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Abstract: The mass changes in the Earth’s surface internally derived from the Gravity Recovery
and Climate Experiment (GRACE) and the GRACE Follow-On (GRACE-FO) missions have played
an important role in the research of various geophysical phenomena. However, the one-year data
gap between these two missions has broken the continuity of this geophysical research. In order to
assess the feasibility of using the Swarm time-variable gravity field (TVGF) to bridge the data gap,
we compared Swarm with the GRACE/GRACE-FO models in terms of model accuracy, observation
noise and inverted terrestrial water storage change (TWSC). The results of the comparison showed
that the difference between the degree-error root mean square (RMS) of the two models is small,
within degree 10. The correlation between the spherical harmonic coefficients of the two models is
also relatively high, below degree 17. The observation noise values of GRACE/GRACE-FO are smaller
than those of Swarm. Therefore, the latter model requires a larger filter radius to lower these noise
levels. According to the correlation coefficients and the time series map of TWSC in the Amazon
River basin, the results of GRACE and Swarm are similar. In addition, the TWSC signals were
further analyzed. The long-term trend changes of TWSC derived from GRACE/GRACE-FO and the
International Combination Service for Time-variable Gravity Fields (COST-G)-Swarm over the period
from December 2013 to May 2020 were −0.72 and −1.05 cm/year, respectively. The annual amplitudes
of two models are 15.65 and 15.39 cm, respectively. The corresponding annual phases are −1.36 and
−1.33 rad, respectively. Our results verified that the Swarm TVGF has the potential to extract TWSC
signals in the Amazon River basin and can serve as a complement to GRACE/GRACE-FO data for
detecting TWSC in local areas.

Keywords: GRACE; Swarm; GRACE-FO; Amazon River basin; terrestrial water storage change;
time-variable gravity field; data gap
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1. Introduction

The Gravity Recovery and Climate Experiment (GRACE) satellite mission was jointly developed
and managed by the National Aeronautics and Space Administration (NASA) in the United States and
the Deutsche Zentrum Für Luft- und Raumfahrt (DLR) in Germany. It enabled new observations for
estimating mass changes in global or regional areas with the Earth system [1]. GRACE was launched on
17 March 2002 and consisted of two identical satellites, flying in formation, in the same order (an initial
altitude of about 520 km). The distance changes between two GRACE satellites were measured
by K-band ranging (KBR), which is influenced by global mass changes within the Earth’s interior,
at its surface and in the atmosphere. This method is called low–low satellite-to-satellite tracking
(ll-SST). The monthly time-variable gravity field (TVGF) solutions were computed according to the
pre-processed GRACE along-track KBR data, which are known as the GRACE Level 2 data, in the
form of spherical harmonic (SH) coefficients. According to the SH coefficients or mascon solutions,
GRACE Level 2 data can be converted to terrestrial water storage change (TWSC) [2,3], polar ice
sheet mass variation [4,5], sea level change [6,7], co-seismic gravity change [8–11], etc. These research
efforts have greatly improved our understanding of the whole Earth’s water cycle, cryosphere and
internal structure.

The GRACE mission, which ended in June 2017, has continued to provide vast and valuable
data [11]. In order to continue the lifetime of GRACE, the GRACE-Follow On (GRACE-FO) mission
was launched in May 2018, which began to provide the same TVGF data products since June
2018. The problem is that there is an 11-month data gap between the two satellite missions.
Therefore, an alternative and independent data source is needed to fill this gap, aiming to ensure
the continuity of related research. In addition to special gravity satellites, low-Earth orbit (LEO)
satellites with high quality GPS receivers can also be used for observing the Earth’s gravity field and
its long-wavelength temporal variations, in a process known as high–low satellite-to-satellite tracking
(hl-SST) [12–16].

The European Space Agency (ESA) successfully launched the Swarm satellites on 22 November
2013. The Swarm mission consists of three identical Earth observation satellites which are all in
near-polar orbit, two (Swarm A and Swarm B) at an altitude of about 470 km and one (Swarm C)
at an altitude of about 520 km, aiming to study the principle of the Earth’s magnetic field and its
changes [17,18]. The three satellites are all equipped with two key instruments for gravity field
detection (a high-precision, dual-frequency global navigation satellite system (GNSS) receiver and
an accelerometer), which can provide the time series of the Swarm satellite positioning data and
non-conservative forces acting on the satellites [19,20]. Because its running time just covers the
GRACE/GRACE-FO gap, the Swarm mission has the potential to fill this gap.

Many scientists have studied the potential of LEO satellites to quantify and monitor the
Earth’s surface and internal mass changes, such as the Challenging Minisatellite Payload (CHAMP);
the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC); GRACE and
the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) missions [21–25]. These studies
show that hl-SST data from LEO satellites can detect the surface mass changes to various degrees,
but compared with the results of GRACE, the noise is greater and the spatial resolution is lower.
Wang and Chao [26] used Swarm simulated data to calculate ice sheet mass changes in Greenland.
The results showed that Swarm data are suitable for detecting long-wavelength signals and their
inversion accuracy can reach 20% of that of GRACE data. The calculation results from Swarm simulated
data have proven that Swarm has the potential to recover annual signals up to SH degree 6 [27].
Bezděk et al. [28,29] inferred the Swarm TVGF based on the acceleration approach with a spatial
resolution larger than 2000 km, which is a similar quality to GRACE’s GPS-based TVGF. Beutle et al. [30]
introduced the principle of using GPS positioning data and accelerometer data from LEO satellites to
determine the Earth’s gravity field based on the celestial mechanics approach (CMA). Jäggi et al. [31]
applied this method to Swarm satellites and proposed that the Swarm mission is well suited for
bridging the gap between GRACE and the GRACE-FO mission. Ilk et al. [32] employed the short-arc
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method to determine the Swarm TVG field from GNSS positioning data. Weigelt et al. [33] used
the refined data processing strategy to derive the Greenland ice sheet mass changes, using hl-SST
data. Lück et al. [34] used Swarm and GRACE TVG data to study sea water mass changes, and the
long-term trend changes derived from Swarm and GRACE are 3.3 and 3.5 mm year−1, respectively.
This suggests that Swarm TVG data have the potential to invert the large-scale Earth surface mass
changes. The SH coefficients of TVGF derived from hl-SST data are up to a degree and order from ~10
to 15, and the corresponding spatial resolution is from ~1300 to 2000 km, which shows a big difference
compared with that of GRACE (~350 km) [35]. Da Encarnação et al. [36,37] found that the maximum
spatial resolution of the Swarm TVGF model is a degree of 12. However, most studies focus on the
comparison of the numerical values of long-term trend changes derived from GRACE and Swarm.
However, there are few studies on the comparison between the spatial distribution of long-term trend
changes and the seasonal changes derived from GRACE and Swarm.

In this study, we focused on the potential of Swarm TVGF to detect TWSC in the Amazon River
basin. The results of Swarm are compared with that of GRACE/GRACE-FO. In addition to comparing
the two traditional indicators (internal and external coincidence accuracy and long-term trend change),
comparisons of the spatial distribution of long-term trend changes, annual change, filter algorithm
and correlation coefficient were also carried out in this study. The main contents of this paper are as
follows. Section 2 presents an overview of our research areas. Section 3 describes the datasets and
data processing methods. Section 4 shows the results, and Section 5 presents the discussion of these
findings. Finally, the conclusions are presented in Section 6.

2. Study Area

The Amazon River basin, located in the northern part of South America at approximately
5◦ N–20◦ S and 50◦ W–70◦ W, is the largest river in the world, with the largest discharge, the largest
drainage basin and the largest tributaries, as shown in Figure 1. It also has 20% of the world’s river
flow. The basin covers an area of 6.915 million square kilometers, accounting for approximately 40% of
South America’s total area. Moreover, it is one of the most hydrologically and ecologically diverse
regions in the world [38,39]. It has the world’s largest tropical rainforest and 25% of all terrestrial
species on Earth live in this area [40]. Therefore, the Amazon River Basin is an important component of
global terrestrial ecosystems and the hydrologic cycle [41]. It plays a major role in global atmospheric
circulation and affects the global climate change. Therefore, scientists around the world have been
studying the water cycle in this area [42].
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3. Data and Methodologies

3.1. GRACE/GRACE-FO Data

The GRACE and GRACE-FO monthly SH solutions (truncated to a degree and order 60) used
in our study were provided by the Center for Space Research (CSR), University of Texas at Austin,
consisting of the GRACE RL06 SH solutions covering the period April 2002 to June 2017 (ftp://isdcftp.
gfz-potsdam.de/grace/Level-2/CSR/RL06/) and the GRACE-FO RL06 SH solutions from June 2018 to
March 2020 (http://icgem.gfz-potsdam.de/series/01_GRACE/CSR/CSR%20Release%2006%20(GFO)).
Before using the above data to invert TWSC, they needed to be preprocessed [43]. Firstly, the C20

term was replaced by the corresponding data from Satellite laser ranging (SLR) because of the lower
accuracy of the GRACE TVG model [14]. Secondly, the 1-degree errors of the TVG model caused
by geocenter motion were corrected by using the results from Swenson et al. [6]. Thirdly, the effect
of ice rebound was deducted from the TVGF model using the ICE-5G glacier isostatic adjustment
(GIA) model. Finally, smooth-filtering processing using a 300 km fan filter [2] was used to reduce the
observation noise of the GRACE data.

Because GRACE-FO spacecraft and instruments are based on the original design of GRACE and
the solution models and methods of GRACE-FO RL06 data are the same as those of GRACE RL06
data, we simply regard GRACE data and GRACE-FO data as GRACE data in order to simplify the
comparison in the following research in this paper [1,37].

3.2. Swarm Data

Swarm TVGF data with different solutions were, respectively, provided by the Astronomical
Institute at the University of Bern (AIUB), the Astronomical Institute at the Czech Academy of
Sciences (ASU), the Institute of Geodesy at Graz University of Technology (IfG) and the International
Combination Service for Time-variable Gravity (COST-G). The details of data processing are described
in Table 1 [34,37].

Table 1. Comparisons of Swarm time-variable gravity (TVG) data solutions from different institutes.

Institute AIUB ASU IfG COST-G

Orbit AIUB ITSG IfG Combination
Approach Celestial mechanics Acceleration Short-arc Combination

Highest order 70 40 40 40
Time span 2014.01–2016.12 2013.12–2020.05 2013.11–2016.12 2013.12–2020.05

Download address ftp://ftp.aiub.unibe.ch/
GRAVITY/SWARM/

http://www.asu.cas.cz/
~bezdek/vyzkum/

geopotencial/index.php

http://ftp.tugraz.at/
outgoing/ITSG/tvgogo/

gravityFieldModels

http://icgem.gfz-
potsdam.de/series/02_

COST-G/Swarm

It is important to note that the Swarm TVGF models of COST-G were produced by combining the
individual Swarm TVGF models from AIUB, ASU, IfG and Ohio State University (OSU) according to the
weights defined by variance component estimation (VCE) [37,44]. At present, ASU and COST-G have
continued updating data in their website, but the Swarm data have been provided by AIUB and IfG until
December 2016. Before inversion processing, the Swarm TVG data must be post-processed, similarly to
the GRACE data (the C20 term was replaced by the corresponding data from SLR, the 1-degree errors
of the TVG model were corrected and the effect of ice rebound was deducted by using the ICE-5G
GIA model).

3.3. Scale Factor Estimated from GLDAS

The Global Land Data Assimilation system (GLDAS), jointly administered by the Goddard
Space Flight Center (GSFC) at NASA and the National Centers for Environmental Prediction (NCEP)
at the National Oceanic and Atmospheric Administration (NOAA), is a global, high-resolution

ftp://isdcftp.gfz-potsdam.de/grace/Level-2/CSR/RL06/
ftp://isdcftp.gfz-potsdam.de/grace/Level-2/CSR/RL06/
http://icgem.gfz-potsdam.de/series/01_GRACE/CSR/CSR%20Release%2006%20(GFO)
ftp://ftp.aiub.unibe.ch/GRAVITY/SWARM/
ftp://ftp.aiub.unibe.ch/GRAVITY/SWARM/
http://www.asu.cas.cz/~bezdek/vyzkum/geopotencial/index.php
http://www.asu.cas.cz/~bezdek/vyzkum/geopotencial/index.php
http://www.asu.cas.cz/~bezdek/vyzkum/geopotencial/index.php
http://ftp.tugraz.at/outgoing/ITSG/tvgogo/gravityFieldModels
http://ftp.tugraz.at/outgoing/ITSG/tvgogo/gravityFieldModels
http://ftp.tugraz.at/outgoing/ITSG/tvgogo/gravityFieldModels
http://icgem.gfz-potsdam.de/series/02_COST-G/Swarm
http://icgem.gfz-potsdam.de/series/02_COST-G/Swarm
http://icgem.gfz-potsdam.de/series/02_COST-G/Swarm
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terrestrial modeling system that incorporates satellite and ground-based observational data products,
using advanced land surface modeling and data assimilation techniques [45].

In this study, due to the truncation error and the filtering process, there is a leakage error in the
TWSC results. Therefore, this error needs to be corrected. GLDAS monthly gridded data with 1◦ × 1◦

for the period of April 2002 to May 2020 were used to assess the scale factors of GRACE and Swarm in
the Amazon River Basin. The data processing was carried out as follows [46]:

(1) The time series of regional TWSC was calculated based on global GLDAS original gridded data;
(2) An SH expansion of the original gridded data was performed and truncated to the same degree

as the GRACE or Swarm models. These were processed by the same filtering method;
(3) According to the processed SH coefficients, the TWSC time series was computed in regional areas;
(4) The scale factor was calculated according to the time series obtained in step 3 and the original

ones using the least squares rule.

3.4. Data Analysis

In order to test the quality of Swarm data, its results were compared with those of GRACE data in
terms of model precision, filtering results, time series changes, long-term trend changes and seasonal
changes of TWSC in the Amazon River basin.

3.4.1. Degree-Error RMS

In addition to the SH coefficients in the monthly gravity field data file, there are also error estimates.
Therefore, the error estimates were used to calculate the corresponding degree-error root mean square
(RMS) to evaluate the model’s accuracy in terms of the individual monthly gravity field. In this
study, degree-error RMS was used to assess the internal coincidence accuracy of the TVGF model.
The calculation formula is as follows [47]:

σl =

√√√
1

2l + 1

l∑
m=0

[
σC2

lm + σS2
lm

]
(1)

where σClm and σSlm are the SH coefficients errors, l and m are the degree and order of the SH
coefficients and σl is degree-error RMS, which can also be used to test the internal coincidence accuracy
of the monthly gravity field model.

Similarly, the external coincidence accuracy can also be estimated by using the degree-error RMS,
and a state-of-the-art static gravity field should be introduced as the reference field. The expression is
as follows [11]:

δl =

√√√
1

2l + 1

l∑
m=0

[(
Clm −Clm

)2
+

(
Slm − Slm

)2
]

(2)

where Clm and Slm are the SH coefficients of the monthly gravity field model, Clm and Slm are the SH
coefficients of the reference field and δl is degree-error RMS when external coincidence accuracy is
computed. In this study, ITG-Grace2018s was chosen as the reference field, which is up to degree and
order 200, and was provided by the Institute of Geodesy and Geoinformation of Universität Bonn (ITG).
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3.4.2. Degree Correlation Analysis

For two different gravity field models, A and B, the correlation coefficient of each degree of the
two models can be expressed as [36]:

rl =

l∑
m=0

∆CA
lm∆CB

lm√
l∑

m=0

(
∆CA

lm

)2
√

l∑
m=0

(
∆CB

lm

)2

(3)

where ∆Ci
l,m (i = A, B) are the SH coefficient variance relative to the reference field of monthly gravity

field models A and B, respectively, and rl is the correlation coefficient of each degree of the two models.
The correlation analysis of Slm was also carried out according to the above formula.

3.4.3. The Analysis of TWSC Time Series

The TWSC in the Amazon River basin has significant seasonal signals. In order to analyze the
potential of TWSC inversion using Swarm TVG data, the TWSC time series inverted by GRACE and
Swarm data were decomposed into the long-term trend and seasonal change signals. The decomposition
is expressed as follows [48]:

TWSC(t) = β0 + β1t + β2 cos(2πt) + β3 sin(2πt) + β4 cos(4πt) + β5 sin(4πt) + ε (4)

where TWSC(t) is the time series of TWSC; t is the time; ε is the error and other signal; and β0, β1, β2, β3,
β4 and β5 are the unknown parameters. β0 is constant term, β1 is long-term trend, β2 and β3 are annual
terms and β4 and β5 are semi-annual terms. The amplitude and phase of annual and semi-annual
terms are Aann, Asemi−ann, Φann and Φsemi−ann, respectively, of which the expressions are as follows: Aann =

√
β2

2 + β2
3, Φann = arctan(β3/β2)

Asemi−ann =
√
β2

4 + β2
5, Φsemi−ann = arctan(β5/β4)

(5)

4. Results

4.1. Precision Evaluation of the Gravity Filed Model

The individual Swarm monthly gravity field solutions were provided by AIUB, ASU, IfG and
COST-G. The internal coincidence accuracy of the Swarm and GRACE TVGF models is shown in
Figure 2. Although the results of all the months were calculated in this study, the results of three
months (August 2014, March 2015, November 2016) are displayed (Figure 2a–c). The average of the
results of all the months is displayed in Figure 2d. As can be seen from these Figures, the results are
roughly equivalent. According to the comparison, the precision of all models improves with degree
increasing, within degree 10. Beyond degree 10, the exact opposite is observed. The model precision of
GRACE is about 10 times larger than that of Swarm. The accuracy of the GRACE model is relatively
stable and does not appear to exhibit great fluctuations with the increasing degree. Under degree 10,
the model precision of AIUB-Swarm is overly optimistic [36]. However, after degree 10, the precision
of the AIUB model rapidly decreases with the increasing degree. However, the ASU-Swarm model
occupied the optimal position of the three Swarm models, except in Figure 2c. Unfortunately, due to
the lack of SH coefficient errors for the COST-G Swarm TVGF model, its degree-error RMS is not
presented in these figures.
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According to Figure 3, the accuracy of all the Swarm models is comparable to that of GRACE
below degree 10. With this degree range, the amplitude of all the degree-error RMS increases slightly
with increasing degree. After degree 10, the precision of the GRACE model improves with increasing
degree. The model accuracy of the Swarm models clearly decreases above degree 15. This suggest
that noise begins to dominate [36]. Therefore, when the Swarm model is used to detect time-variable
signals, it is generally truncated to about degree 15 [35,37]. The model accuracy of COST-G-Swarm is
greater than that of other Swarm models. The COST-G-Swarm model, combining different Swarm
products from AIUB, ASU, IfG and the Ohio State University (OSU) using the VCE method, has the
advantages of various models. In terms of single models, the model precision of ASU-Swarm is greater
than that of the others, and is close to that of COST-G-Swarm, as shown in Figure 3d. In general,
the accuracy of GRACE model is significantly greater than that of Swarm models.

The differences between the SH coefficients from the GRACE and Swarm models were used to
calculate the corresponding degree-error RMS (Figure 4). Similarly, the results of three random months
and the average results of all the months are shown in these Figures. The same conclusion can be
drawn as in Figure 3—that the results of COST-G-Swarm were better than any single model. Of the
three single models, the ASU-Swarm model was optimal and closer to the COST-G-Swarm model,
except in Figure 4c. Except for the large difference in AIUB-Swarm, the results of the other three
models were relatively close, as shown in Figure 4c. Comparing Figures 3 and 4, the degree-error
RMS of the residual of the Swarm models relative to the GRACE model is lower than that of the
time-variable signals of the Swarm and GRACE models. This means that Swarm TVGF models still
reveal the temporal variance of Earth’s gravity field under a limited spatial resolution [36].Water 2020, 12, x FOR PEER REVIEW 10 of 20 
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In order to determine the maximum degree of Swarm models used for extracting time-variable
signals, the degree correlation coefficients between the GRACE and Swarm models are introduced
in this paper (Figure 5). These degree correlation coefficients can reflect the number of time-variable
signals in the Swarm models relative to the GRACE model, and the degree range of these signals [37].
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In Figure 5a, it can be seen that below degree 13 the degree correlation coefficients of all the Swarm
models are positive values, in addition to the IfG-Swarm and AIUB-Swarm models. After degree 13,
the values fluctuate around 0. However, this degree has different values in different maps. The value
of Figure 5c is 15 and that of Figure 5e is 16. The above results are the C coefficient. The results of the S
coefficient are not much different. For Figure 5b the value is 15, for Figure 5d it is 14 and for Figure 5f it
is 20. Figure 5g,h show the average results of all the months from the Swarm and GRACE models.
According the results depicted in these two Figures, the degree correlation coefficient continues to
decrease from degree 5, and when it reaches degree 17, the degree correlation coefficient decreases
to a lower value and remains stable up to degree 40. These results are similar to the conclusions of
Encarnação et al. [36].

The C20 coefficient is a negative value, due to its lower precision in Swarm models [14] (Figure 6).
As seen in Figure 6, there is a big difference between the C20 coefficients from Swarm, GRACE and
SLR. However, the C20 coefficients from GRACE and SLR are close. This explains why the correlation
coefficient of the C20 term is negative in Figure 5.

According to analysis results of Figures 2 and 3, the precision of Swarm models is worse than
that of the GRACE model. The degree-error RMS of Swarm models decreases beyond degree 15,
and the correlation coefficients of SH coefficients between GRACE and Swarm models are always
positive within degree 17. So, the geophysical signals of Swarm models may be mainly concentrated
within degree 17, and the corresponding spatial resolution is about 1200 km. Beyond degree 17,
time-variable signals derived from Swarm gravity field models may be mainly noise. Therefore, it is
recommended that the SH coefficients should be truncated to degree 17 when Swarm models are
used to study TWSC. The low-degree SH coefficients correspond to the long-wave signals part of the
gravity field. The Swarm can detect the time-variable signals with a spatial resolution of 1200 km.
Furthermore, COST-G-Swarm models are more efficient than single models. Therefore, we used the
COST-G-Swarm (referred to as Swarm) model to represent the Swarm model for subsequent research
in this paper.

4.2. Filter Results

Due to the orbit error of the satellites, instrument error and imperfections of the gravity field model,
the global equivalent water height (EWH), computed using the SH coefficients method, is seriously
affected by these noise levels [49]. The noise mainly appears in the high degree part of TVGF, and shows
observation noise with north–south distribution features. The spatial smoothing filter method is
usually used to reduce the influence of noise, such as the Gaussian filter and fan filter. Since the effect
of the fan filter is greater than that of the Gaussian filter, the fan filter was used for processing the
noise [50].

Figure 7 show the filtering results for the GRACE and Swarm models. Before the filtering process,
the Swarm model was truncated to degree 17. From unfiltered results, the inversion results of GRACE
presented a significant north–south striping effect, and many spots appeared in the Swarm results,
most of which were of a negative value. Under the influence of this noise, it is almost impossible to
obtain the real signal. Thus, a filtering process is necessary.
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When a filter radius of 300 km was applied, the filter effects of GRACE were significantly greater
than those of Swarm. The noise affecting the GRACE model was basically eliminated, whereas the
noise affecting the Swarm model was partially weakened. When the filter radius was increased to
500 km, it can be seen that part of the real signals in the results of GRACE were filtered. Although the
noise in the Swarm model was significantly weakened, there was still a lot of noise. When the filter
radius was set at 700 km, the noise in the Swarm model was basically suppressed. Real signals from
GRACE were obviously suppressed, such as the Amazon, the Congo and the Ganges rivers. These real
signals are dominated by negative values, and positive signals are almost eliminated, compared with
the results of the 300 km fan filtering of GRACE. This indicates that the selection of an appropriate
filter radius must maintain a balance between reducing the noise signal and keeping the real signal as
much as possible.

According to the global EWH distribution of Swarm and GRACE, the results of the two models
were the same in some areas with stronger signals—for example, the Amazon, the Congo and the
Ganges rivers. However, in other areas, the results of GRACE were different from Swarm, such as in
Greenland, the Antarctic, North America and Northeast Asia. As a result, the real signal from GRACE
was reduced by the filter with the larger radius, and there was still an influence of residual noise in the
Swarm model. We can see a lot of residual noise in the ocean areas in Swarm results.

4.3. TWSC of Amazon River Basin

In this section, taking the Amazon River basin as an example, the accuracy of the TWSC derived
from Swarm model is discussed. Before inverted TWSC, Swarm SH coefficients with 700 km fan filter
processing were truncated to a degree and order of 17, and GRACE SH coefficients were truncated to a
degree and order of 60 and were processed using a 300 km fan filter. At the same time, considering the
influence of the leakage error, the scale factor method was used to repair the signals. According to the
calculation results, the scale factors of the GRACE and Swarm models were 1.05 and 1.23, respectively.
It can be seen that the leakage error of Swarm is larger. From Figure 8, the two TWSC time series of
the Swarm (green line) and GRACE (blue line) models show significant seasonal variation and the
same change trend. However, the amplitude of Swarm is larger than that of GRACE. It can be seen
that there were abnormally low values in 2005, 2010, 2015, 2017 and 2019, which is consistent with
the fact that drought happened at these points in time [51–53]. In addition, significant increases can
be observed in 2009, 2010, 2012 and 2014, which are due to flood events [54,55]. According to the
comparison of the results of long-term trend change and seasonal signal of TWSC in the Amazon River
basin (Table 2), the annual amplitude and annual phase of the Swarm and GRACE models were close.
However, their measurements of long-term trend changes were very different.
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Figure 7. Monthly surface mass variation on March 2016 with unfiltered (top row), 300 km fan filter
(second row), 500 km fan filter (third row) and 700 km fan filter (bottom row) from GRACE (left
column) and Swarm (right column).
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Table 2. Long-term trends and seasonal changes from Swarm and GRACE TVG field. AA and AP
present the annual amplitude and annual phase, respectively.

Model Time Span Long-Term Trend (cm/a) AA (cm) AP (rad)

GRACE
2013.12–2020.05

−0.72 15.65 −1.36
Swarm −1.50 16.39 −1.33

The long-term trend change map of TWSC from the GRACE and Swarm models from December
2013 to May 2020 are shown in Figure 9. The left map is the results from GRACE and the right
map is the results from Swarm. There are the similar signals in the southeast and central regions;
however, the difference of the signals is more obvious in the most regions. This is because the long-term
trend signals in the Amazon basin is weak [37]. If the long-term trend change signals are strong,
they can be detected by the Swarm. It shows that the Swarm is suitable for detection in areas with
strong signals.
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The seasonal changes (annual amplitude and annual phase) of TWSC derived from GRACE and
Swarm models covering the period from December 2013 to May 2020 were also compared (Figure 10).
The results show that the annual amplitude and annual phase of the two models were similar in terms
of the spatial distribution of positive and negative values. According to the annual amplitude maps,
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the signal strength of GRACE was larger than that of Swarm. The weighted average values of the
annual amplitude derived from GRACE and Swarm models are 18.99 and 17.15 cm. It can be seen that
there is little difference between the two models. More detail could be seen in the results from GRACE.
However, the results of the two models showed some difference in the north and south regions in
terms of annual phase.Water 2020, 12, x FOR PEER REVIEW 16 of 20 
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Figure 10. TWSC seasonal changes in the Amazon River basin calculated by GRACE and Swarm.

5. Discussion

This paper compares the GRACE and Swarm TVGF models in detail form two aspects—the SH
coefficients of TVGF and the TWSC inversion results—in order to study the potential of using
Swarm models data to detect TWSC in the Amazon River basin. Since the successful launch of the
Swarm satellites in November 2013, a large number of research institutions have used the hl-SST
data of the Swarm satellites to obtain corresponding TVGF models in order to extract geophysical
signals [29,31,56–58].

However, due to the limitations of this hl-SST data, the precision of the Swarm TVGF model is
lower than that of GRACE. We thus need to evaluate how many real signals contained in the Swarm
model can be used for TWSC inversion. The degree-error RMS of time-variable signals from the
Swarm and GRACE models (Figure 3) show that the model errors of all Swarm models can reach the
accuracy level of GRACE model below degree 10. This is because low-degree SH coefficients reflect
larger-scale geophysical signals, of which the signal strength is large and easy to detect. The spatial
resolution of Swarm models is much lower than that of the GRACE model, so the time-variable field
signals that they can see together are mainly concentrated in the low-order parts of the SH coefficients.
As the degree increases, the proportion of real signals detected by the Swarm in the total signals is
getting increasingly smaller and that of the noise signals is increasingly larger. Therefore, the difference
between the degree variances of the time-variable gravity signals derived from these two models
becomes bigger. This also shows that the noise levels are growing and dominate the results. The results
of degree correlation coefficients between the Swarm and GRACE models (Figure 5) lead to a similar
conclusion. Thus, considering the results shown in Figures 3 and 5, the degree of Swarm models used
for obtaining the time-variable gravity signals should be truncated to 17 [36,38].
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The COST-G-Swarm model was introduced into this study. According to the comparison results
of multiple indicators (degree-error RMS, degree variance of time-variable signals, the residual gravity
relative to GRACE model and degree correlation), the combination model is better than a single model.
It is thus recommended to use the COST-G-Swarm model in future research. COST-G was established
at the 2019 General Assembly of the International Union of Geodesy and Geophysics (IUGG), which is
a new Product Center of IAG’s International Gravity Field Service (IGFS) for time-variable gravity
fields [59]. These models provide consolidated monthly global gravity fields in terms of SH coefficients,
such as Swarm and GRACE. These combination models help to further improve the accuracy of the
TVGF model and enable us to detect more subtle mass changes in the Earth’s surface or interior.

In the comparison of filtering results between Swarm and GRACE (Figure 6), the stripe errors of
the Swarm model were worse than those of the GRACE model [27]. In order to ensure the balance
between weakening the stripe errors and retaining the real signals, we suggest the use of 700 km fan
filtering to process the Swarm data.

Figure 7 shows the time series of TWSC in the Amazon River basin as calculated by the GRACE
and Swarm models. It can be seen that the time series of TWSC has obvious periodic changes (seasonal
changes). It was able to clearly reflect several major natural disasters (such as drought events in 2005,
2010 and 2016 and flood events in 2009 and 2012) [51]. Among these, the 2015–2016 drought events
occurred during the joint missions of Swarm and GRACE. According to the results, the Swarm and
GRACE satellites both detected the occurrence of this event. In this study, the spatial distribution
of long-term trend changes and annual changes calculated by the Swarm and GRACE models were
compared. The comparison shows a certain similarity in terms of spatial distribution of annual changes
(Figure 10), and the values of annual changes are close (Table 2). The TWSC in the Amazon River basin
shows a decreasing trend overall (Table 2) [60,61].

6. Conclusions

In this study, we discussed in detail the possibility and effectiveness of the Swarm TVGF model
used for quantifying and monitoring TWSC in the Amazon River basin, in order to bridge the data gap
between GRACE and GRACE-FO. Firstly, the Swarm TVGF models issued by different institutions
were compared and analyzed through various accuracy indicators. The comparison revealed that the
ASU-Swarm model has the best accuracy among all single models, but COST-G-Swarm, a combination
model, was better than any single model. At the same time, when using the SH coefficient method to
calculate the time-variable gravity changes of the Swarm model, it was reasonable to truncate the SH
coefficients to degree 17. Combining the above results and filtering efforts, the noise in the Swarm
models was greater than that observed in the GRACE model. Subsequently, the comparison of time
series, long-term trend changes and annual changes of TWSC in the Amazon River basin proved that
the Swarm model has the ability to obtain time-variable gravity signals on the Earth’s surface mass
changes in a local region. Compared to previous research, we focused on the spatial distribution of
long-term trend changes and seasonal changes of TWSC results from the two models. The results show
that the Swarm can fill the data gap between GRACE and GRACE-FO in the detection of long-wave
signals in the case of a spatial resolution of 1200 km.

The results of this study can provide a way to fill the data gap between GRACE and GRACE-FO.
However, there are still some shortcomings in this study that need to be considered in the future.
For example, the application of Swarm in ice sheet quality and gravity changes.
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