hs) is the spatial variogram model.
hs is the spatial distance between two positions of the covariance matrix. The structure of the spatial
covariance matrix is shown in Table 1.

Table 1. Structure of the univariate spatial covariance matrix.

C(xi, xi) C(xi, xi+1) . . . C(xi, xN)
C(xi+1, xi) C(xi+1, xi+1) . . . C(xi+1, xN)

...
...

...
...

C(xN, xi) C
(
xN,xi+1

)
. . . C(xN, xN)

2.1.2. The Cross Variogram

The sample cross-variogram for variables Z and Y is:

γ∗ZY(h) =
1

2N(h)

N(h)∑
i=1

[Z(xi) −Z(xi + h)][Y(xi) −Y(xi + h)], (3)
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For second-order stationary processes, the cross-covariance and the pseudo-cross-variogram are
related with Webster and Oliver [37]:

CZY(h) =
1
2
{
CZZ(0) + CYY(0)

}
− γP

ZY(h) (4)

The structure of the cross covariance is shown in Table 2.

Table 2. Structure of the cross-covariance matrix.

CZY(xi, xi) CZY(xi, xi+1) . . . CZY(xi, xN)
CZY(xi+1, xi) CZY(xi+1, xi+1) . . . CZY(xi+1, xN)

...
...

...
...

CZY(xN, xi) CZY
(
xN,xi+1

)
. . . CZY(xN, xN)

2.1.3. The Spatiotemporal Variogram

In the space–time conceptualization, the sample variogram for the spatial and temporal lags
(hs and ht, respectively) is based on the following expression:

γ∗st(hs, ht) =
1

2N(hs, ht)

T∑
i=1

N(hs,ht)∑
k=1

[Z(xk, ti) −Z(xk + hs, ti + ht)]
2, (5)

where N(hs,ht) is the number of pairs Z(xi,tk) and Z(xi + hs,tk + ht) separated by increments hs and ht, T is
the total number of times with data. ht is the temporal distance between two spatiotemporal positions.

In an analogue way to the spatial case, the spatiotemporal covariance matrix is derived from the
following equation for a second-order stationary space-time random field [38]:

Cst(hs, ht) = Cst(0, 0) − γst(hs, ht) (6)

The structure of the derived space-time covariance is as shown in Table 3.

2.2. Multivariate Spatiotemporal Methodology

For the estimation of the hydraulic conductivity, it is proposed to use its correlation with hydraulic
head spatiotemporal data, employing the Kalman filter as the estimation method. The values of
this parameter are estimated in a regular grid composed by estimation nodes (for the case study,
they correspond to the centre of the discretization cells of the numerical flow model where the hydraulic
conductivity is considered unknown). It is true that spatiotemporal geostatistical methods have been
used in several works to estimate environmental variables for a single variable [39–41]. However, to our
knowledge, it is the first time that a bivariate estimation is done using spatiotemporal correlations
in a geostatistical context (this can be corroborated in our revision of the state of the art included in
the introduction). Specifically, in our work, spatiotemporal hydraulic head correlated with hydraulic
conductivity data are used to estimate the latter variable.
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Table 3. Structure of the space–time covariance matrix.

C
(
xi,t, xi,t

)
C
(
xi,t, xi+1,t

)
. . . C

(
xi,t, xNP,t

)
C
(
xi,t, xi,t+1

)
C
(
xi,t, xi+1,t+1

)
. . . C

(
xi,t, xNP,t+1

)
. . . C

(
xi,t, xi,NT

)
C
(
xi,t, xi+1,NT

)
. . . C

(
xi,t, xNP,NT

)
C
(
xi+1,t, xi,t

)
C
(
xi+1,t, xi+1,t

)
. . . C

(
xi,t, xNP,t

)
C
(
xi+1,t, xi,t+1

)
C
(
xi+1,t, xi+1,t+1

)
. . . C

(
xi+1,t, xNP,t+1

)
. . . C

(
xi+1,t, xi,NT

)
C
(
xi+1,t, xi+1,NT

)
. . . C

(
xi+1,t, xNP,NT

)
...

...
...

...
...

...
...

...
...

...
...

...
...

C
(
xNP,t, xi,t

)
C
(
xNP,t, xi+1,t

)
. . . C

(
xNP,t, xNP,t

)
C
(
xNP,t, xi,t+1

)
C
(
xNP,t, xi+1,t+1

)
. . . C

(
xNP,t, xNP,t+1

)
. . . C

(
xNP,t, xi,NT

)
C
(
xNP,t, xi+1,NT

)
. . . C

(
xNP,t, xNP,NT

)
C
(
xi,t+1, xi,t

)
C
(
xi,t+1, xi+1,t

)
. . . C

(
xi,t+1, xNP,t

)
C
(
xi,t+1, xi,t+1

)
C
(
xi,t+1, xi+1,t+1

)
. . . C

(
xi,t+1, xNP,t+1

)
. . . C

(
xi,t+1, xi,NT

)
C
(
xi,t+1, xi+1,NT

)
. . . C

(
xi,t+1, xNP,NT

)
C
(
xi+1,t+1, xi,t

)
C
(
xi+1,t+1, xi+1,t

)
. . . C

(
xi+1,t+1, xNP,t

)
C
(
xi+1,t+1, xi,t+1

)
C
(
xi+1,t+1, xi+1,t+1

)
. . . C

(
xi+1,t+1, xNP,t+1

)
. . . C

(
xi+1,t+1, xi,NT

)
C
(
xi+1,t+1, xi+1,NT

)
. . . C

(
xi+1,t+1, xNP,NT

)
...

...
...

...
...

...
...

...
...

...
...

...
...

C
(
xNP,t+1, xi,t

)
C
(
xNP,t+1, xi+1,t

)
. . . C

(
xNP,t+1, xNP,t

)
C
(
xNP,t+1, xi,t+1

)
C
(
xNP,t+1, xi+1,t+1

)
. . . C

(
xNP,t+1, xNP,t+1

)
. . . C

(
xNP,t+1, xi,NT

)
C
(
xNP,t+1, xi+1,NT

)
. . . C

(
xNP,t+1, xNP,NT

)
...

...
...

...
...

...
...

...
...

...
...

...
...

C
(
xi,NT, xi,t

)
C
(
xi,NT, xi+1,t

)
. . . C

(
xi,NT, xNP,t

)
C
(
xi,NT, xi,t+1

)
C
(
xi,NT, xi+1,t+1

)
. . . C

(
xi,NT, xNP,t+1

)
. . . C

(
xi,NT, xi,NT

)
C
(
xi,NT, xi+1,NT

)
. . . C

(
xi,NT, xNP,NT

)
C
(
xi+1,NT, xi,t

)
C
(
xi+1,NT, xi+1,t

)
. . . C

(
xi+1,NT, xNP,t

)
C
(
xi+1,NT, xi,t+1

)
C
(
xi+1,NT, xi+1,t+1

)
. . . C

(
xi+1,NT, xNP,t+1

)
. . . C

(
xi+1,NT, xi,NT

)
C
(
xi+1,NT, xi+1,NT

)
. . . C

(
xi+1,NT, xNP,NT

)
...

...
...

...
...

...
...

...
...

...
...

...
...

C
(
xNP,NT, xi,t

)
C
(
xNP,NT, xi+1,t

)
. . . C

(
xNP,NT, xNP,t

)
C
(
xNP,NT, xi,t+1

)
C
(
xNP,NT, xi+1,t+1

)
. . . C

(
xNP,NT, xNP,t+1

)
. . . C

(
xNP,NT, xi,NT

)
C
(
xNP,NT, xi+1,NT

)
. . . C

(
xNP,NT, xNP,NT

)
xi,t = spatiotemporal position that corresponds to the spatial position i of coordinates (xi,yi) and time t. NP = number of spatial positions. NT = number of times. C(xi,t1,xj,t2) Covariance
value between the spatiotemporal position that corresponds to the spatial position i of coordinates (xi,yi) and time t1 and the spatiotemporal position that corresponds to the spatial
position j of coordinates (xj,yj) and time t2.
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The method consists of four steps:

1. From geostatistical analyses, obtain the spatial variogram model for the hydraulic conductivity
with the available data (in the case study, it is assumed that only 60 of the total 400 hydraulic
conductivity data of the model are known), the spatiotemporal variogram model for hydraulic
head with the values simulated each 4 months for a 2-year period (2400 values in total), and the
cross variograms for each simulation time of the model between the hydraulic conductivity
(60 data) and the corresponding hydraulic head data (400 values).

2. Derive separately the covariance matrices for the hydraulic conductivity, the spatiotemporal
hydraulic head data and the cross covariances between the hydraulic conductivity and the
hydraulic head for each time. The covariance values are obtained for all the estimation and
sampling nodes.

3. Integrate a multivariable covariance matrix that includes the spatial, spatiotemporal and cross
covariances (Table 4).

4. Estimate using the static Kalman filter, the hydraulic conductivity in all the nodes where these
data were not available for the geostatistical analyses.

Table 4. Structure of the multivariate spatiotemporal covariance matrix.

Univariate spatial
covariance matrix

(hydraulic
conductivity only)

Cross-covariance
matrix (hydraulic

conductivity–hydraulic
head for time 1)

Cross-covariance
matrix (hydraulic

conductivity–hydraulic
head for time 2)

. . .

Cross-covariance
matrix (hydraulic

conductivity–hydraulic
head for time NT)

Cross-covariance
matrix (hydraulic

head for time
1–hydraulic

conductivity)

Space–time covariance matrix (hydraulic head from time 1 to time NT)

Cross-covariance
matrix (hydraulic

head for time
2–hydraulic

conductivity)

. . .

Cross-covariance
matrix (hydraulic

head for time
NT–hydraulic
conductivity)

2.3. The Static Kalman Filter

The Kalman filter is a linear, unbiased and optimal estimator for the state of a system at time t,
based on available information at time t-1, that estimate is updated with additional available data
at time t. The discrete Kalman filter aims to solve the general problem of estimating the state of a
discrete-time process, which is represented by a linear stochastic differential equation of the form:

Xt+1 = AXt + wt, (7)

Equation (7) is called the system model, it describes the evolution over time of the quantity to
be estimated, expressed by means of a state vector Xt. The transition between states Xt−→Xt+1 is
characterized by the transition matrix A and the addition of a Gaussian white noise vector wt with
covariance matrix Qt. The vectors and matrices are composed by N and N×N elements, respectively;
the same applies for the subsequent cases.
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The measurement model relates linearly the measurement vector Zt to the state of the system
Xt through the measurement matrix H and the addition of a Gaussian white noise vector vt with
covariance matrix Rt. Both random variables wt and vr are assumed to be independent of each other.
The measurement model is as follows:

Zt = HXt + vt, (8)

The covariance matrices of the process error Qt and the measurement error Rt in the most general
form of the filter may change over time; however, for simplicity they can be assumed as constants.

The equations for the forecast of the discrete Kalman filter are:

X̂
r
t+1 = A X̂

r
t , (9)

Pr
t+1 = APr

tA
T + Qt, (10)

The equations for correcting the state of the discrete Kalman filter are:

Kt+1 = Pr
t+1HT

(
HPr

t+1HT + Rt
)−1

, (11)

X̂
r+1
t+1 = X̂

r
t+1 + Kt+1

(
Zt+1H X̂

r
t+1

)
, (12)

Pr+1
t+1 = (I−Kt+1H)Pr

t+1, (13)

where the superscript r follows the order in which the vectors of the measurements {Z1, Z2, . . .ZN} are
processed, i.e., r = 1 when the measurement Z1 is employed. X̂

r
t+1 is the forecast of the state vector at

time t + 1 using the state vector X̂
r
t at time t, and Pr

t+1 is the forecast of the covariance matrix of data at
t + 1 using the forecast of the covariance matrix of data Pr

t at time t, Kt+1 is the Kalman gain and I is

the identity matrix. X̂
r+1
t+1 and Pr+1

t+1 are, respectively, the corrected state vector and covariance matrix
for time t + 1, and using r + 1 measurements.

For the recursive implementation of these equations, an a priori estimate of the state
(
X̂

o)
and

an initial final covariance matrix of the error (Po) are required. After each update of both time and
measurement, the process is repeated taking as a starting point the new estimates of the state and the
error covariance [31].

In the way the Kalman filter is implemented in this paper, the state vector does not evolve
following a dynamic model, but it is modified by the sampling data (in this case the available hydraulic
conductivity and/or hydraulic head data). It is then implemented the static Kalman filter since it
employs the measurement and correcting equations only, incorporating time through the use of
spatiotemporal vectors [24].

The general form of the measurement vector to be used in this paper for the bivariate spatiotemporal
methodology is:

Zt =
[
Z1

1, Z1
2, . . . , Z1

NP1

∣∣∣∣Z2
1,1, Z2

2,1, . . . , Z2
NP2,1|. . . , . . . , . . . , . . .

∣∣∣∣Z2
1,NT, Z2

2,NT, . . . , Z2
NP2,NT

]T
, (14)

where Zm
n is the measurement of variable m in position n (it is assumed that this variable does

not change through time), Zm
n,t is the measurement of variable m in position n and time t. The first

subvector has a length NP1 that corresponds to the sum of points where the hydraulic conductivity
has been sampled (data) and those where it is going to be estimated (unknown data), the others
subvectors correspond to the hydraulic head data (all of these have the same length, NP2, equal to
the number of data for each of the NT times). The total number of elements of vector Zt is equal to
N = NP1+NP2×NT, which is also the same number of files and rows of the covariance matrix. In the
position for an unknown value, the average value of the elements of the corresponding subvector
was used.
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In this manner, for the univariate case it is only necessary the first subvector, for the bivariate case
the measurement vector should include the first vector and any of the other subvectors (it depends on
the selected time to use), and finally, for the multivariate spatiotemporal case it will include the first
subvector for the hydraulic conductivity and all the other NT subvectors for the hydraulic head data.

The state vector is built in a similar fashion, but the whole elements for a subvector will be equal
to the mean value of the available data for that variable in the corresponding time.

The prior estimate error covariance matrix
(
P0

)
is obtained through geostatistical analyses. In the

spatiotemporal geostatistical analysis, a product-sum model is fitted to the sample variogram of
pre-existing data (details of the product-sum model can be found in [38,39].

To our knowledge, the implementation of kriging for multivariate spatial-spatiotemporal cases
has not been reported; the development of the theory in that sense represents an area of opportunity.
In this case, the static Kalman filter is selected as the estimation method since its implementation is
simple for the proposed multivariate spatial-spatiotemporal case as is shown in Section 2.2.

2.4. Case Study

The synthetic flow model consists of a confined aquifer in transitory state with a thickness of
500 m that occupies a 5000 m × 5000 m area (2500 hectares) (Figure 1). The storage coefficient has a
constant value of 0.15 m3/3, and the hydraulic conductivity (K) values are in the range of 0.2–10 m/day
corresponding to clays and sands. The domain was discretized in a block-centered finite difference
grid composed by 20 columns and 20 rows (the size of the mesh cells is 250 m × 250 m), so information
of hydraulic (hydraulic conductivity and storage coefficient) and hydrogeological (initial conditions)
parameters were needed for 400 nodes. The boundary conditions were constant hydraulic head values
of 900 m and 950 m at the north and south, respectively, and no-flow boundaries at east and west.
Three fully-penetrating pumping wells were included with flow rates of 1000 m3/day each (Figure 1).
The initial head was of 1000 m for all the modelled area.
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The total simulation period was 2 years; considering 4-month time step, 6 realizations of
spatially-distributed hydraulic head data were simulated (400 data for each time).

The groundwater flow equation was solved using the MODFLOW transient flow simulator [42].
The flow equation for an incompressible or slightly compressible fluid in a saturated porous medium
can be expressed by combining Darcy’s Law and the continuity equation [43,44]:

∇·(K∇h) = Ss
∂h
∂t

+ W, (15)

where K is the hydraulic conductivity (L/T), h is the hydraulic head (L); W represents sources or sinks
(L3/T); Ss is the specific storage coefficient (L−1); t is the time (T); ∇ = (∂/∂x + ∂/∂y + ∂/∂z) is the
divergence operator of a vector field and ∇ = (∂/∂x, ∂/∂y, ∂/∂z)T is the gradient operator of a scalar
field. The solution of the flow equation is obtained by applying the finite differences numerical method.

It is accepted that relationship between hydraulic conductivity and hydraulic head in the
groundwater flow equation is nonlinear (Equation (15)). For this reason, it is not our intention to obtain
a final calibration of a numerical flow model with the proposed methodology but the principal aim is
to take advantage of hydraulic conductivity (K)—spatiotemporal hydraulic head correlations to reduce
estimate error variances of K (even more than for traditional univariate and bivariate estimation) which
could be useful to obtain an initial estimate of the hydraulic parameters that reduces the modelling
effort, i.e., it is a type of precalibration.

3. Results and Discussion

In the case study, for the bivariate and bivariate spatiotemporal approaches, the Kalman filter is
used to assimilate hydraulic head data to improve the estimation of the spatial distribution of hydraulic
conductivity. Univariate, bivariate and bivariate spatiotemporal cases are compared.

3.1. Univariate Estimation

In this case, only hydraulic conductivity (K) data were used and only 60 were considered as
“available” from 400 in total (Figure 2). The vector of measurements consists of 400 positions (the first
subvector for Equation (14)), which includes the 60 “available” hydraulic conductivity data and the
average value of these values for the remaining 340 positions. The state vector is of 400 positions with
the average value of the 60 “available” hydraulic conductivity data as the initial state. The covariance
matrix has 400 rows and 400 columns (structured as shown in Table 1); it is derived using the selected
variogram model for 60 “available” hydraulic conductivity data (Table 5).
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Table 5. Parameters of the fitted variogram models.

Case Variable Correlation Nugget (m2) Sill(m2) Range (m)

Univariate

K 0 * 6.69 * 2177.608
H1 0 0.075 1616.284
H2 0 0.209 4327.53
H3 0 0.413 4364.75
H4 0 0.491 4364.75
H5 0 0.541 4364.75
H6 0 0.571 4364.75

Bivariate

K-H1 −0.282 0 µ
−0.200 µ 1500

K-H2 −0.135 0 µ
−0.160 µ 1500

K-H3 −0.120 0 µ
−0.200 µ 1800

K-H4 −0.127 0 µ
−0.230 µ 1800

K-H5 −0.131 0 µ
−0.250 µ 1800

K-H6 −0.133 0 µ
−0.260 µ 1800

H1-K −0.173 0 µ
−0.200 µ 1550

H2-K −0.251 0 µ
−0.260 µ 2000

H3-K −0.294 0 µ
−0.340 µ 1800

H4-K −0.306 0 µ
−0.380 µ 1800

H5-K −0.309 0 ** −0.400 µ 1800
H6-K −0.326 0 ** −0.430 µ 1800

Spatiotemporal
Space H 0.09 0.41 3000
Time H 0.14 Ω 0.09 Ω 1.20 β

Space-time H 0.41 α

Units: * m2/day2, µ m2/day, Ω day−2, β day−1, α m·day; K is the hydraulic conductivity; HN are data for time N;
K-HN means cross variogram for K as primary and HN as the secondary variable; HN-K means cross variogram for
HN as primary and K as the secondary variable.

Figure 3 shows the histograms for all the hydraulic conductivity data and for the “available” data.
It is noticeable that for larger values of the available data, the frequency bars are higher with respect to
the others when compared to the former histogram. In addition, for the “available” data histogram the
most frequent value is 6 m/day, meanwhile a value of 3.5 m/day corresponds to the histogram for all
the data. These characteristics of the variograms are reflected in the mean value which is larger for the
“available” data.
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3.2. Bivariate Estimation

For the bivariate estimation, the hydraulic conductivity (K) is estimated using the 60 “available”
hydraulic conductivity data and 400 hydraulic head data for a selected time; in the case study,
six different estimates were obtained since hydraulic head data for six different times were available.

The vector of measurements for each of these estimates has the double of positions relative to
the univariate case, because it now includes also the 400 positions for the corresponding hydraulic
head data. In a similar manner, the state vector is increased in 400 positions but the value for these
new positions is the average value for the corresponding hydraulic head data. The cross covariance
is constructed for 800 rows and 400 columns as stated in Table 2 and using the parameters of the
corresponding parameters shown in Table 5.

3.3. Bivariate Spatiotemporal Estimation

In this case, the estimation of K is carried out by employing the spatiotemporal correlation between
the 60 “available” hydraulic conductivity data and 2400 hydraulic head data (400 data for each of the
six times), additionally the cross correlation between the hydraulic head data for each time and the
hydraulic conductivity are used.

The vector of measurements includes 400 positions for the hydraulic conductivity (it is constructed
in the same manner as in the previous cases) and 2400 positions for the hydraulic head data. The state
vector is also of 2800 positions (7 subvectors of 400 positions each), the first subvector is the same than
the previous cases, each of the other six subvectors correspond to a specific time, its values are the
average of hydraulic head of the corresponding time. The covariance matrix is constructed as shown
in Table 3, it has 2800 rows and 2800 columns.

The parameters of the variogram models selected to fit the sampling variograms are presented
in Table 5. The evaluation for selecting the best fit for all the analysed cases was done through cross
validation. All the selected models are spherical. It can be seen that the sill values for the hydraulic
conductivity are much larger when they are compared with the hydraulic head; it is noteworthy
that the sill values for hydraulic head in years 1 and 2 are very low with respect to the other years,
in particular the hydraulic head in year 1 has the lowest sill value by far but also the minimum range
of the variogram models.

By using the Pearson correlation coefficient obtained through the adjusted sill values of the cross
variogram models, numerical values between −0.120 and −0.326 were found, which indicates that
there exists a low negative linear correlation among K and H; nevertheless, the idea of this research
work is to take advantage of the existent correlation because somehow it contributes to improving the
K estimation.

Cross validation results are presented in Table 6. The minimum, maximum and mean errors for
all cases are small, considering the high variability of data employed in the analysis, the mean square
error (MSE) and the root mean square error (RMSE) are acceptable; however, the standardized mean
square error (SMSE) is low in all the cases, indicating that the estimated variance is overestimated.
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Table 6. Cross validation results for the fitted variogram models.

Case Variable Minimum
Error (m)

Maximum
Error (m)

Mean
Error (m) MSE (m2) RMSE SMSE

Univariate

K −2.171 * 3.063 * 0.0031 * 1.0343 ** 1.017 * 0.501
H1 −0.056 0.256 −0.0002 0.0005 0.022 0.035
H2 −0.098 0.254 −0.0001 0.0006 0.024 0.028
H3 −0.149 0.254 −0.0001 0.0007 0.026 0.022
H4 −0.183 0.264 −0.0001 0.0007 0.027 0.020
H5 -0.204 0.253 −0.0001 0.0008 0.028 0.019
H6 −0.217 0.263 −0.0001 0.0008 0.028 0.019

Bivariate

K-H1 −2.146 * 2.608 * 0.0346 * 0.9754 ** 0.988 * 0.283
K-H2 −2.140 * 2.612 * 0.0361 * 0.9738 ** 0.987 * 0.282
K-H3 −2.138 * 2.613 * 0.0366 * 0.9732 ** 0.986 * 0.282
K-H4 −2.138 * 2.615 * 0.0368 * 0.9729 ** 0.986 * 0.282
K-H5 −2.137 * 2.615 * 0.0370 * 0.9728 ** 0.986 * 0.282
K-H6 −2.137 * 2.616 * 0.0370 * 0.9729 ** 0.986 * 0.282
H1-K −0.056 0.260 −0.0002 0.0005 0.023 0.167
H2-K −0.093 0.255 −0.0003 0.0006 0.025 0.080
H3-K −0.142 0.256 −0.0004 0.0007 0.027 0.063
H4-K −0.175 0.265 −0.0005 0.0008 0.029 0.058
H5-K −0.195 0.255 −0.0005 0.0009 0.029 0.054
H6-K −0.208 0.265 −0.0006 0.0009 0.030 0.054

Spatiotemporal Space-time H −0.366 0.351 −0.0018 0.0047 0.069 0.023

Units: * m/day, ** m2/day2.

Lower values of RMSE (lower than 0.03 m/day) were obtained after the cross validation for the
bivariate cases considering the scenarios with HN and K as the primary and secondary variables,
respectively. These RMSE were similar to the univariate cases using the HN variable. The larger
RMSE obtained in the validation was for the univariate case using the K variable, nevertheless it was
not significant (~1 m/day); similar results were obtained for the validation of the bivariate case with
K-HN scenarios.

In Figure 4, a similar pattern can be seen for the three estimation methods; as expected, the different
zones of hydraulic conductivity are not delineated as in the model due to the fact that estimates are
weighed values of the “available” data, resulting in intermediate values for hydraulic conductivity
estimates. This also explains that the central part is poorly reproduced due to the influence of the
contrasting values of the data at the northern and the southern part of the model. The bivariate and
bivariate spatiotemporal estimations better reflect the northern part of the model corresponding to the
largest values; on the other hand the univariate estimation reflects better the southern part with the
smallest values. The bivariate case presented in Figures 4–6 corresponds to the use of the “available”
hydraulic conductivity data and the first year of hydraulic head data.

The histograms (Figure 5) show that the largest values of frequency for the hydraulic conductivity
(K) estimates are lower than those of hydraulic conductivity data of the model, in the former more
different values are obtained (intermediate values between the model data); therefore, these new values
correspond to new bars in the histogram. Large estimates trend seems to be well represented; however,
low values (<4) present higher relative frequencies when compared to the hydraulic conductivity
data of the model. All the cases produce the highest frequency for some estimates of low values
which do not correspond to original data; bivariate cases reach highest peaks for frequencies of
estimates with low values. The mean and standard deviation values for estimates are closer to those
corresponding to all the hydraulic conductivity data of the model than to the same statistics of the
“available” data employed in the estimation.

Since the original K data are considered to follow a normal distribution, then about 68% of them
fall within one standard deviation of the mean, this band was considered as a confidence interval of the
estimates. The results of Table 7 show that the percentage of the estimate values within this confidence
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interval is very similar for all the analysed cases; it can be seen that for the bivariate spatiotemporal
case it is obtained the best balance of the number of estimated values above and below the confidence
interval, which may be indicative of the robustness of the method. The lowest number of estimates
within the confidence interval corresponds to the bivariate case using K and H2.Water 2020, 12, x FOR PEER REVIEW 14 of 21 
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Table 7. Analysis of K estimates within the confidence interval.

Case
Data within the

Confidence
Interval

Data above the
Confidence

Interval

Data below the
Confidence

Interval

Data out of the
Confidence

Interval

Univariate 59.25% 23.25% 17.50% 40.75%
Bivariate K–H1 58.25% 23.25% 18.50% 41.75%
Bivariate K–H2 57.50% 23.25% 19.25% 42.50%
Bivariate K–H3 58.50% 23.25% 18.25% 41.50%
Bivariate K–H4 58.50% 23.25% 18.25% 41.50%
Bivariate K–H5 58.50% 23.25% 18.25% 41.50%
Bivariate K–H6 58.50% 23.50% 18.00% 41.50%

Bivariate
spatiotemporal 58.50% 22.25% 19.25% 41.50%

The estimate errors of the hydraulic conductivity are presented in Table 8. The minimum
mean error and MSE (and therefore the RMSE) are obtained for the univariate case. For the three
estimation methods, errors are very low; the improvement in the estimates of K by using its spatial
or spatiotemporal correlation with a secondary variable (in this case, HH) can be appreciated in the
SMSE values (closer to one) which reflects a better agreement between the errors and the estimate
error variances.
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Table 8. Estimation errors of K.

Case Variables Mean Error
(m/day) MSE (m2/day2) RMSE (m/day) SMSE

Univariate K 0.091 0.691 0.831 0.403
Bivariate K and H1 0.096 0.909 0.953 0.574
Bivariate K and H2 0.099 0.722 0.850 0.449
Bivariate K and H3 0.098 0.720 0.848 0.438
Bivariate K and H4 0.099 0.722 0.850 0.441
Bivariate K and H5 0.100 0.724 0.851 0.444
Bivariate K and H6 0.099 0.724 0.851 0.445
Bivariate

spatiotemporal
K, H1, H2, H3,
H4, H5 and H6 0.095 0.757 0.870 0.469

Furthermore, Figure 6 shows that even though errors in the case study are lower for the univariate
case, a reduction in estimation uncertainty (expressed with the estimate error variance) is gained for the
bivariate cases. In particular, the bivariate spatiotemporal case reduces the most this uncertainty. There
is a general trend of a higher estimate uncertainty at the southern region of the model, corresponding
to the smallest values of hydraulic conductivity. The values of the SMSE for the bivariate cases
(closer to one) along with their respective lower estimate error variances validate a bigger robustness
and confidence for these estimation methods when compared to the univariate case; in other words,
a lower overestimation of the estimate error variance is reached. In this sense, with respect to these
measurements, the best results are obtained for the bivariate spatiotemporal case.

Another comparison of errors in hydraulic heads obtained with the numerical flow model was
obtained, the error being the difference between the simulated hydraulic head for the spatial distribution
of the 400 known K data (original model) and those hydraulic head values simulated for the different
spatial arrays of K estimates; the results are very good for all the cases. In Table 9, it can be seen that
the lowest mean errors are obtained for the univariate case; however, the best results for the Mean
Squared Error (MSE) correspond to the presented bivariate case (K–H6). According to this comparison,
the best results for the bivariate spatiotemporal case are obtained for the first half of the simulation
period; this suggests the decrease in the contribution of hydraulic head data to improve the estimation
of K when the cross-variance has been significantly reduced.

Table 9. Errors of simulated hydraulic head.

Time
Univariate Bivariate Bivariate Spatiotemporal

Mean Error (m) MSE (m2) Mean Error (m) MSE (m2) Mean Error (m) MSE (m2)

1 −0.0133 0.0044 −0.0146 0.0031 −0.0192 0.0033
2 −0.0220 0.0072 −0.0248 0.0050 −0.0340 0.0056
3 −0.0290 0.0088 −0.0329 0.0064 −0.0460 0.0077
4 −0.0339 0.0097 −0.0389 0.0073 −0.0554 0.0094
5 −0.0375 0.0103 −0.0434 0.0081 −0.0623 0.0109
6 −0.0398 0.0107 −0.0461 0.0085 −0.0670 0.0120

It is observed in Figure 7 that the spatial configuration of the hydraulic head in Time 6 for the
original model is well represented for the different arrays of K; a general overestimation of the hydraulic
head is obtained.
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4. Conclusions

Knowledge of hydraulic conductivity within an aquifer is crucial for the development of numerical
flow models; however, data for this variable are usually scarce. Several methodologies, mostly
geostatistics-based, have been developed in order to estimate the hydraulic conductivity at nonsampled
sites. It was first addressed the univariate case (using hydraulic conductivity data only) and later
bivariate cases which use the correlation with a secondary variable (usually more sampled) to improve
the estimation.

Even though the best estimates were obtained for the univariate case (Mean error = 0.091 m/day,
MSE = 0.691 m2/day2 and RMSE = 0.831 m/day), a better correspondence between estimate errors
and estimate error variance correspond to the bivariate cases (SMSE = 0.574 for the bivariate K-H1
case and SMSE = 0.469 for the bivariate spatiotemporal). Furthermore, the lowest estimate error
variances were obtained for the bivariate spatiotemporal case. According to confidence intervals,
the spatiotemporal case also produced the more balanced option. In addition, when the K estimates
are used for modelling purposes, the best MSE values for H are obtained for the K-H6 bivariate spatial
case followed closely by the bivariate spatiotemporal case. The proposed spatiotemporal estimation
methodology addresses the calibration problem of nonuniqueness relation between hydraulic head
and K through the use of the correlation between K and spatiotemporal HH data of the particular case
study and conditioning of estimates with the data comprised in the measurement and state vectors of
the Kalman filter implementation; the results show that bivariate spatiotemporal estimations have
perspectives to reduce the uncertainty in the estimation of poorly sampled variables; however, the effort
is large and in some cases it is not justified if a poor correlation between the primary and the secondary
variable exists (maximum and minimum of 0.63 and 0.26, respectively).
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In this paper, MODFLOW was used only to produce the synthetic data and to test the proposed
methodology. In this sense, this proposal is not a model-based methodology but uses geostatistical
analyses of available hydrogeological data to make the construction of a model easier. From our
perspective, the estimation proposed in this paper has the advantage of conditioning the initial
distribution of K not only to those values reported from pumping tests but also simultaneously to the
available hydraulic head data, which could reduce the possibility of obtaining a misleading calibration
since this process is susceptible to yield nonrealistic hydraulic conductivity spatial distributions.

Further research should consider the implementation of multivariate estimation methods that
take into account the nonlinear relationship between hydraulic head and hydraulic conductivity in
order to produce better results. This in fact would represent a more refined precalibration effort.
Another topic of interest is to evaluate the effect of the distribution and amount of available data to
estimate the hydraulic parameters. In addition, an opportunity area for development in these types
of methodologies is the inclusion of more hydraulic parameters such as the specific storage or other
variables like solute concentrations as it has been developed for model-based calibration methods.
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